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PAPER
Information Propagation Analysis of Social Network Using
the Universality of Random Matrix

Yusuke SAKUMOTO†a), Member, Tsukasa KAMEYAMA††b), Nonmember, Chisa TAKANO†††c),
and Masaki AIDA†d), Members

SUMMARY Spectral graph theory gives an algebraic approach to the
analysis of the dynamics of a network by using the matrix that represents the
network structure. However, it is not easy for social networks to apply the
spectral graph theory because the matrix elements cannot be given exactly to
represent the structure of a social network. The matrix element should be set
on the basis of the relationship between persons, but the relationship cannot
be quantified accurately from obtainable data (e.g., call history and chat
history). To get around this problem, we utilize the universality of random
matrices with the feature of social networks. As such a random matrix, we
use the normalized Laplacian matrix for a network where link weights are
randomly given. In this paper, we first clarify that the universality (i.e., the
Wigner semicircle law) of the normalized Laplacian matrix appears in the
eigenvalue frequency distribution regardless of the link weight distribution.
Then, we analyze the information propagation speed by using the spectral
graph theory and the universality of the normalized Laplacian matrix. As
a result, we show that the worst-case speed of the information propagation
changes up to twice if the structure (i.e., relationship among people) of a
social network changes.
key words: social network, information propagation, random matrix, spec-
tral graph theory, Wigner semicircle law, Laplacian matrix

1. Introduction

The emergence of social networking services (SNSs) and the
widespread of mobile devices promote people interaction
beyond anticipation in the society. As the results, the people
interaction has strong capability to propagate the information
submitted by someone to the whole society. In the recent
years, it is important for the success of a new product and
a new spot to propagate its information all over the social
network through not only face-to-face offline conversation
but also online communication via SNS (e.g., Twitter and
Instagram). Therefore, the understanding of the information
propagation property on social networks is essential to design
marketing strategy of new products and new spots.

Spectral graph theory [1] is widely used to analyze the
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properties of network dynamics by using the eigenvalues
and the eigenvectors of a matrix (e.g., Laplacian matrix) that
represents the structure of the network. However, when ap-
plying the spectral graph theory to social network analysis,
two problems arise. First, social networks are huge. To
analyze them using spectral graph theory, the eigenvalues
and eigenvectors of the huge matrices must be calculated but
this calculation is impossible because of its computational
cost. Second, the relationship between persons in a social
network is complex. It is hard to quantify the relationship
accurately from obtainable data (e.g., call history and chat
history). To represent the social network structure by a ma-
trix, the matrix elements must be given exactly on the basis
of the relationship but we need to perform the difficult task
of quantifying the relationship. Therefore, before applying
the spectral graph theory to the social network analysis, we
should discuss the way around the above-mentioned prob-
lem.

A random matrix is a matrix whose elements are ran-
dom variables; it is often utilized to analyze large-scale and
complex structures in quantum mechanics [2], [3]. In quan-
tum mechanics, there is a method to derive the electron
orbital around an atomic nucleus by using a matrix that rep-
resents the atom structure. However, for a large atom (e.g.,
uranium) having many electrons with complex orbitals, it is
impossible to give the matrix elements exactly. Hence, quan-
tum mechanics gives up representing such large and complex
atom structure exactly, and analyzes electron orbital property
using the universality when the matrix elements are given by
random variables. The analysis using the universality of the
random matrix has had great success in quantum mechanics.
The circumstance of the large and complex atom analysis in
quantum mechanics is like the social network analysis, so the
random matrix is expected to solve the fundamental problem
in the social network analysis.

In this paper, we first investigate the universality of ran-
dom matrices with the feature of social networks. As such a
random matrix, we use the normalized Laplacian matrix for a
network where link weights are randomly given. We clarify
that the universality (i.e., the Wigner semicircle law) of the
normalized Laplacian matrix appears in the eigenvalue fre-
quency distribution regardless of the link weight distribution
in random networks generated with the popular models (i.e.,
ER (Erdös–Rényi) model [4] and BA (Barabási–Albert) [5]
model), which are also used in several studies [4]–[9]. Then,
we analyze the information propagation speed in social net-
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works by using the clarified universality. In this analysis, we
model the information propagation by a random walk in light
of the resemblance between their characteristics. Since ran-
dom walks are too slower than the information propagation
in a social network, our analysis focuses on the worst-case
situation. As a metric for the information propagation speed,
we use the expected value of first arrival times of the ran-
dom walker for each node. As the result of our analysis
using spectral graph theory and the clarified universality, we
show that the worst-case speed of the information propaga-
tion changes up to twice if the structure (i.e., relationship
among people) of a social network changes.

