
Discrete Convex Optimization Solvers and
Demonstration Softwares∗

Nobuyuki Tsuchimura†, Satoko Moriguchi‡, and Kazuo Murota§

Abstract

In the last decade, efficient discrete optimization algorithms have been proposed in
discrete convex analysis, which is a unified framework of discrete convex optimization
based on the theory of matroids and submodular functions. With a view to disseminat-
ing these theoretical results in application fields, we have developed softwares and web
applications of fundamental algorithms for discrete convex minimization.

1 Introduction
Nonlinear optimization problems in integer variables appear in many problems in real appli-
cations, but they are recognized to be highly difficult to solve and no general-purpose solvers
are available for them. In pursuit of better understanding of tractability of nonlinear integer
optimization problems, various concepts of discrete convex functions have been proposed
together with theoretical investigations. Among others, the framework of discrete convex
analysis, which successfully extends the theory of matroids and submodular functions, has
attracted attention since the 1990’s and many results have already been accumulated in the
literature [2, 14–16, 19]. In discrete convex analysis, two kinds of convexities, called L-
convexity and M-convexity, are distinguished and are shown to be conjugate to each other.
Efficient algorithms are developed for minimizing L-convex functions and M-convex func-
tions.

Discrete convex analysis has also been used in operations research (OR). Specifically,
applications to inventory problems and scheduling problems are reported in [1, 7, 16, 21]. In-
ventory theory, though classical in OR, still plays an important role as the foundation of the
modern SCM (Supply Chain Management). In inventory theory discrete convex functions
appeared as early as in the 1970’s, when Miller [8] introduced a concept of discrete con-
vex functions, called “Miller’s convex functions” today, in his study of reparable inventory
systems. It has turned out only recently that the function treated by Miller in reparable inven-
tory systems is in fact an L♮-convex function, which fact implies that the problem formulated
by Miller admits a polynomial-time solution algorithm. On the other hand, call centers are

∗This is a translation of the paper: N. Tsuchimura, S. Moriguchi, and K. Murota: Discrete convex opti-
mization solvers and demonstration softwares, Transactions of the Japan Society for Industrial and Applied
Mathematics, Vol. 23 (2013), No.2, pp. 233–252 (in Japanese).

†Kwansei Gakuin University
‡Advanced Institute of Industrial Technology
§University of Tokyo

1

getting more and more important as an interface between companies and customers. Koole–
Sluis [7] made use of a discrete convexity concept called multimodularity, to deal with a shift
scheduling problem of minimizing the number of agents while maintaining an overall service
level objective. Multimodularity is known to be equivalent to L♮-convexity through a simple
transformation of variables.

With a view to disseminating the theoretical results of discrete convex analysis to appli-
cation fields, we have developed softwares and web applications of fundamental algorithms
for discrete convex minimization. We aim at providing an environment that facilitates the-
oretical and practical works related to discrete convex analysis without full understanding
of the technical details of the algorithms. The softwares made available include solvers for
discrete convex function minimization, online solvers for interactive minimization of dis-
crete quadratic functions, web applications for an inventory problem and a call center shift
scheduling. These are reported in this paper.

2 Discrete Convex Functions
In this section we introduce the concepts of L-convex and M-convex functions, which play the
central role in discrete convex analysis, and briefly describe their minimization algorithms.
The reader is referred to [14–16] for details.

2.1 L-convex functions and L♮-convex functions
For vectors x, y ∈ Zn we denote the vectors of componentwise maximum and minimum by
x ∨ y and x ∧ y, respectively. Let 1 = (1, 1, . . . , 1) ∈ Zn. A function f : Zn → R ∪ {+∞} is
said to be L-convex if it satisfies the following two conditions:

f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) (x, y ∈ Zn),(2.1)
∃r ∈ R : f (x + 1) = f (x) + r (x ∈ Zn).(2.2)

The inequality (2.1) expresses submodularity on the integer lattice, and, by convention, it is
satisfied if f (x) or f (y) is equal to +∞. A function f : Zn → R∪ {+∞} is said to be L♮-convex
if there exists an L-convex function f̃ (x0, x1, . . . , xn) such that

(2.3) f (x1, . . . , xn) = f̃ (0, x1, . . . , xn).

The concept of L♮-convex functions is equivalent to that of L-convex functions, if the number
of variables is not fixed.

Minimizers of L♮-convex functions can be characterized by a local condition. For a set
X ⊆ {1, 2, . . . , n} we denote its characteristic vector by χX ∈ {0, 1}n, and the effective domain
of f is denoted as dom f = {x ∈ Zn | f (x) < +∞}.
Theorem 2.1. For an L♮-convex function f : Zn → R ∪ {+∞} and a vector x ∈ dom f , we
have

f (x) ≤ f (y) (∀y ∈ Zn) ⇐⇒ f (x) ≤ f (x ± χX) (∀X ⊆ {1, 2, . . . , n}).
Testing for the local optimality on the right-hand side above can be reduced to minimizing

two submodular set functions1

(2.4) ρ+x (X) = f (x + χX) − f (x), ρ−x (X) = f (x − χX) − f (x).
1A set function ρ is called submodular if it satisfies the inequality ρ(X)+ ρ(X) ≥ ρ(X ∩ Y)+ ρ(X ∪ Y) for all

X and Y [2, 14, 15].

