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PAPER
Graph Degree Heterogeneity Facilitates Random Walker Meetings∗

Yusuke SAKUMOTO†a) and Hiroyuki OHSAKI†b), Members

SUMMARY Various graph algorithms have been developed with mul-
tiple random walks, the movement of several independent random walkers
on a graph. Designing an efficient graph algorithm based on multiple ran-
dom walks requires investigating multiple random walks theoretically to
attain a deep understanding of their characteristics. The first meeting time
is one of the important metrics for multiple random walks. The first meet-
ing time on a graph is defined by the time it takes for multiple random
walkers to meet at the same node in a graph. This time is closely related to
the rendezvous problem, a fundamental problem in computer science. The
first meeting time of multiple random walks has been analyzed previously,
but many of these analyses focused on regular graphs. In this paper, we
analyze the first meeting time of multiple random walks in arbitrary graphs
and clarify the effects of graph structures on expected values. First, we de-
rive the spectral formula of the expected first meeting time on the basis of
spectral graph theory. Then, we examine the principal component of the
expected first meeting time using the derived spectral formula. The clari-
fied principal component reveals that (a) the expected first meeting time is
almost dominated by n/(1 + d2

std/d
2
avg) and (b) the expected first meeting

time is independent of the starting nodes of random walkers, where n is the
number of nodes of the graph. davg and dstd are the average and the stan-
dard deviation of weighted node degrees, respectively. Characteristic (a) is
useful for understanding the effect of the graph structure on the first meet-
ing time. According to the revealed effect of graph structures, the variance
of the coefficient dstd/davg (degree heterogeneity) for weighted degrees fa-
cilitates the meeting of random walkers.
key words: first meeting time, random walk, spectral graph theory

1. Introduction

Various graph algorithms have been developed with mul-
tiple random walks, the movement of several independent
random walkers on a graph, as a result of graph algorithms
offer ease of analysis and light-weight processing. Notable
applications include (a) a search algorithm for finding a par-
ticular node on a graph [1], [2], (b) an algorithm for spread-
ing information across graphs by exchanging information
only between adjacent nodes [3], and (c) the rendezvous al-
gorithm for efficient meeting of multiple random walkers at
the same node [4]. Designing an efficient graph algorithm
based on multiple random walks requires studying multi-
ple random walks theoretically in order to understand their
characteristics at a deep level.
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Several important metrics (e.g., first hitting time, re-
currence time, cover time, re-encountering time, and first
meeting time) have been used for investigating the charac-
teristics of multiple random walks. The first hitting time is
the time it takes for any random walker to arrive at a speci-
fied node, and it is important for evaluating the performance
of relevant search algorithms. The recurrence time is the
time required to return any one of the random walkers to
the starting node, and it is thus a particular case of the first
hitting time. The cover time is the time it takes for any
random walker to reach all of the nodes and corresponds
to the maximum value of the first hitting times. The cover
time strongly affects the information dissemination speed in
the graph. The re-encountering time and the first meeting
time are the times it takes for multiple random walkers to
meet at the same node. The re-encountering time relates to
random walkers starting from the same node, and the first
meeting time relates to those starting from different nodes.
In particular, the first meeting time is closely related to the
rendezvous problem, a fundamental problem in computer
science. The rendezvous problem occurs in a number of en-
gineering problems (e.g., the self-stabilizing token manage-
ment system problem [5], [6] and the k-server problem [7]).
Designing efficient algorithms for the rendezvous problem
requires clarification of the characteristics of the first meet-
ing time.

The first meeting time of multiple random walks was
analyzed in [8]–[12]. However, many of these previous
studies focus on regular graphs. In [12], George et al. did
pioneering work on multiple random walks on non-regular
graphs and derived a closed-form formula for calculating
the expected value of the first meeting time in arbitrary
graphs. However, the effects of graph structures on the
expected first meeting time remain unclear. Designing ef-
fective algorithms using multiple random walks for realistic
graphs (e.g., social networks and communication networks)
benefits from understanding the effects of graph structures
on the expected first meeting time. Since it is difficult to
clarify these effects numerically using the closed-form for-
mula derived in [12], the effects must be examined using
analysis of multiple random walks.

In this paper, we analyze the first meeting time of mul-
tiple random walks in arbitrary graphs and clarify the effects
of graph structures on its expected value. First, we derive
the spectral formula of the expected first meeting time on
the basis of spectral graph theory that is used to analyze
the characteristics of graphs. Then, we examine the prin-
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cipal component of the expected first meeting time using
the derived spectral formula. The clarified principal com-
ponent reveals that (a) the expected first meeting time is al-
most dominated by n/(1 + d2

std/d
2
avg), where n is the number

of nodes in the graph and davg and dstd are the average and
standard deviation of weighted node degrees, respectively,
and (b) the expected first meeting time is independent of the
starting nodes of random walkers. Characteristic (a) pro-
vides understanding of the effect of the graph structure on
the first meeting time. In addition, we verify the validity of
the analysis results through numerical examples using pop-
ular random graphs.

The contributions in this paper are summarized as fol-
lows.

• We extend the analysis of a single random walks to
multiple random walks using spectral graph theory.

• We derive the spectral formula (40) of the expected first
meeting time.

• We clarify the principal component of the expected first
meeting time from Eqs. (62) and (63).

• We reveal the effect of graph structures on the expected
first meeting time from Eq. (63).

• We confirm the validity of the derived spectral formula
(40) and the clarified principal component for popular
random graphs with different scales and different struc-
tures.

The remainder of this paper is organized as follows.
In Sect. 2, we describe the definition of graphs and random
walks and introduce the previous analysis of a single ran-
dom walk using spectral graph theory. In Sect. 3, we derive
the spectral formula of the expected first meeting time using
spectral graph theory and clarify the principal component
of the expected first meeting time on the basis of the derived
spectral formula. Section 4 confirms the validity of the anal-
ysis results through numerical examples using popular ran-
dom graphs. Section 5 concludes the paper and discusses
future work.