This paper is organized as follows. In Sect. 2, we de-
scribe the normalized Laplacian matrix and the Wigner semi-
circle law as the preliminary of our discussion. In Sect. 3, we
generate the random matrix with the social network feature,
and investigate its universality. Section 4 analyzes the infor-
mation propagation property using the universality clarified
in Sect. 3. Finally, in Sect. 5, we conclude this paper and
discuss future works.

2. Preliminary

2.1 Normalized Laplacian Matrix

We denote an undirected network with n nodes by G(V, E)
where V and E are the sets of nodes and links, respectively.
Let A = (Ai j )1≤i, j≤n be the adjacency matrix, which repre-
sents the link structure of network G. Ai j is defined by

Ai j :=
wi j ((i, j) ∈ E)

0 ((i, j) < E)
, (1)

where wi j > 0 is the weight of link (i, j). Since network
G is undirected, adjacency matrix A is symmetric (Ai j =

Aji). Let D = diag(di)1≤i≤n be the degree matrix where
di =

∑n
j=1 wi j is the weighted degree of node i. Using

adjacency matrix A and degree matrix D, Laplacian matrix
L for network G is defined by

L := D − A. (2)

Laplacian matrix L represents the node and link structure of
network G.

Normalized Laplacian matrix N is also used to repre-
sent the network structure. N is defined by

N := D−1/2 L D−1/2. (3)

Since N is symmetric, N can be always diagonalized.
Hence, N is also given by

N = PΛ P−1, (4)

where Λ = diag(λl)1≤l≤n and P = (ql)1≤l≤n. λl and ql
are l-th eigenvalue of N and the eigenvector for λl , respec-
tively. In this paper, we arrange eigenvalue λl in ascending
order (i.e., 0 = λ1 < λ2 ≤ ... ≤ λn < 2). Note that we
assume λ2 , 0. This means that G is connected. Namely,

there is a path between every pair of nodes in G. Since N is
symmetric, eigenvector ql is the orthonormal basis. Namely,∑n

i=1 qk (i) ql (i) = δkl where δkl is the Kronecker delta. Ac-
cording to Eq. (4), the combination of P andΛ also represent
the network structure equivalent to N .

In Sect. 4, we discuss the relation between the random
walk and the information propagation in a social network,
and analyze the information propagation based on N .

2.2 Wigner Semicircle Law

The Wigner semicircle law [3] is the universality that appears
in the eigenvalue density distribution of random matrices.
Let X = (Xi j )i≤i, j≤n be a n×n real symmetric matrix where
Xi j is a random variable. Xi j for j ≥ i follows an independent
identical distribution where all odd-order moments are zero
and all even-order moments are finite amounts. We denote
k-th eigenvalue for a sample of X by λk (k = 1, . . . , n). We
look at the eigenvalue density ρn(λ), which is given by

ρn(λ) =
1
n

n∑
k=1
δ
(
λ − λk√

n

)
, (5)

where δ(x) is the Dirac delta function of x. As the limit of
ρn(λ) with n → ∞, ρX (λ) follows by

ρX (λ) = lim
n→∞

ρn(λ)

=


1

2 π σ2

√
4σ2 − λ2 (|λ | < 2

√
σ2)

0 (otherwise)
, (6)

where σ is the standard deviation of the distribution of Xi j .
Because of

∫ ∞
−∞ ρX (λ) dλ = 1, ρX (λ) is the density dis-

tribution of the eigenvalues. For matrix X , its eigenvalue
density distribution satisfies the Wigner semicircle law if and
only if it is given by Eq. (6).

3. Random Matrix with Social Network Feature

The existing study [10] clarified the universality of the well-
known networks (ER network [4] and BA network [5]) with
unweighted links. The clarified universality says that the
eigenvalue frequency distribution of normalized Laplacian
matrix N for an unweighted ER and BA network satisfies
the Wigner semicircle law if the network fulfills the degree
condition k2

min ≫ kave where kmin and kave are the minimum
and average of degrees (numbers of links from a node),
respectively.