2

2.2 M-convex functions and M♮-convex functions
The concept of M-convex functions can be obtained by generalizing the matroid exchange
axioms. Let

(2.5) supp+(x − y) = {i | xi > yi}, supp−(x − y) = { j | x j < y j}

and for i = 1, 2, . . . , n, denote the i-th unit vector by χi; where χ0 = (0, 0, . . . , 0) by conven-
tion.

A function f : Zn → R ∪ {+∞} is called M-convex if it satisfies the following exchange
axiom:

For any x, y ∈ dom f and i ∈ supp+(x − y), there exists j ∈ supp−(x − y) such that

f (x) + f (y) ≥ f (x − χi + χ j) + f (y + χi − χ j).

Since the effective domain of an M-convex function is contained in a hyperplane of a con-
stant component sum, we may project the function along a coordinate axis without essential
loss of information about the function values. A function obtained from an M-convex func-
tion via a projection is called an M♮-convex function. That is, a function f : Zn → R ∪ {+∞}
is called M♮-convex if the function f̃ (x0, x1, . . . , xn) defined by

(2.6) f̃ (x0, x1, . . . , xn) =
{

f (x) (x0 = −
∑n

i=1 xi)
+∞ (x0 , −

∑n
i=1 xi)

is M-convex. The concept of M♮-convex functions is equivalent to that of M-convex functions,
if the number of variables is not fixed.

Minimizers of M♮-convex functions can be characterized by a local condition.

Theorem 2.2. For an M♮-convex function f : Zn → R ∪ {+∞} and a vector x ∈ dom f , we
have

f (x) ≤ f (y) (∀y ∈ Zn) ⇐⇒ f (x) ≤ f (x − χi + χ j) (∀i, j ∈ {0, 1, . . . , n}).

2.3 Algorithms
Many algorithms have been proposed for minimizing L♮- or M♮-convex functions.

2.3.1 Steepest descent methods

Local optimality criteria naturally lead to steepest descent methods for minimization of dis-
crete convex functions. For L♮-convex functions, Theorem 2.1 yields the following algo-
rithm [6, 13–15].

Steepest descent method for L♮-convex functions
Step 0: Let x be any vector contained in dom f .
Step 1: Determine ε ∈ {1,−1} and X ⊆ {1, . . . , n} as follows.
Step 1-1: Let X+ be (any) minimizer of ρ+x (X) = f (x + χX) − f (x).
Step 1-2: Let X− be (any) minimizer of ρ−x (X) = f (x − χX) − f (x).

Step 1-3: Let (ε, X) =
{

(1, X+) if min ρ+x ≤ min ρ−x ,
(−1, X−) if min ρ+x > min ρ−x .

3

Step 2: If f (x) ≤ f (x + εχX), then stop (x is a minimizer of f).
Step 3: Let x := x + εχX and go to Step 1. □

For the local search in Step 1 we may apply any algorithm for submodular function min-
imization to ρ+x (X) and ρ−x (X) (see, e.g., [2, 4, 15]). We use the strongly-polynomial combi-
natorial algorithm of Iwata–Fleischer–Fujishige [5] (IFF algorithm) and the Fujishige–Wolfe
algorithm (FW algorithm) that uses the minimum-norm point (see Section 3).

Also for the minimization of M♮-convex functions f we can similarly derive a steepest
descent method from Theorem 2.2, where the neighborhood for local search needs to be
modified according to Theorem 2.2. Several variants of the steepest descent method for M♮-
convex functions are proposed, including

(i) The basic form to find (i, j) that minimizes f (x − χi + χ j) such as ‘descent algorithm’
in [14, p. 227] and ‘steepest descent algorithm’ in [15, pp. 281–283].

(ii) The modified form to find j that minimizes f (x−χi+χ j) for an arbitrarily chosen index
i, such as ‘Modified Steepest Descent’ in [10].

(iii) A further modification of (ii) that incorporates domain reduction (‘Greedy’ in [18, page
306]).

2.3.2 Scaling methods

Steepest descent algorithms with the scaling technique, which run in polynomial-time, have
been proposed for L♮-convex functions and M♮-convex functions [10,14–16,18]. When given
a function f : Zn → R ∪ {+∞}, the scaling technique considers the function fα : Zn →
R ∪ {+∞} defined by

(2.7) fα(x) = f (αx) (x ∈ Zn),

where α is a positive integer. The function fα is naturally regarded as an approximation to f
with step size α on the integer lattice, and as such the minimizer of fα is likely to be located
near that of f . On the other hand, fα is usually easier to minimize than f . Therefore, it is often
more efficient to first find a minimizer xα of fα and then compute a minimizer of f using xα
as the initial point. Moreover, we can apply the same idea recursively to find the minimizer
of fα. Such an algorithm is called a scaling method. The computational complexity can be
analyzed theoretically with the aid of a proximity theorem, which gives an upper bound on
the distance between the minimizer xα of the scaled function fα and that of the function f .