2. Preliminary

In this section, we provide the definition of graphs and ran-
dom walks that we use in our analysis. In addition, we re-
view existing analysis results of a single random walk based
on spectral graph theory.

A graph is given by G = (V, E), where V and E are a
set of nodes and a set of links, respectively. Self-loop links
(i, i) for i ∈ V are not included in E. The weight for link
(i, j) ∈ E is wi j, where wi j > 0 and wi j = w ji. We denote the
set of adjacent nodes of node i ∈ V by ∂i. Letting di be the
weighted degree of node i ∈ V , we define di as

di :=
∑
k∈∂i

wik. (1)

We describe a random walk starting from node a ∈ V .
In this random walk, the random walker at node i ∈ V moves
to adjacent node j ∈ ∂i using transition probability pi→ j

given by

pi→ j =
wi j

di
. (2)

Let xa:i(t) be the probability that a random walker start-
ing from node a ∈ V is at node i ∈ V at time t, where∑

i∈V xa:i(t) = 1. If Eq. (2) is used, then xa:i(t + 1) is

xa:i(t + 1) =
∑
j∈∂i

xa: j(t) p j→i. (3)

Using column vector xa(t) = (xa:i(t))i∈V , Eq. (3) for all nodes
∀i ∈ V can be written simultaneously as

xa(t + 1) = A D−1 xa(t), (4)

where D and A are the degree and adjacency matrices de-
fined as

D := diag(di)i∈V , (5)

A :=
{
wi j if (i, j) ∈ E
0 otherwise , (6)

respectively. A D−1 is the matrix whose (i, j)th element is
the transition probability p j→i. Random walks defined by
Eqs. (3) through (6) are equivalent to those used in [8]–[12],
and are applied to search in unstructured P2P networks [1],
[2]. Hence, it is worth analyzing these random walks in
term of engineering applications. Equation (4) describes the
behavior of the random walk. Since A D−1 is an asymmetric
matrix, Eq. (4) is not easy to handle analytically using linear
algebra. Consequently, we modify Eq. (4) to

D−1/2 xa(t + 1) = D−1/2 A D−1/2 D−1/2 xa(t)

= W D−1/2 xa(t)
x̂a(t + 1) = W x̂a(t), (7)

where W = D−1/2 A D−1/2 and x̂a(t) = D−1/2 xa(t). Since
W is a symmetric matrix, Eq. (7) is easier to handle than
Eq. (4). In general, in spectral graph theory, the behavior
of an analysis target is expressed in terms of a matrix such
as Eq. (7), and the characteristics of the target are analyzed
using the eigenvalues and eigenvectors of the matrix on the
basis of linear algebra.

W can always be diagonalized using the orthogonal
matrix Q that satisfies tQ = Q−1. Let λk be the kth largest
eigenvalue of W. Note that the maximum eigenvalue λ1 is
always 1. In this paper, we assume that G is connected and
not a bipartite graph. In this case, the eigenvalues λk for
2 ≤ k ≤ n satisfy

−1 < λn < · · · < λ2 < 1. (8)

We let qk be the eigenvector for eigenvalue λk by, with the
consequence that Q is Q = (qk)1≤k≤n. Since Q is an orthog-
onal matrix, qk and ql for 1 ≤ k, l ≤ n satisfy

t qk ql =

{
1 if k = l
0 oterwise (9)
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In particular, the maximum eigenvector q1 is

q1 =
1
√

s1

t(
√

d1,
√

d2, · · · ,
√

dn), (10)

where s1 =
∑

i∈V di. s1 is related to a statistic of the graph
structure of G and can be written by s1 = n davg, where davg
is the average weighted degree.

In [13], Lovász analyzed a single random walk on
graph G on the basis of spectral graph theory. Solving
Eq. (7) in [13] results in the probability xa:i(t) being

xa:i(t) =

√
di
√

da

n∑
k=1

qk(a) qk(i) λt
k. (11)

According to this equation, xa:i(t) can be calculated using
eigenvalues λk and eigenvectors qk. A closed-form formula
using eigenvalues and eigenvectors such as Eq. (11) is re-
ferred to as a spectral formula.

Let x∗a:i be the limit value of xa:i(t) for t → ∞. From
Eq. (11), x∗a:i can be derived as

x∗a:i = lim
t→∞

xa:i(t)

= lim
t→∞

 √di
√

da
q1(i) q1(a) +

√
di
√

da

n∑
k=2

qk(a) qk(i) λt
k


=

√
di
√

da
q1(a) q1(i) =

di

s1
. (12)

In this derivation process, we used |λk | < 1 for k ≥ 2.
According to Eq. (12), xa:i(t) is roughly proportional to the
weighted degree di if sufficient time has elapsed since the
random walker started.

The analysis in [13] derived the expected first hitting
time µa:i, the expected time it takes for a random walker
starting from node a to arrive at node i. From Eq. (11), the
spectral formula of expected first hitting time µa:i is derived
as

µa:i = s1

n∑
k=2

1
1 − λk

q2
k(i)
di
−

qk(a) qk(i)
√

da di

 . (13)

In [14], the effect of the graph structure on µa:i was clar-
ified using the spectral formula of the expected first hitting
time µa:i. According to [14], µa:i satisfies∣∣∣∣∣ 1

s1
µa:i −

1
di

∣∣∣∣∣ ≤ 2wmax

d2
min

(
1

1 − λ2
+ 1

)
, (14)

where wmax and dmin are the maximum of link weights and
the minimum of weighted degrees, respectively. If the right-
hand side of Eq. (14) is sufficiently small, the expected first
hitting time µa:i is approximated by

µa:i ≈
s1

di
. (15)

In this case, µa:i is almost dominated by s1/di, with the con-
sequence that s1/di can be expected to be the principal com-
ponent of µa:i. According to Eq. (15), µa:i is roughly pro-
portional to s1, which is a statistic of the graph structure. In

other words, µa:i corresponds to the search time of node i us-
ing the random walk. Therefore, Eq. (15) is also important
for understanding the characteristics of the search algorithm
using a random walk.