To represent the structure of a social network, links
should be weighted on the basis of the relationship between
persons since people have diverse relationships in the social
network. However, the relationships are complex, so we
cannot give the link weights exactly. Hence, the universality
for weighted networks should be needed for social network
analysis.

In this section, we clarify the universality for weighted
random networks to analyze the social network property. We
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first generate normalized Laplacian matrix N for randomly-
weighted random networks (ER network and BA network)
as a random matrix, and then investigate the universality of
N .

3.1 Generation Method of Random Matrix

As a random matrix with the feature of social networks, we
use normalized Laplacian matrix N for randomly-weighted
random networks (ER network and BA network) generated
by the following steps. We denote the existing probability
of links in the ER network by p. Then, let n0 and na be the
number of initial connected nodes and the number of adding
links from a new node in the BA network, respectively.

1. Input expected average number kave of links of each
node.

2. Generate an unweighted random network (wi j = 1)
based on the ER model or the BA model.

a. When we generate a ER network, we set existing
probability p by kave/(n− 1) so that each node has
kave links in average.

b. When we generate a BA network, we set n0 and
na so that the BA network has about n kave/(1− q)
links. After generating the BA network, we cut the
links randomly with the probability q. Each node
in the cut network has kave in average. We call the
modified BA network as cut BA network.

3. Generate random values that follow a probability distri-
bution (e.g., constant distribution, uniform distribution
and exponential distribution), and set link weight wi j
for i > j and (i, j) ∈ E by the random value.

Figure 1 shows the degree (i.e., number of links) distri-
bution of ER and cut BA networks obtained from the above
steps with n = 1, 000, kave = 20, q = 0.5, and wi j = 1 for
all (i, j) ∈ E. As reference, we drew the distribution of the
original BA network [5] in Fig. 1. In the ER network and
the cut BA network, each node has 20 links in average. On
the contrary, the average links of the original BA network
is about 40. According to Fig. 1, the degree distribution for
large degree nodes in the cut BA network has the same scal-
ing exponent (-3) of the original BA network. Hence, the
cutting of links in step 2b keeps the scale-free property of
original BA networks.

The reason why we cut the links of BA networks ran-
domly in step 2b is described below. According to the BA
model [5], minimum degree kmin and average degree kave
of original BA networks are always the same value when
keeping the configuration of n0 and na. On the contrary,
kmin and kave of ER networks are randomly changed when
keeping the configuration of p. By cutting the links of BA
networks randomly, the BA networks have different kmin and
kave, and we can compare the results for BA networks and
ER networks under comparable condition.

We summarize the relation between the randomly-
weighted random networks (the ER networks and the cut

Fig. 1 Degree distribution of unweighted ER network and cut BA net-
work.

Table 1 Default parameter configuration.
parameter symbol configuration
number of nodes n 1,000
distribution of link weight wi j uniform distribution
average of link weights w 1
number of bins in fN (λ) nh 50

BA networks) and social networks. Several actual social net-
works have been confirmed that they have scale-free property
commonly [11]. The original BA model [5] represents the
scale-free property, and so this model is widely used in sev-
eral studies related to social networks [12], [13]. According
to Fig. 1, the cut BA network also has the scale-free property
like the original BA network. Hence, the cut BA network
is associated with social networks in term of the scale-free
property. On the other hand, the ER network is the simplest
random network, and does not have the scale-free property.
However, the ER network is useful to clarify the effect of
the scale-free property in social networks by the comparison
between the results with the ER network and the cut BA
network.

3.2 The Universality and Its Applicable Condition

We experimentally investigate the eigenvalue frequency dis-
tribution fN (λ) of normalized Laplacian matrix N for the
randomly-weighted random networks, and clarify the uni-
versality (the Wigner semicircle law) of fN (λ) and the ap-
plicable condition.