2.3.3 Continuous relaxation methods

Suppose that, for a discrete convex function f : Zn → R ∪ {+∞}, we have a convex function
f̄ : Rn → R ∪ {+∞} in continuous variables such that

(2.8) f (x) = f̄ (x) (∀x ∈ Zn).

The continuous relaxation method (e.g., [11, 12]) finds a minimizer y ∈ Rn of f̄ by using a
continuous optimization method, computes an integer vector x ∈ Zn via a rounding of y, and
uses x as an initial point for a steepest descent method for f . The computational complexity
can be analyzed theoretically with the aid of a proximity theorem, which gives an upper

4

bound on the distance between the solution y of the continuous relaxation and the minimizer
of the function f .

For an L♮-convex or M♮-convex function f it is known that a continuous extension f̄ in
(2.8) exists. In applications, it is often the case that the function f is defined by (2.8) from a
function f̄ in continuous variables. It is noted that computing f̄ from f is easy for L♮-convex
functions, but not for M♮-convex functions.

3 Our Solver: ODICON
We have developed a solver consisting of discrete convex function minimization algorithms,
and named it “ODICON” (Optimization algorithms for DIscrete CONvex functions) [20].
The implemented algorithms are: steepest descent methods (Section 2.3.1), scaling methods
(Section 2.3.2), and continuous relaxation methods (Section 2.3.3) for L / L♮ /M /M♮-convex
functions. ODICON is an open source software in C language, and is expected to be used
within other programs rather than used as an independent software. Users who wish to min-
imize a discrete function should write a C program for that function and call an appropriate
program in ODICON.

The programs employ simple implementation of the algorithms and natural interface. In
C language there seems to be no unified method to handle dynamic arrays whose size is
determined at run time. In view of this, we made particular efforts to minimize the often-
encountered difficulty in combining softwares developed by others.

The programs included in our solver are listed in Table 1. Among them is the following:

double mgconv_minimize(int dim, double f(int dim, int x[]),

int init[], int lower[], int upper[]);

which minimizes an M♮-convex function f() in dim variables. Users are expected to choose
an appropriate program depending on the discrete convexity (L / L♮ /M /M♮-convexity) of the
target function. The program above starts with the initial vector init[], finds a minimizer
(or one of the minimizers in case of multiple minimizers) by the steepest descent method,
and returns the minimizer (vector) in init[] (while destroying the initial vector) together
with the minimum function value as the value of the function subroutine. The search for a
minimizer is limited to the range of lower[i]≤init[i]≤upper[i] (0 ≤ i < dim).

In the above example we need the following declaration statement about the M♮-convex
function to be minimized :

double f(int dim, int x[]);

which means that the output is of type double and the input is a variable of type int and an
array of type int. All programs adopt this format for the function to be minimized.

Suppose, for example, that we want to minimize the following (discrete) M♮-convex func-
tion in three variables:

(3.1) f (x) = x4
0 + (x1 − 3)2 + 5(x2 − 7)2.

This function can be implemented in C as

double f(int dim, int x[]) {

double r = 0;

5

Table 1: Discrete convex function minimization programs implemented in ODICON

L-convex function minimization (Method of local search)
lconv minimize steepest descent method [14](exhaustive enumeration)
lconv minimize IFF steepest descent method [14] (IFF)
lconv minimize FW steepest descent method [14] (FW)
lconv minimize scaling scaling method [14](exhaustive enumeration)
lconv minimize scaling IFF scaling method [14] (IFF)
lconv minimize scaling FW scaling method [14] (FW)
lconv minimize relax continuous relaxation method [12] (IFF)
L♮-convex function minimization (Method of local search)
lgconv minimize steepest descent method [14] (exhaustive enumeration)
lgconv minimize IFF steepest descent method [14] (IFF)
lgconv minimize FW steepest descent method [14] (FW)
lgconv minimize scaling scaling method [14] (exhaustive enumeration)
lgconv minimize scaling IFF scaling method [14] (IFF)
lgconv minimize scaling FW scaling method [14] (FW)
lgconv minimize relax continuous relaxation method [12] (IFF)
M-convex function minimization
mconv minimize steepest descent method (i) [14, 15]
mconv minimize2 steepest descent method (ii) [10]
mconv minimize3 steepest descent method (iii) [18]
mconv minimize scaling scaling method [10]
mconv minimize relax continuous relaxation method [11]
M♮-convex function minimization
mgconv minimize steepest descent method (i) [14, 15]
mgconv minimize2 steepest descent method (ii) [10]
mgconv minimize3 steepest descent method (iii) [18]
mgconv minimize scaling scaling method [10]
mgconv minimize relax continuous relaxation method [11]

6

assert(dim == 3); /* check dim */

r += x[0] * x[0] * x[0] * x[0];

r += (x[1] - 3) * (x[1] - 3);

r += 5 * (x[2] - 7) * (x[2] - 7);

return r;

}

We can minimize this function as follows:

int x[3] = { 0, 0, 0 };

int lower[3] = { -100, -100, -100 };

int upper[3] = { 100, 100, 100 };

double min = mconv_minimize(3, f, x, lower, upper);

where the initial point is the origin and the search is made in the range of −100 ≤ xi ≤ 100.
After the execution of the above, the variable min contains the minimum function value 0 and
the array x[] contains a minimizer (0, 3, 7).