According to [14], when n is sufficiently large, the
right-hand side of Eq. (14) is negligibly small in several
graphs (e.g., ε-graphs, k-nearest neighbor graphs, Gaussian
similarity graphs, and Erdös-Rényi graphs). Considering the
result of [14], we expect that the right-hand side of Eq. (14)
is negligibly small in various graph classes.

3. Analysis

In this section, we analyze the expected first meeting time
µa,b of two random walkers starting from node a ∈ V and
b ∈ V in graph G on the basis of spectral graph theory. We
first derive the spectral formula of µa,b. Then, we clarify
the principal component of µa,b using the derived spectral
formula. Finally, we reveal the effect of the graph structure
on µa,b on the basis of the clarified principal component.

Our analysis results are important also for understand-
ing the first meeting time T (nRW)

s of nRW random walkers,
where nRW > 2 and s is the vector of starting nodes of nRW
random walkers. This is because T (nRW)

s is strongly affected
by the first meeting time T (2)

s of two random walkers. Note
that the expectation of T (2)

s with s = (a, b) is correspond to
µa,b. To attain an efficient meeting of nRW random walkers,
two of the nRW random walkers must move together after
meeting at the same node. Namely, when two random walk-
ers meet at the same node, they are combined into a single
random walker. Finally, if all of nRW random walkers be-
come a single random walker, the first meeting of them are
accomplished. In this case, the first meeting time T (nRW)

s of
nRW random walkers is obtained as the sum of the first meet-
ing times T (2)

s of two random walkers. Consequently, the
characteristics of the first meeting time T (nRW)

s for nRW ran-
dom walkers can be expected to be strongly associated with
that of two random walkers.

3.1 Spectral Formula of Expected First Meeting Time µa,b

We derive the spectral formula of the expected first meeting
time µa,b using the same method as is used to derive that
of the expected first hitting time µa:i in [13]. In [13], the
spectral formula was derived using the generating function
of the existing probability xa:i(t). In general, the generating
function F(z) of the probability f (t) is

F(z) :=
∞∑

t=0

f (t)zt, (16)

Note that f (t) is the probability that an event occurs at time
t. The existing probability xa:i(t) is an example of f (t). If
the probability f (t) is satisfied with

∑∞
t=0 f (t) = 1, using

the generating function F(z), the expectation E(t) with the
probability f (t) is
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E(t) =

∞∑
t=1

t f (t) =
dF(z)

dz

∣∣∣∣∣
z=1

. (17)

Importantly, even if we do not know the closed-form for-
mula of the probability f (t), we can still derive the expecta-
tion E(t) using the generating function F(z) on the basis of
the above equation. We first discuss the generating function
of the first meeting probability. Without the value of the first
meeting probability, we then derive the spectral formula of
the expected first meeting time µa,b by substituting the gen-
erating function obtained into Eq. (17).

Let ra,b:c(t) be the probability that two random walkers
first meet at node c at time t. Since two random walkers can
meet at any node, the first meeting probability ra,b:∗(t) is

ra,b:∗(t) =
∑
c∈V

ra,b:c(t). (18)

In ra,b:∗(t), the symbol ∗ designates any node in V . Deriving
the spectral formula of the expected first meeting time µa,b
using Eq. (17) requires the generating function Ra,b:∗(z) of
ra,b:∗(t).

The probabilities that the two random walkers are at
node i at time t are xa:i(t) and xb:i(t), respectively. Since the
spectral formulas of xa:i(t) and xb:i(t) are given by Eq. (11),
the generating functions of xa:i(t) and xb:i(t) can be derived
using Eq. (16). However, since it is not easy to obtain the
spectral formula of ra,b:∗(t), we obtain the generating func-
tion Ra,b:∗(z) of ra,b:∗(t) from those of xa:i(t) and xb:i(t) and
then derive the spectral formula of the expected first meet-
ing time µa,b using Eq. (17).

With the aim of obtaining the generating function
Ra,b:∗(z) of the first meeting probability ra,b:∗(t), we dis-
cuss the relationship between ra,b:∗(t), xa:i(t) and xb:i(t). Let
xa,b:c(t) be the probability that the two random walker meet
at the same node c ∈ V at time t. The meeting probability
xa,b:∗(t) at any node is

xa,b:∗(t) =
∑
c∈V

xa,b:c(t). (19)

Since each random walker moves independently, xa,b:∗(t) is

xa,b:∗(t) =
∑
c∈V

xa,b:c(t) =
∑
c∈V

xa:c(t) xb:c(t). (20)

xa,b:∗(t) includes both the first meeting probability ra,b:∗(t)
and also the probability of the second and subsequent meet-
ings. Hence, as shown in Fig. 1, we divide the transition of
the two random walks from time 0 to time t into two tran-
sitions, (a) the transition until they first meet at time s, and
(b) the rest transition. The probability for the former transi-
tion is the first meeting probability ra,b:∗(t). The probability
for the latter transition is the probability that the two ran-
dom walkers starting from same node c′ ∈ V at time s meet
again at the same node c ∈ V at time t. Since node c′ and
node c can be any node, we denote such a probability by
x∗′,∗′:∗(t − s). With these probabilities, xa,b:∗(t) is

Fig. 1 Random walks starting from nodes a and b from time 0 to time t.

xa,b:∗(t) =

t∑
s=0

ra,b:∗′ (s) x∗′,∗′:∗(t − s). (21)

Using the probability xc′,c′:c(t) that the two random walkers
starting at node c′ ∈ V at time 0 meet again at node c ∈ V at
time t, we approximately set x∗′,∗′:∗(t) as

x∗′,∗′:∗(t) ≈
∑
c′∈V

d2
c′

s2

∑
c∈V

xc′,c′:c(t), (22)

where s2 =
∑

i∈V d2
i . The reason that x∗′,∗′:∗(t) is not set

as a simple sum of values of xc′,c′:c(t) in Eq. (22) is as fol-
lows. According to Eq. (12), if t is sufficient large, the ex-
isting probability xa:i(t) is approximately proportional to the
weighted degree di of node i. Therefore, the probability of
the first meeting of the two random walkers at node c′ can
be expected to be proportional to d2

c′ . Consequently, in the
sum of Eq. (22), xc′,c′:c(t) is weighted by d2

c′/s2. In Sect. 4,
the validity of Eq. (22) will be confirmed through numerical
examples.