In the investigation, we use the constant distribution
with wi j = w, the uniform distribution with the range
[w/2, 3 w/2] and exponential distribution with the average
w to set link weight wi j randomly. Note that these distribu-
tions have the same average of link weights, but a different
variance of link weights. By the comparison of the results
for the different distributions, we clarify the universality re-
gardless of link weights in social networks. We repeat the
generation of N 100 times, and calculate the average of these
results. We use the parameter configuration shown in Table 1
as default.
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Fig. 2 The expected average number kave of links vs. the square of the
minimum number kmin of links in randomly-weighted ER network and cut
BA network.

We discuss the applicable condition of the universality
on the basis of k2

min and kave like the existing study [10]. In
Fig. 2, we first show k2

min and kave in randomly-weighted ER
and cut BA networks with different expected average number
of links, kave, and the uniform distribution. As kave increases,
k2

min and kave increases simultaneously, but the increasing
speed of k2

min is larger than that of kave. According to Fig. 2,
in order to fulfill the degree condition k2

min ≫ kave in [10],
kave ≥ 16 for ER network and kave ≥ 24 for cut BA network
are needed at least, respectively. In this paper, we set the
average of link weight wi j to an amount equal to or greater
than 1. Hence, if k2

min ≫ kave is fulfilled, d2
min ≫ dave is

also fulfilled in average. Hence, we use k2
min ≫ kave instead

of d2
min ≫ dave in order to clarify the applicable condition

regardless of link weights.
In Figs. 3 and 4, we show eigenvalue frequency dis-

tributions fN (λ) of normalized Laplacian matrix N for
randomly-weighted ER and cut BA networks, respectively.
When we obtained fN (λ), we first counted the number
of eigenvalues of N within [λ − hb/2, λ + hb/2] where
hb = (λn − λ2)/nh . Then, we normalized the counted num-
ber so that

∑nh
i=1 fN (θi) = 1 where θi = λ2 + (i − 1/2) hb ,

and nh is the number of bins in fN (λ). Note that we took
out the minimum eigenvalue λ1 of N when obtaining fN (λ)
because λ1 is always 0. In Figs. 3 and 4, we also draw the
semicircle distribution, which is given by

ρN (λ) =


2
π r2

√
r2 − (λ − 1)2 (λ2 < λ < λn)

0 (otherwise)
, (7)

where r is the radius of the semicircle distribution, and is
given by 1 − λ2 or λn − 1. According to the range of λ2
and λn, r must be within 0 < r < 1. Equation (7) is
essentially equivalent to Eq. (6) in the Wigner semicircle law
because there is just the difference of the semicircle center.
Hence, we define that the Wigner semicircle law is satisfied
if eigenvalue frequency distribution fN (λ) coincides with
the semicircle distribution given by Eq. (7). According to

Fig. 3 The eigenvalue frequency distributions of N ’s for randomly-
weighted ER networks.

Figs. 3 and 4, eigenvalue frequency distribution fN (λ) of
N for the randomly-weighted ER and cut BA networks with
kave = 8 differs from the semicircle distribution (7), but
the distributions for the randomly-weighted ER and cut BA
networks with kave = 36 almost coincide with it. Hence,
we expect that large kave is needed to satisfy the Wigner
semicircle law.

In order to clarify whether the eigenvalue frequency
distribution fN (λ) satisfies the Wigner semicircle law, we
investigate the difference between fN (λ) and ρN (λ). As the
definition of the difference, we use relative error ϵ . Relative
error ϵ is given by

ϵ =
1
nh

nh∑
i=1

| fN (θi) − P(θi) |
P(θi)

, (8)

where θi = λ2 + (i − 1/2) hb , and P(θi) is the probability
that the eigenvalues of N is within [θi − hb/2, θi + hb/2].
Namely, P(θi) is defined by

P(θi) =
∫ θi+hb/2

θi−hb/2
ρN (λ) dλ. (9)

Note that P(θi) should become the true value of fN (θi) for
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Fig. 4 The eigenvalue frequency distributions of N ’s for randomly-
weighted cut BA networks.