For the four kinds of discrete convex functions, L / L♮ / M / M♮-convex functions, in
discrete variables we have made minimization programs as above. For each type of functions,
a variety of minimization algorithms (steepest descent method, scaling method, continuous
relaxation method) are implemented, and users can choose whichever they want to use. A
common format of the arguments is used to most of the programs, and users can try with
different algorithms just by changing the name of the programs.

It is noted, however, that a solver is guaranteed to return a correct answer only if the input
function is of the type expected by the algorithm in the solver. That is, users are requested to
choose a minimization algorithm that is suitable for the function to be minimized. Otherwise,
the solver may return an incorrect answer without trying to detect the possible incorrectness
of its output. This is because it is not easy, in general, to check for the convexity type (L /
L♮ /M /M♮-convexity) of the input function before or during the execution of the algorithm.
For a quadratic function, however, we can determine the convexity type, before starting the
search for a minimum, by testing for certain properties of the matrix defining the quadratic
function (see Section 4.1.1).

For the implementation of minimization algorithms, we need programs for minimization
of submodular functions and convex functions in continuous variables. The following pro-
grams are used, with some adaptations in the interface to realize a consistent format.

• For submodular function minimization: Iwata–Fleischer–Fujishige (IFF) algorithm [5]
implemented by S. Iwata.

• For submodular function minimization: Fujishige–Wolfe (FW) algorithm (minimum-
norm base method) implemented by S. Fujishige and S. Isotani [3].

• For continuous minimization: ‘L-BFGS’, which is an implementation of the quasi-
Newton method by J. Nocedal2, together with a C++ wrapper by T. Kubo3.

• For random number generation: ‘SIMD-oriented Fast Mersenne Twister’ implemented
by M. Saito and M. Matsumoto4.

2http://www.ece.northwestern.edu/∼nocedal/lbfgs.html
3http://chasen.org/∼taku/software/misc/lbfgs/
4http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/SFMT/

7

The following remarks are in order about the programs listed in Table 1.

• Steepest descent method for L / L♮-convex functions: Three different programs are pro-
vided, which use (i) exhaustive enumeration, (ii) IFF, and (iii) FW as the algorithm
of submodular function minimization for local optimization. IFF and FW are subject
to rounding errors as they involve floating-point computations (in addition to function
evaluations). Exhaustive enumeration, though not a polynomial-time algorithm, is nu-
merically more stable. In submodular function minimization, IFF terminates quickly
if the initial solution is close to the minimizer, whereas FW is rather insensitive to the
distance of the initial solution to the minimizer.

• Scaling method for L / L♮-convex functions: Three different programs are provided,
which use (i) exhaustive enumeration, (ii) IFF, and (iii) FW as the algorithm of sub-
modular function minimization for local optimization.

• Continuous relaxation method for L / L♮-convex functions: The IFF-based steepest
descent method is chosen to be used at the final stage of the continuous relaxation
method. This choice is based on our empirical observation that the integer solution
obtained from the rounding of a continuous optimal solution is often sufficiently close
to the (true) integral optimal solution, and in such a case, IFF terminates very quickly.

• Steepest descent method for M / M♮-convex functions: Three different programs are
provided, corresponding to the three algorithms mentioned at the end of Section 2.3.1:

(i) The basic form to find (i, j) that minimizes f (x − χi + χ j) [14, 15],
(ii) The modified form to find j that minimizes f (x−χi+χ j) for an arbitrarily chosen5

index i [10], and
(iii) A further modification of (ii) that incorporates domain reduction [18].

• Scaling method for M / M♮-convex functions: The algorithm of Moriguchi–Murota–
Shioura [10] is adopted. This algorithm has been proposed as an algorithm with a
theoretical guarantee of computational complexity for those M / M♮-convex functions
which retain M /M♮-convexity after scaling. Nevertheless, the algorithm outputs a cor-
rect optimal solution for all M /M♮-convex functions, though the theoretical guarantee
of computational complexity is no longer valid.

• Continuous relaxation method for M /M♮-convex functions: The program (ii) is chosen
in the steepest descent method to be used at the final stage of the continuous relaxation
method. The other two choices do not make much difference.

4 Contents of the Website
In our research project [17] we have (i) implemented minimization algorithms for functions
with L- and M-convexity and some related algorithms, (ii) made available some optimiza-
tion solvers for discrete convex functions and other application softwares, and (iii) made
demonstration applications for quick experience of the solvers. In this section we describe
demonstration applications about discrete convex function minimization solvers, an inventory
problem, and a call center shift scheduling problem.

5In our implementation we choose i according to the natural ordering of the index.