The right-hand side of Eq. (21) is a convolutional sum,
with the consequence that the generating function Xa,b:∗(z)
of xa,b:∗(t) is

Xa,b:∗(z) = Ra,b:∗′ (z) X∗′,∗′:∗(z). (23)

From this equation, the generating function Ra,b:∗′ (z) of the
first meeting probability ra,b:∗ is

Ra,b:∗′ (z) =
Xa,b:∗(z)
X∗′,∗′:∗(z)

. (24)

Substituting the spectral formulas of xa:i(t) and xb:i(t) given
by Eq. (11) into Eq. (16) yields the following spectral for-
mula for Xa,b:∗(z):

Xa,b:∗(z) =
∑
c∈V

∞∑
t=0

xa:c(t) xb:c(t) zt

=
∑
c∈V

dc
√

dadb

n∑
k=1

n∑
k′=1

qk(a)qk(c)qk′ (b)qk′ (c)
∞∑

t=0

(λkλk′z)t

=
∑
c∈V

dc
√

da db

n∑
k=1

n∑
k′=1

qk(a) qk(c) qk′ (b) qk′ (c)
1 − λk λk′ z

. (25)

z takes a value within the range of |λk λk′ z| < 1 with the
result that the sum of the infinite geometric series converges.
From Eq. (22), the generating function X∗′,∗′:∗(z) is
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X∗′,∗′:∗(z) ≈
∑
c′∈V

d2
c′

s2

∑
c∈V

Xc′,c′:c(z). (26)

Substituting the generating function Ra,b:∗′ (z) into
Eq. (17) results in the expected first meeting time µa,b be-
ing

µa,b =

∞∑
s=0

s ra,b:∗′ (s) =
dRa,b:∗′ (z)

dz

∣∣∣∣∣
z=1

. (27)

In this equation, dRa,b:∗′ (z)/dz is

dRa,b:∗′ (z)
dz

=
d
dz

(
Xa,b:∗(z)
X∗′,∗′:∗(z)

)

=

dXa,b:∗(z)
dz

X∗′,∗′:∗(z) − Xa,b:∗(z)
dX∗′,∗′:∗(z)

dz
X2
∗′,∗′:∗(z)

=
A(z) − B(z)

C(z)
, (28)

where

A(z) =
dXa,b:∗(z)

dz
X∗′,∗′:∗(z), (29)

B(z) = Xa,b:∗(z)
dX∗′,∗′:∗(z)

dz
, (30)

C(z) = X2
∗′,∗′:∗(z). (31)

According to Eqs. (25) and (26), A(z), B(z), and C(z) can be
written as polynomials for (1−z) because of 1−λ1λ1z = 1−z.
Hence, we also obtain A(z) as

A(z) =
A3(z)

(1 − z)3 +
A2(z)

(1 − z)2 +
A1(z)
1 − z

+ A0(z). (32)

Substituting Eqs. (25) and (26) into the right-hand side of
Eq. (29) yields A3(z) and A2(z) as

A3(z)=

∑
c∈V

dc
√

dadb
q1(a) q2

1(c) q1(b)

∑
c∈V

∑
c′∈V

dc′ dc

s2
q2

1(c) q2
1(c′)

 , (33)

A2(z)=

∑
c∈V

dc
√

dadb
q1(a) q2

1(c) q1(b)


∑
c∈V

∑
c′∈V

dc′dc

s2

∑
1≤k,k′≤n

(k,k′),(1,1)

qk(c)qk(c′)qk′ (c)qk′ (c′)
1 − λkλk′ z


=

1
s2

1


∑
c∈V

∑
c′∈V

dc′dc

∑
1≤k,k′≤n

(k,k′),(1,1)

qk(c)qk(c′)qk′ (c)qk′ (c′)
1 − λkλk′z

 .
(34)

We do not provide A1(z) and A0(z) in this paper because
A1(z)/(1 − z) and A0(z) disappear when deriving µa,b using

Eq. (27). Similarly, B(z) is

B(z) =
B3(z)

(1 − z)3 +
B2(z)

(1 − z)2 +
B1(z)
1 − z

+ B0(z). (35)

Substituting Eqs. (25) and (26) into the right-hand side of
Eq. (30) yields B3(z) and B2(z) as

B3(z)=

∑
c∈V

dc
√

dadb
q1(a) q2

1(c) q1(b)

∑
c∈V

∑
c′∈V

dc′ dc

s2
q2

1(c) q2
1(c′)

 , (36)

B2(z)=


∑
c∈V

∑
1≤k,k′≤n

(k,k′),(1,1)

dc
√

da db

qk(a) qk(c) qk′ (b) qk′ (c)
1 − λkλk′ z

∑
c∈V

∑
c′∈V

dc′ dc

s2
q2

1(c) q2
1(c′)


=

1
s2

1


∑
c∈V

dc
√

da db

∑
1≤k,k′≤1

(k,k′),(1,1)

qk(a) qk(c) qk′ (b) qk′ (c)
1 − λkλk′ z

 .
(37)

Using these equations, we have found that A3(z) = B3(z).
Consequently, A(z) − B(z) in the numerator of Eq. (28) does
not contain the term (1 − z)−3, with the result that the term
(1− z)−2 becomes the highest-order term in the polynomials
for (1 − z) in A(z) − B(z). Thus, C(z) is

C(z) =
C2(z)

(1 − z)2 +
C1(z)
1 − z

+ C0(z). (38)

Solving this equation in the same manner yields C2(z) as

C2(z) =

∑
c∈V

∑
c′∈V

dc′ dc

s2
q2

1(c) q2
1(c′)

2

=

 1
s2

1

∑
c∈V

d2
c

2

=
(s2)2

s4
1

. (39)

Since (A(z) − B(z))/C(z) is an indeterminate form at
z = 1, we discuss limz→1(A(z) − B(z))/C(z) to derive the
spectral formula of the expected first meeting time µa,b using
Eqs. (27) and (28). As the limit of z→ 1, µa,b is

µa,b = lim
z→1

A(z) − B(z)
C(z)

= lim
z→1

(1 − z)2(A(z)−B(z))
(1 − z)2 C(z)

=
A2(1) − B2(1)

C2(1)

=
s2

1

(s2)2


∑
c∈V

∑
c′∈V

dc′dc

∑
1≤k,k′≤n

(k,k′),(1,1)

qk(c)qk(c′)qk′ (c)qk′ (c′)
1−λkλk′

−
∑
c∈V

dc
√

dadb

∑
1≤k,k′≤1

(k,k′),(1,1)

qk(a) qk(c) qk′ (b) qk′ (c)
1−λkλk′


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=
1

(s2)2

∑
c∈V

d2
c

∑
c′∈V

d2
c′

[

s1

n∑
k=2

1
1 − λk

[
2qk(c)qk(c′)
√

dcdc′
−

qk(c)
√

dc

(
qk(a)
√

da
+

qk(b)
√

db

)]
+s2

1

∑
1≤k,k′≤n

(k,k′),(1,1)

qk(c)qk′ (c)
(1−λkλk′ )dc

(
qk(c′)qk′ (c′)

dc′
−

qk(a)qk′ (b)
√

da db

)]
.

(40)

Since this equation is expressed by the eigenvalues and
eigenvectors of W, it is the spectral formula of µa,b.

Equation (40) appears to be complicated, but if we use
the expected first meeting time µa,b:c, the time until the two
random walkers first meet at node c ∈ V , then µa,b is

µa,b =
1
s2

∑
c∈V

d2
c µa,b:c −

1
s2

2

∑
c∈V

d2
c

∑
c′∈V

d2
c′ µc′,c′:c,

(41)

where the spectral formula of µa,b:c is

µa,b:c = µa:c + µb:c

+s2
1

∑
1≤k,k′≤n

(k,k′),(1,1)

qk(c)qk′ (c)
(1−λkλk′ )dc

(
qk(c)qk′ (c)

dc
−

qk(a)qk′ (b)
√

da db

)
.

(42)

Note that Eq. (41) is derived by substituting Eq. (42) into
Eq. (40). Equation (42) can be obtained from the similar
derivation process of Eq. (40). Owing to space limitations,
we do not provide the detailed deviation process of Eq. (42)
in this paper. In the derivation process of Eq. (42), we dis-
cuss the first meeting probability ra,b:c(t) of two random
walkers at node c ∈ V , and obtain µa,b:c as the expectation
with ra,b:c(t). As with the probability ra,b:∗(t), the first meet-
ing probability ra,b:c(t) is satisfied with

xa,b:c(t) =

t∑
s=0

ra,b:c(s) xc,c:c(t − s). (43)

Hence, the generating function Ra,b:c(z) for ra,b:c(t) is given
by

Ra,b:c(z) =
Xa,b:c(z)
Xc,c:c(z)

. (44)

Since µa,b:c = dRa,b:c(z)/dz|z=1, we can derive the spectral
formula (42) of µa,b:c from Ra,b:c(z) like the spectral for-
mula (40) of µa,b.

3.2 Principal Component of the Expected First Meeting
Time µa,b

We examine the principal component of µa,b with the spec-
tral formula of the expected first meeting time µa,b and re-
veal mathematically the effect of the graph structure on the

expected first meeting time µa,b on the basis of the clarified
principal component. We use the method for examining the
first hitting time µa:i used in [14] to derive the principal com-
ponent of µa,b.

First, we introduce

N̂ := I ⊗ I −W ⊗W = Î − Ŵ, (45)

where I is the n×n unit matrix and ⊗ is the Kronecker prod-
uct. According to the definition of the Kronecker product, Î
and Ŵ are n2 × n2 matrices. Let N̂† be the pseudo-inverse
matrix of N̂ with the result that N̂N̂†N̂ = N̂,

N̂† =
∑

1≤k,k′≤n
(k,k′),(1,1)

q̂kk′
t q̂kk′

1 − λkλk′
, (46)

where q̂kk′ is the following column vector with n2 elements:

q̂kk′ := qk ⊗ qk′ . (47)

Substituting N̂† into Eq. (40) yields the following as the ex-
pected first meeting time µa,b:

µa,b =
s2

1

s2
2

∑
c∈V

n∑
c′=1

d2
c d2

c′
tûccN̂†(ûc′c′ − ûab). (48)

In this equation, ûab is

ûab := ua ⊗ ub, (49)

where ua is the column vector whose ith element ua(i) is

ua(i) =


1
√

da
if i = a

0 otherwise
. (50)

The pseudo-inverse matrix N̂† of N̂ in Eq. (46) is also

N̂† =
∑

1≤k,k′≤n
(k,k′),(1,1)

q̂kk′
t q̂kk′

1 − λkλk′

=
∑

1≤k,k′≤n
(k,k′),(1,1)

(1 − λkλk′ + λkλk′ ) q̂kk′
t q̂kk′

1 − λkλk′

= Î − q̂11
t q̂11 + M̂, (51)

where M̂ is

M̂ =
∑

1≤k,k′≤n
(k,k′),(1,1)

λk λk′ q̂kk′
t q̂kk′

1 − λkλk′

=
∑

1≤k,k′≤n
(k,k′),(1,1)

∞∑
s=1

(
λk λk′ q̂kk′

t q̂kk′
)s

=

∞∑
s=1


∑

1≤k,k′≤n
(k,k′),(1,1)