8

4.1 Demonstration applications for discrete convex function minimiza-
tion solvers

For the demonstration of discrete convex function minimization solvers, we have offered
web applications that deal with functions such as quadratic L♮ / M♮-convex functions, quasi-
separable L♮-convex functions, and laminar M♮-convex functions.

4.1.1 Quadratic functions

In the demonstration of L♮-convex quadratic function minimization, a user-defined quadratic
L♮-convex function

(4.1) f (x) =
1
2

x⊤Ax + b⊤x

is minimized by the steepest descent method. The user can define the function f through the
input of a symmetric matrix A = (ai j) of order n and an n-dimensional vector b = (bi), and
specify an initial solution. The application checks for the L♮-convexity of the user-defined
function6 (see Fig. 1). If the input is valid (or made valid by the user), “Minimize” but-
ton is made available. If this button is pushed, the application applies the steepest descent
method (based on exhaustive enumeration) and outputs the result along with the process of
computation (Fig. 2). Similarly for M♮-convex quadratic function minimization.

4.1.2 Quasi-separable L♮-convex functions

In the demonstration of quasi-separable L♮-convex function minimization, a function f of the
form

(4.2) f (x) =
∑
i, j

fi j(xi − x j) +
n∑

i=1

fi(xi)

is minimized by the steepest descent method. Here fi j and fi are univariate convex functions,
which are quadratic, quartic, exponential, and absolute-value functions in our application.
The user can define the function f through the input of parameter values and specify an initial
solution. The application applies the steepest descent method (based on IFF) and outputs the
result along with the process of computation.

4.1.3 Laminar M♮-convex functions

In the demonstration of laminar M♮-convex function minimization, a function f of the form

(4.3) f (x) =
∑
Y∈T

fY(x(Y)), x(Y) =
∑
i∈Y

xi

is minimized by the steepest descent method. Here T is a laminar family (a set family such
that, for any X,Y ∈ T , at least one of X∩Y , X\Y , Y\X is an empty set), and fY’s are univariate
convex functions, which are quadratic, quartic, exponential, and absolute-value functions in
our application. The user can define the function f through the input of parameter values
and specify an initial solution. The application applies the steepest descent method (i) and
outputs the result along with the process of computation.

6 f is an L♮-convex function ⇐⇒ ai j ≤ 0 (i , j),
∑n

j=1 ai j ≥ 0 (i = 1, . . . , n).

9

Fig. 1. Online solver for quadratic L♮-convex functions (input)

Fig. 2. Online solver for quadratic L♮-convex functions (output)

11

Figure 1: Online solver for quadratic L♮-convex functions (input)
Fig. 1. Online solver for quadratic L♮-convex functions (input)

Fig. 2. Online solver for quadratic L♮-convex functions (output)

11

Figure 2: Online solver for quadratic L♮-convex functions (output)

10

4.2 Application for inventory problem
We made an online application solver for an inventory problem by using an optimization
engine based on our discrete convex function minimization solver. In this application the
user interactively inputs the number of items n and other parameters p, c j, λ j (j = 1, . . . , n)
(see Fig. 3). With the execution of optimization, the optimal numbers of reparable spare parts
and the corresponding cost are shown (Fig. 4).

The model for the initial procurement problem in a reparable system, proposed by Miller
[8], is a multi-item model with backorders where demand and order quantities take on dis-
crete (integer) values. Such model is used in reparable spares parts maintenance for aircrafts.
For mathematical treatment of the problem, the concept of “Miller’s convex function” is in-
troduced in [8] together with a minimization algorithm, whose running time is not necessarily
bounded by a polynomial in the problem size. It turned out later that the function treated by
Miller is in fact an L♮-convex function [9, 16].

In Miller’s inventory model, the objective is to minimize the total cost consisting of two
terms. The first term represents the penalty that is proportional to the steady-state expectation
of the maximum number of backorders among n items. The second term is the cost of spares
purchases, which is given by

∑n
j=1 c jx j with c j > 0 denoting the unit cost of item j and x j ∈ Z

the number of item j to be purchased. We denote by φ j(m) the probability that the demand
of the item j (or the nonnegative integer-valued random variable representing this demand) is
equal to m. Then the cumulative distribution function of the demand of item j is given by

(4.4) F j(k) =
k∑

m=0

φ j(m) (k ∈ Z+).

The expected value (in the steady state) of the maximum number of backorders among the n
items is given by

(4.5)
∞∑

k=0

1 − n∏
j=1

F j(x j + k)


(see [16, Section 14.7] for details). The objective is to determine the purchase quantities
(x1, . . . , xn) that minimize the total cost

(4.6) f (x) = p
∞∑

k=0

1 − n∏
j=1

F j(x j + k)

 + n∑
j=1

c jx j,

where p > 0 represents the penalty for backorders. As the probability distribution of the
demand of item j we here assume the Poisson distribution with parameter λ j > 0, i.e.,

(4.7) φ j(m) = exp(−λ j)
λm

j

m!
(m ∈ Z+).

As already noted, the function f in (4.6) is an L♮-convex function, and therefore, we can
efficiently minimize f (x) by using L♮-convex function minimization algorithms.