λk λk′ q̂kk′
t q̂kk′


s
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=

∞∑
s=1

 n∑
k=1

n∑
k′=1

λk λk′ q̂kk′
t q̂kk′ − q̂11

t q̂11

s

=

∞∑
s=1

(
Ŵ − q̂11

t q̂11

)s

= Ŵ− q̂11
t q̂11+

(
Ŵ− q̂11

t q̂11

)2
∞∑

s=0

(
Ŵ− q̂11

t q̂11

)s

= Ŵ− q̂11
t q̂11+

(
Ŵ− q̂11

t q̂11

)2 ∑
1≤k,k′≤n

(k,k′),(1,1)

q̂kk′
t q̂kk′

1−λkλk′
. (52)

This derivation process involved the use of

t q̂i j q̂kl =

{
1 if i = k and j = l
0 otherwise , (53)

(q̂kk′
t q̂kk′ )s = q̂kk′

t q̂kk′ . (54)

Substituting Eq. (51) into Eq. (48) yields the following as
µa,b:

µa,b =
s2

1

s2
+

s2
1

s2
2

∑
c∈V

n∑
c′=1

d2
c d2

c′
tûcc M̂(ûc′c′ − ûab). (55)

The following was used to obtain this equation:

tûcc

(
N̂†(ûc′c′ − ûab)

)
= tûcc

[(
Î − q̂11

t q̂11 + M̂
)

(ûc′c′ − ûab)
]

=


1
d2

c
+ tûcc M̂(ûc′c′ − ûab) if c = c′

tûcc M̂(ûc′c′ − ûab) otherwise
. (56)

The first term on the right-hand side of Eq. (55) corresponds
to the principal component of the expected first meeting time
µa,b.

To confirm that s2
1/s2 is the principal component of the

expected first meeting time µa,b, we discuss∣∣∣∣∣∣µa,b

s2
1

−
1
s2

∣∣∣∣∣∣ =
1
s2

2

∑
c∈V

n∑
c′=1

d2
c d2

c′
∣∣∣tûcc M̂(ûc′c′ − ûab)

∣∣∣ .
(57)

The right-hand side of this equation expresses the error be-
tween µa,b and the principal component s2

1/s2.
We examine the upper bound on the right-hand side of

Eq. (57) using

1
1 − λk λk′

≤
1

1 − λ2
, (58)

for 2 ≤ k, k′ ≤ n. Using the above equation, we obtain∣∣∣tûcc M̂(ûc′c′ − ûab)
∣∣∣

=
∣∣∣∣tûcc

(
Ŵ− q̂11

t q̂11

)
(ûc′c′ − ûab)

∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣
tûcc

(
Ŵ− q̂11

t q̂11

)2∑
1≤k,k′≤n

(k,k′),(1,1)

q̂kk′
t q̂kk′

1−λkλk′
(ûc′c′ − ûab)

∣∣∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣tûcc

(
Ŵ− q̂11

t q̂11

)
(ûc′c′−ûab)

∣∣∣∣
+

1
1−λ2

∣∣∣∣tûcc

(
Ŵ− q̂11

t q̂11

)2(
Î− q̂11

t q̂11

)
(ûc′c′−ûab)

∣∣∣∣
=

∣∣∣tûccŴ(ûc′c′−ûab)
∣∣∣+ 1

1−λ2

∣∣∣tûccŴ2(ûc′c′−ûab)
∣∣∣

=
∣∣∣tûccŴ(ûc′c′−ûab)

∣∣∣+ 1
1−λ2

∣∣∣Ŵûcc

∣∣∣∣∣∣Ŵ(ûc′c′−ûab)
∣∣∣

≤
2w2

max

d4
min

+
1

1−λ2

wmax

d2
min

√
2wmax

d2
min

≤
2w2

max

d4
min

(
1

1−λ2
+ 1

)
. (59)

The following was used in this derivation process:∣∣∣tûi jŴûkl

∣∣∣ = tuiWuk ⊗
tu jWul

=
wik

di dk
⊗

w jl

d j dl
≤
w2

max

d4
min

, (60)∣∣∣Ŵûi j

∣∣∣2 = t
(
Ŵûi j

) (
Ŵûi j

)
=

n∑
k∈∂i

n∑
l∈∂ j

w2
ki w

2
l j

dk d2
i dl d2

j

≤
w2

max

d2
i d2

j d2
min

n∑
k∈∂i

n∑
l∈∂ j

wki wl j

=
w2

max

di d j d2
min

≤
w2

max

d4
min

. (61)

Substituting Eq. (59) into Eq. (57) yields the following
as the upper bound of the error between µa,b and the princi-
pal component s2

1/s2:∣∣∣∣∣∣µa,b

s2
1

−
1
s2

∣∣∣∣∣∣ ≤ 2w2
max

d4
min

(
1

1 − λ2
+ 1

)
. (62)

According to this equation, the error can be expected to be
small for graph G, where λ2 and wmax are small but dmin is
large. In this case, the expected first meeting time µa,b is
approximated as

µa,b ≈
s2

1

s2
=

n
1 + d2

std/d
2
avg
, (63)

where davg and dstd are the average and standard deviation
of weighted degrees, respectively. Equations (62) and (63)
are coincidentally similar to Eqs. (14) and (15), respectively.
Since the analysis target for Eqs. (62) and (63) is different
from that of Eqs. (14) and (15), these equations are new
findings. In Sect. 4, we will show that the right hand side
of Eq. (62) is not large enough to be a problem in popu-
lar random graphs (Barabási-Albert graphs and Erdös-Rényi
graphs). In this paper, the graphs where the right-hand side
of Eq. (62) is negligibly small are not yet clear. However,
since Eq. (14) based on the result of [14] and Eq. (62) are co-
incidentally similar, we may prove that the right hand side of
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Eq. (62) is negligibly small in several graphs (e.g., ε-graphs,
k-nearest neighbor graphs, Gaussian similarity graphs, and
Erdös-Rényi graphs) on the basis of the similar discussion
in [14].

If the approximation formula (63) holds for the ex-
pected first meeting time µa,b, we derive the following char-
acteristics: (a) µa,b is small when the coefficient of variation
dstd/davg is large and (b) µa,b does not depend on the starting
nodes a and b. Characteristic (a) is useful for understand-
ing the effect of the graph structure on µa,b. The reason why
characteristic (b) emerges can be explained as follows. First,
a random walk is a Markov chain, and thus the information
of the initial state is lost over time. Since the time to lose
the information is shorter than the first meeting time of two
random walks, the expected first meeting time would be in-
dependent of the starting nodes. As the number of nodes
in a graph increases, the first meeting time becomes longer.
Hence, in order for the independency of the expected first
meeting time to emerge, the graph should be large enough.

4. Numerical Example

In this section, we confirm the validity of the spectral for-
mula (40) and the principal component of the expected first
meeting time µa,b revealed in Sect. 3. We also examine the
error in the approximation formula (63) obtained when µa,b
is replaced by its principal component.

4.1 Setting

In this subsection, we use BA (Barabási-Albert) graphs [15]
and ER (Erdös-Rényi) graphs [16]. The spectral for-
mula (40) and the approximation formula (63) depend on the
degree distribution of a graph. Since the degree distribution
of a BA graph is different from that of an ER graph, these
graphs are useful for clarifying the effects of the degree dis-
tribution on these formulas. Owing to space limitations, we
provide the results for unweighted graphs, where wi j = 1
is provided for all links ∀(i, j) ∈ E. In unweighted graphs,
the weighted degree di of node i corresponds to the degree
mi, the number of links of node i. According to the spectral
characteristics of ER graphs and BA graphs shown in [17],
our analysis results may be valid in these graphs. Hence, the
scope of the numerical example seems to be biased. How-
ever, these graphs are popular random graphs, and thus this
numerical example is worthwhile as the first step to confirm
the validity of our analysis results.

The BA model [15] is a typical model for scale-free
random graphs. A BA graph is generated using the fol-
lowing procedure. First, a complete graph with n0 nodes
is created. We assume that n0 = m for the sake of simplic-
ity. Next, nodes are inserted one by one until the number
of nodes in the BA graph is equal to n. When adding the
tth node (t = m + 1,m + 2, · · · , n), mnew links are created
from node t to nodes j ∈ {1, 2, · · · , t − 1} with the connec-
tion probability pBA

j (t). The connection probability pBA
j (t)

is

pBA
j (t) =

m j(t)∑t−1
l=1 ml(t)

, (64)

where m j(t) is the degree of node j when the insertion of the
t − 1th node is completed. BA graphs have the power-law
degree distribution (i.e, Prob [mi = m] ∼ m−3). If G is un-
weighted, then the average weighted degree davg is equal to
the average degree kavg. Hence, the average weighted degree
davg of a BA graph is approximated as

davg =
m (m − 1) + 2 m (n − m)

n
≈ 2 m, (65)

where we assume that n � m.
In contrast, the ER model [16] is a classical random

graph model. An ER graph is generated through the follow-
ing procedure. First, n nodes are created. Next, links are
created between any pair of nodes with probability pER. If
the graph is not connected, then the link creation process is
begun again. The average weighted degree davg of an ER
graph is

davg = (n − 1) pER. (66)

The degree distribution Prob [mi = m] of an ER graph fol-
lows the binomial distribution. According to the difference
between the power law and the binomial distribution, the
standard deviation dstd of weighted degrees in a BA graph is
greater than that in an ER graph.

To focus on the difference in the standard deviation dstd
of weighted degrees, we set m and pER as

m =

⌊
davg

2

⌋
, (67)

pER =
davg

n − 1
, (68)

with the result that the average weighted degree davg of an
ER graph and a BA graph are roughly equal. The minimum
weighted degree dmin in both graphs also increases as davg
increases.

To examine the validity and the error of the spectral for-
mula (40) and the approximation formula (63), we measure
the average of the first meeting times in simulation using the
following procedure.

1. Generate a BA graph or an ER graph using the above
procedures.

2. Put random walkers on nodes a ∈ V and b ∈ V .
3. Move each random walker with the transition probabil-

ity pi→ j in accordance with Eq. (2).
4. Repeat step 3 until the two random walks meet at the

same node.
5. Repeat step 2 through step 4 10,000 times to calculate

the average of the first meeting times.

We use the parameter configuration shown in Table 1 as a
default parameter configuration.
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Table 1 Parameter configuration.

Number of nodes n 1,000
Weight of link (i, j) wi j 1
Average weighted degree davg 6
Random walker’s starting node a 1

Fig. 2 Expected first meeting time µa,b for different settings of the start-
ing node b of the random walker in BA graphs.

Fig. 3 Expected first meeting time µa,b for different settings of the start-
ing node b of the random walker in ER graphs.

4.2 Validity of the Spectral Formula for the Expected First
Meeting Time µa,b

We confirm the validity of the spectral formula of the ex-
pected first meeting time µa,b given by Eq. (40).

Figures 2 and 3 show the first meeting times obtained
from the simulation and the analysis (i.e., the spectral for-
mula (40)) for different settings of the random walker’s start-
ing node b in the BA and ER graphs, respectively. Accord-
ing to Figs. 2 and 3, the analysis results are almost the same
as the simulation results regardless of the choice of n and b.

We then evaluate the error in the spectral formula (40).
In this evaluation, we use the relative error εa,b of the ex-
pected first meeting time µa,b. The relative error εa,b is de-
fined as

Fig. 4 Average weighted degree davg vs. the average and the maximum
of the relative error εa,b for the expected first meeting µa,b.

εa,b :=

∣∣∣µa,b − µ
sim
a,b

∣∣∣
µsim

a,b

, (69)

where µsim
a,b is the average of the first meeting times obtained

from the simulation. We examine the average and the maxi-
mum of the relative errors εa,b when changing starting node
b while the starting node a is fixed.