This online application software is intended for small-sized sample problems for which
the interactive use is appropriate. If the user wishes to try with larger (with n up to 50, say)
inventory problems, it is also possible to download our solver ODICON and execute it in the
local environment.

11

Fig. 3. Online solver for an inventory problem (input)

すでに述べたように，(4.6)式の f は L♮ 凸関数である．このことから，L♮ 凸関数の最小

化アルゴリズムにより， f (x)の最小化を効率的に行うことができる．

本研究で開発したオンラインソルバは，利用者が対話的にパラメータ入力・最適化を

行って瞬時に結果を得られる範囲の問題サイズに対して提供しているが，さらに大規模な

在庫管理（n = 50程度まで）を必要とする場合は，開発ソルバ ODICONをダウンロード

して利用者のローカル環境で最適化を実行することができる．

4.3 コールセンターにおけるシフトスケジューリングアプリケーション

離散凸関数最小化のソルバを最適化エンジンとして組み込んだ，コールセンターにおけ

るシフトスケジューリングのアプリケーションを開発して，オンラインソルバとして公開

した．

アプリケーションでは，各時間区間の客の到着率 λi，オペレータのサービス率 µ，客を

13

Figure 3: Online solver for an inventory problem (input)

Fig. 4. Online solver for an inventory problem (output)

待たせる時間の限界の基準値 cなどのパラメータを対話的に入力し (図 5)，最適化を実行

すると，各シフトに配置するオペレータの最適な人数と，その際のサービスレベルが表示

されるようになっている (図 6)．

ここで用いたモデル（Koole–Sluis [7]のモデル）の概要は以下の通りである．

• コールセンターは，I 個の（連続する）時間区間に渡って稼働する．時間区間を

i = 1, . . . , I で表す．

• 各オペレータは連続した M 個の時間区間に勤務する．

• 勤務シフトは K 種類あり，それぞれの開始時点（と終了時点）は予め指定されてい

る．シフトを k = 1, . . . ,K で表し，第 kシフトの開始時間区間を Ik で表す．ただ

し，1 ≤ I1 < I2 < · · · < IK ≤ I − M + 1とする．図 7にシフトの例を示す（I = 13,

M = 5, K = 4, I1 = 1, I2 = 3, I3 = 6, I4 = 9）．

• 各時間区間 i = 1, . . . , I に対して，その区間におけるサービスレベルを表す関数

gi(ni)が与えられている．ここで，ni は時間区間 i に勤務しているオペレータの人

数である．関数 gi は単調増加な凹関数とする．

• 全体のサービスレベル Sは S =
∑

1≤i≤I gi(ni)で与えられる．

第 kシフトに配置するオペレータの人数を yk とすると，時間区間 i のオペレータの人

数 ni は

(4.8) hi(y) =
∑

k:i−M<Ik≤i

yk

に等しい．したがって，サービスレベル Sは y = (y1, . . . , yK)の関数として

(4.9) S(y) =
∑

1≤i≤I

gi(hi(y)) (y ∈ ZK)

となる．文献 [7] に従い，サービスレベルを一定の水準 sに保ってオペレータの人数を最

14

Figure 4: Online solver for an inventory problem (output)

12

Fig. 4. Online solver for an inventory problem (output)

待たせる時間の限界の基準値 cなどのパラメータを対話的に入力し (図 5)，最適化を実行

すると，各シフトに配置するオペレータの最適な人数と，その際のサービスレベルが表示

されるようになっている (図 6)．

ここで用いたモデル（Koole–Sluis [7]のモデル）の概要は以下の通りである．

• コールセンターは，I 個の（連続する）時間区間に渡って稼働する．時間区間を

i = 1, . . . , I で表す．

• 各オペレータは連続した M 個の時間区間に勤務する．

• 勤務シフトは K 種類あり，それぞれの開始時点（と終了時点）は予め指定されてい

る．シフトを k = 1, . . . ,K で表し，第 kシフトの開始時間区間を Ik で表す．ただ

し，1 ≤ I1 < I2 < · · · < IK ≤ I − M + 1とする．図 7にシフトの例を示す（I = 13,

M = 5, K = 4, I1 = 1, I2 = 3, I3 = 6, I4 = 9）．

• 各時間区間 i = 1, . . . , I に対して，その区間におけるサービスレベルを表す関数

gi(ni)が与えられている．ここで，ni は時間区間 i に勤務しているオペレータの人

数である．関数 gi は単調増加な凹関数とする．

• 全体のサービスレベル Sは S =
∑

1≤i≤I gi(ni)で与えられる．

第 kシフトに配置するオペレータの人数を yk とすると，時間区間 i のオペレータの人

数 ni は

(4.8) hi(y) =
∑

k:i−M<Ik≤i

yk

に等しい．したがって，サービスレベル Sは y = (y1, . . . , yK)の関数として

(4.9) S(y) =
∑

1≤i≤I

gi(hi(y)) (y ∈ ZK)

となる．文献 [7] に従い，サービスレベルを一定の水準 sに保ってオペレータの人数を最

14

Figure 5: Online solver for a call center shift scheduling problem (input)

4.3 Application for call center shift scheduling
We made an online application solver for a call center shift scheduling problem by using an
optimization engine based on our discrete convex function minimization solver. In this appli-
cation the user interactively inputs customer arrival rate λi for each interval i, agent service
rate µ, and the threshold c of admissible waiting time (see Fig. 5). With the execution of
optimization, the optimal numbers of agents and the corresponding service levels are shown
(Fig. 6).