Figure 4 shows the average and the maximum of the
relative errors εa,b of the expected first meeting time µa,b in
the BA and ER graphs with different settings of the aver-
age weighted degree davg. In this figure, we do not plot the
results for the ER graphs with davg = 2 and 4, because a con-
nected ER graph cannot be generated. According to Fig. 4,
if davg ≥ 4, then the maximum of relative errors εa,b is only
a few percent. Therefore, the spectral formula (40) is valid
for the graphs with davg ≥ 4.

We discuss the reason that the relative error εa,b is large
when we use a BA graph with a small-average weighted de-
gree (i.e., davg = 2). In Sect. 3, we use Eq. (22) to derive the
spectral formula (40). Equation (22) assumes that the first
meeting probability of two random walkers at node c is pro-
portional to d2

c . Hence, we confirm the acceptance of this
assumption to clarify the reason for the large relative error.

Figures 5(a) through (c) show scatter plots of the first
meeting frequency of two random walkers at node c in BA
graphs with different settings of the average weighted de-
gree davg. The first meeting frequency at each node was ob-
tained from the simulation, where the starting nodes a and
b are fixed. In order to confirm easily the correctness of
the assumption, we plot the fitting curve of d2

c in these fig-
ures. According to Figs. 5(a) through (c), the first meeting
frequencies with davg = 2 differ only largely from the fitting
curve, with the consequence that the assumption must not
be accepted for the cases with davg = 2. Therefore, we con-
clude that the large relative error shown in Fig. 4 is caused
by the assumption for Eq. (22).

According to the results, the spectral formula of first
meeting time µa,b will be valid if the average weighted de-
gree davg is sufficiently large (i.e., davg ≥ 4).
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Fig. 5 Weighted degree dc of node c vs. the first meeting frequency at node c in BA graphs.

4.3 Validity for the Principal Component of the Expected
First Meeting Time µa,b

We clarify the validity for the principal component of the
expected first meeting time µa,b derived in Sect. 3. Specifi-
cally, we examine the relative error ε′a,b of the approximation
formula (63) obtained when the expected first meeting time
µa,b is given by the principal component (i.e., s2

1/s2). The
relative error ε′a,b is defined as

ε′a,b :=

∣∣∣∣ s2
1

s2
− µsim

a,b

∣∣∣∣
µsim

a,b

. (70)

Figures 6 and 7 show the averages of the relative er-
rors ε′a,b of the approximation formula (63) for BA and ER
graphs with different numbers of nodes, n, respectively. The
average of the relative errors ε′a,b was calculated from 10,000
simulations, where the starting nodes a and b are selected
randomly. In Fig. 7, we do not plot the result for n = 10, 000
and davg = 6, because a connected ER graph cannot be gen-
erated. According to the results, if the average weighted de-
gree davg is sufficiently large, the relative error ε′a,b is small,
and the derived principal component is valid. This can also
be explained by Eq. (62). The right-hand side of Eq. (62)
represents the upper bound of the error in the approximation
formula (63). If the average weighted degree davg is large,
the minimum weighted degree dmin is also large. As the
minimum weighted degree dmin increases, the upper bound
becomes small, and the relative error ε′a,b of the approxima-
tion formula (63) can be expected to decrease. Moreover,
according to Figs. 6 and 7, the average of the relative errors
ε′a,b is constant or becomes smaller as n increases, and hence
the approximation formula (63) is also effective for large-
scale graphs.

From the above results, the derived principal compo-
nent is valid if the average weighted degree davg is suffi-
ciently large (i.e., davg ≥ 4). According to the site [18],
which collecting statistical information (e.g., average de-
gree) of various existing graphs, the average degree of a typ-
ical graph is greater than four. Hence, our analysis results
are expected to be useful for many real graphs.

Finally, we confirm the effect of the graph structure on
the expected first meeting time µa,b revealed in Sect. 3. Ac-

Fig. 6 Number of nodes, n, vs. the average of the relative errors ε′a,b of
the approximation formula (63) in the BA graphs.

Fig. 7 Number of nodes, n, vs. the average of the relative errors ε′a,b of
the approximation formula (63) in the ER graphs.

cording to the approximation formula (63), µa,b increases
as s2

1/s2 increases. To confirm the effect from the numeri-
cal example, we compare s2

1/s2 and the average of the first
meeting times obtained in the simulation.

Figures 8 and 9 show the averages of the first meeting
times obtained from the simulation with different settings of
s2

1/s2 in the BA and ER graphs, respectively. To calculate
the average of the first meeting times, we conduct 10,000
simulations, where the starting nodes a and b are selected
randomly. In these figures, we plot the straight line for y = x
to confirm the effect easily. According to the results, the
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Fig. 8 Principal component s2
1/s2 vs. the average of the first meeting

times in the BA graphs.

Fig. 9 Principal component s2
1/s2 vs. the average of the first meeting

times in the ER graphs.

average of the first meeting times is approximately along
the y = x line, except for the result for BA graphs with
average weighted degree davg = 2. Therefore, the effect is
also confirmed from the numerical example if the average
weighted degree davg is sufficiently large.

5. Conclusion and Future Work

In this paper, we analyzed the first meeting time of multi-
ple random walks in arbitrary graphs and clarified the ef-
fects of graph structures on its expected value. First, we
derived the spectral formula of the expected first meeting
time for two random walkers using spectral graph theory.
Then, we examined the principal component of the expected
first meeting time using the derived spectral formula. The
clarified principal component reveals that (a) the expected
first meeting time is almost dominated by n/(1 + d2

std/d
2
avg),

and (b) the expected first meeting time is independent of the
starting nodes of random walkers, where n is the number of
nodes. davg and dstd are the average and the standard devia-
tion of the weighted degree, respectively. Characteristic (a)
is useful for understanding the effect of the graph structure
on the first meeting time. In addition, we confirmed the va-
lidity of the analysis results through numerical examples us-
ing popular random graphs. According to the revealed ef-

fects of the graph structures, the variance of the coefficient
for weighted degrees, dstd/davg (degree heterogeneity), facil-
itates the meeting of random walkers.

As future work, we plan to examine the validity of the
analysis results with real graphs and apply them to the de-
velopment of efficient graph algorithms.
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