The model of Koole–Sluis [7], which is used here, is as follows.

• The call center is operational during I (consecutive) time intervals, indexed by i =
1, . . . , I.

• Each employee (agent) works for M consecutive intervals.

• During K of the intervals, employees can start working. Shift k starts at the Ik-th interval
(and finishes at the beginning of interval Ik + M). We assume that 1 ≤ I1 < I2 < · · · <
IK ≤ I − M + 1. Figure 7 shows an example of shifts, where I = 13, M = 5, K = 4,
I1 = 1, I2 = 3, I3 = 6, I4 = 9.

• For each interval i = 1, . . . , I, there is a function gi(ni) representing the service level in
terms of the number ni of agents working in interval i. The function gi is assumed to be
monotone increasing and concave.

• The overall service level S is defined by S =
∑

1≤i≤I gi(ni).

If yk employees work in shift k, the number ni of agents (employees) working in interval
i is equal to

(4.8) hi(y) =
∑

k:i−M<Ik≤i

yk,

and therefore, the overall service level S is given as

(4.9) S (y) =
∑
1≤i≤I

gi(hi(y)) (y ∈ ZK)

13

Fig. 6. Online solver for a call center shift scheduling problem (output)

1 2 3 11 12 134 5 6 7 8 9 10
I1 I2 I3 I4

Fig. 7. Example of shift

16

Figure 6: Online solver for a call center shift scheduling problem (output)

Fig. 6. Online solver for a call center shift scheduling problem (output)

1 2 3 11 12 134 5 6 7 8 9 10
I1 I2 I3 I4

Fig. 7. Example of shift

16

Figure 7: Example of shifts

14

in terms of y = (y1, . . . , yK). Following [7] we consider the problem of minimizing the
number of scheduled employees, under the constraint that the overall service level should at
least attain the specified level s:

(4.10) Minimize
∑

k

yk s.t. S (y) ≥ s, y ∈ ZK .

To solve this problem we introduce another problem with a parameter N:

(4.11) Maximize S (y) s.t.
∑

k

yk = N, y ∈ ZK .

Then the optimal solution to the problem (4.10) can be obtained by repeatedly solving (4.11)
for different N’s with the aid of the bisection method to determine an appropriate N.

The concrete form of the overall service level S (y) is determined from the queueing model
M/M/n as follows. For i = 1, . . . , I, the customer arrival rate in interval i is denoted by λi,
whereas the service rate of the agents is denoted by µ. The service level is defined to be the
fraction of the customers who do not have to wait longer than c seconds, e.g., c = 11 seconds,
before getting an agent. Then we have

(4.12) S (y) =
∑
1≤i≤I

λi

Λ
P[Wλi(ni) ≤ c] =

∑
1≤i≤I

λi

Λ
P[Wλi(hi(y)) ≤ c].

Here ni = hi(y) represents the number of agents in interval i, Λ =
∑

1≤i≤I λi, Wλ(n) denotes the
waiting time (random variable) in the queueing model M/M/n (arrival rate λ, service rate µ),
and P[· · ·] means probability. It is known in queueing theory that, in the stationary state, we
have

(4.13) P[Wλ(n) ≤ c] = 1 − Πn exp[−nµ(1 − ρ/n)c],

where, ρ = λ/µ, ρ/n < 1, and

(4.14) Πn =

ρn

n!(1 − ρ/n)
n−1∑
k=0

ρk

k!
+

ρn

n!(1 − ρ/n)

.

Therefore, for each i, the function7

(4.15) gi(n) =
λi

Λ
P[Wλi(n) ≤ c]

is increasing and concave in n, satisfying the assumption of our model.
The function S (y) in (4.9) is equipped with discrete concavity. To be specific, under

the assumption that each gi is a monotone increasing concave function for i = 1, . . . , I, the
function −S (y) is a kind of discrete convex function, called a multimodular function [7].
Multimodularity is a concept equivalent to L♮-convexity; multimodular functions and L♮-
convex functions are in one-to-one correspondence through a simple transformation of vari-
ables [15, 16].

7The effective domain of gi is equal to {n ∈ Z | n > λi/µ}, and gi(n) = −∞ for n ≤ λi/µ.

15

Theorem 4.1. A function F : ZK → R ∪ {+∞} is multimodular if and only if the function
f : ZK → R ∪ {+∞} defined by

f (x) = F(x1, x2 − x1, x3 − x2, . . . , xK − xK−1) (x ∈ ZK)

is L♮-convex. In this case we have

F(y) = f (y1, y1 + y2, y1 + y2 + y3, . . . , y1 + · · · + yK) (y ∈ ZK).

This fact reveals that Problem (4.11) is equivalent to an unconstrained minimization of
the L♮-convex function

(4.16) f̃ (x) = −S (x1, x2 − x1, x3 − x2, . . . , xN−1 − xN−2,N − xK−1) (x ∈ ZK−1)

in K − 1 variables. Therefore, an exact solution to Problem (4.11) can be found efficiently.
This online application software is intended for small-sized sample problems for which

the interactive use is appropriate. If the user wishes to try with other shift structures or
larger (with n up to 50, say) scheduling problems, it is also possible to download our solver
ODICON and execute it in the local environments.

5 Summary
With a view to disseminating the theoretical results of discrete convex analysis in application
fields, we have developed softwares and web applications of fundamental algorithms for dis-
crete convex minimization. We have outlined ODICON, which implements discrete convex
function minimization algorithms, and web applications related to inventory and call center
shift scheduling.

Acknowledgements
The authors thank Satoru Iwata for providing a program of the IFF method for submodular
function minimization and offering useful comments for the development of the solver. They
are also grateful to Satoru Fujishige and Shigeo Isotani for providing a program of the FW
method for submodular function minimization, and to Naonori Kakimura for corporation
in establishing the website. Part of this work is supported by KAKENHI Grant-in-Aid for
Scientific Research (B) 21360045 and Grant-in-Aid for Young Scientists (B) 22710148, and
also by the Aihara Project, the FIRST program from JSPS, initiated by CSTP.

References
[1] M. Begen and M. Queyranne, Appointment Scheduling with Discrete Random Dura-

tions, Mathematics of Operations Research, 36 (2011), 240–257.

[2] S. Fujishige, Submodular Functions and Optimization, 2nd ed., Annals of Discrete
Mathematics, 58, Elsevier, Amsterdam, 2005.

[3] S. Fujishige and S. Isotani, A Submodular Function Minimization Algorithm Based on
the Minimum-norm Base, Pacific Journal of Optimization, 7 (2011), 3–17.

16

[4] S. Iwata, Submodular Function Minimization, Mathematical Programming, B112
(2007), 45–64.

[5] S. Iwata, L. Fleischer and S. Fujishige, A Combinatorial Strongly Polynomial Algo-
rithm for Minimizing Submodular Functions, Journal of ACM, 48 (2001), 761–777.

[6] V. Kolmogorov and A.Shioura, New Algorithms for Convex Cost Tension Problem with
Application to Computer Vision, Discrete Optimization, 6 (2009), 378–393.

[7] G. Koole and E. van der Sluis, Optimal Shift Scheduling with a Global Service Level
Constraint, IIE Transactions, 35 (2003), 1049–1055.

[8] B. L. Miller, On Minimizing Nonseparable Functions Defined on the Integers with an
Inventory Application, SIAM Journal on Applied Mathematics, 21 (1971), 166–185.

[9] S. Moriguchi and K. Murota, Discrete Hessian Matrix for L-convex Functions, Funda-
mentals of Electronics, Communications and Computer Sciences, E88 (2005), 1104–
1108.

[10] S. Moriguchi, K. Murota, and A. Shioura, Scaling Algorithms for M-convex Function
Minimization, Fundamentals of Electronics, Communications and Computer Sciences,
E85 (2002), 922–929.

[11] S. Moriguchi, A. Shioura, and N. Tsuchimura, M-convex Function Minimization by
Continuous Relaxation Approach—Proximity Theorem and Algorithm, SIAM Journal
on Optimization, 21 (2011), 633–668.

[12] S. Moriguchi. and N. Tsuchimura, Discrete L-convex Function Minimization Based on
Continuous Relaxation, Pacific Journal of Optimization, 5 (2009), 227–236.

[13] K. Murota, Algorithms in Discrete Convex Analysis, IEICE Transactions on Systems
and Information, E83-D (2000), 344–352.

[14] K, Murota, Discrete Convex Analysis—An Introduction (in Japanese), Kyoritsu Pub-
lishing Co., Tokyo, 2001.

[15] K, Murota, Discrete Convex Analysis, SIAM, Philadelphia, 2003.

[16] K, Murota, Primer of Discrete Convex Analysis—Discrete versus Continuous Opti-
mization (in Japanese), Kyoritsu Publishing Co., Tokyo, 2007.

[17] K. Murota, S. Iwata, A. Shioura, S. Moriguchi, N. Tsuchimura, and N. Kakimura, DCP
(Discrete Convex Paradigm), http://www.misojiro.t.u-tokyo.ac.jp/DCP/

[18] A. Shioura, Fast Scaling Algorithms for M-convex Function Minimization with Appli-
cation to the Resource Allocation Problem, Discrete Applied Mathematics, 134 (2003),
303–316.

[19] A. Tamura, Discrete Convex Analysis and Game Theory (in Japanese), Asakura Pub-
lishing Co., Tokyo, 2009.

[20] N. Tsuchimura, ODICON,
http://www.misojiro.t.u-tokyo.ac.jp/∼tutimura/odicon/

17

[21] P. Zipkin, On the Structure of Lost-Sales Inventory Models, Operations Research, 56
(2008), 937–944.

18