n → ∞ and nh → ∞.
In Fig. 5, we show the results of ϵ for randomly-

weighted ER and cut BA networks with the constant dis-
tribution, the uniform distribution, and the exponential dis-
tribution of link weight wi j . As kave increases, ϵ decreases
regardless of the link weight distribution and network topol-
ogy (ER or cut BA). The reason why ϵ does not approach
to 0 is that there are discretization error due to the finite
setting of n and nh . Moreover, ϵ for the uniform and ex-
ponential distributions approaches to that for the constant
distribution. According to [10], fN (λ) with the constant
distribution (wi j = 1) satisfies the Wigner semicircle law
when the degree condition k2

min ≫ kave is fulfilled. Hence,
fN (λ) with the uniform and exponential distributions also
satisfies the Wigner semicircle law. However, it is ambigu-
ity how k2

min ≫ kave is fulfilled. According to Figs. 2 and
5, the range of k2

min ≫ kave is different from the range of
k2

min > kave. ϵ shown in Fig. 5 helps to understand how
k2

min ≫ kave is fulfilled. According to Fig. 5, ϵ is conver-
gent at kave > 36. Hence, kave > 36 is needed to fulfill
k2

min ≫ kave for the example in this section.
From the above results, we can find that if the degree

Fig. 5 Relative error ϵ of eigenvalue frequency distribution fN (λ) for
randomly-weighted ER and cut BA networks.

condition k2
min ≫ kave is fulfilled, the eigenvalue frequency

distribution of normalized Laplacian matrix N for randomly-
weighted ER and cut BA networks satisfies the Wigner semi-
circle law given by Eq. (7), which is the semicircle distribu-
tion determined by only the second smallest eigenvalue λ2
or the maximum eigenvalue λn of N . Hence, λ2 and λn are
important to understand the social network property in the a
case fulfilling the degree condition.

4. Analysis of the Information Propagation Speed

In this section, we analyze the speed of the information
propagation on social networks fulfilling the degree condi-
tion k2

min ≫ kave. If the degree condition is not fulfilled in a
social network, there are many persons with too small num-
ber of friends. However, such persons would be minority in
an actual social network, and contribute less to the informa-
tion propagation on the entire social network. Therefore, we
ignore such persons, and focus on social networks fulfilling
the degree condition.

4.1 Metric of the Information Propagation Speed

The information propagation in a social network is involved
with the chain of word-of-mouth communications (e.g., face-
to-face offline conversation, and online communication via
SNS) between persons. In such a communication chain,
the information is more likely to be propagated to the per-
sons that have many friends. Random walks on a network
have similar characteristic that the probability of the ran-
dom walker arriving at a node is proportional to its node
degree [14], which corresponds to the number of friends in
a social network. Hence, we model the information propa-
gation on social networks as a random walk. However, the
information propagation modeled with the random walk may
be too slower than the information propagation in an actual
social network since the random walker arrives at the same
node multiple times. Therefore, our analysis focuses on the
worst-case situation for the information propagation in social
networks.
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Random walk on network G is formulated by normal-
ized Laplacian matrix N . When node i selects node j with
the probability wi j/di , arrival probability xa:i (t) of the ran-
dom walker starting from node a to node i at time t is given
by

xa:i (t) =
∑
j∈∂i

w ji

d j
xa:j (t − 1), (10)

where ∂i = { j | Ai j > 0, 1 ≤ j ≤ n}. With arrival probabil-
ity vector xa (t) = (xa:i (t))1≤i≤n, we obtain

xa (t) = xa (t − 1)D−1A

xa (t)D−1/2 = xa (t − 1)D−1AD−1/2

ya (t) = ya (t − 1)(I − N ), (11)

where ya (t) = xa (t)D−1/2.
A fundamental metric to evaluate of the information

propagation speed in a social network is a first arrival time,
which is the time required until the information is first propa-
gated to a person. Such a first arrival time of the information
corresponds to the time until the random walker first arrives
at a node in the random walk. The existing study [14] de-
rived first arrival time fa:i of the random walker starting
from node a to node i as

fa:i = 2 |E |
n∑
l=2

1
λl

*,
q2
l

(i)

di
− ql (a) ql (i)√

da di

+- , (12)

where ql (i) is the i-th element of eigenvector ql of normal-
ized Laplacian matrix N , and |E | = 1/2

∑n
i=1 di . Then, we

define the metric of the information propagation speed by
using first arrival time fa:i . For different nodes i and j, fa:i
is different from fa:j . Hence, we use expected time m† of
first arrival time fa:i in order to define the metric for the
entire network. In the random walk starting from node a,
the steady-state probability arriving at node i is given by
di/(2 |E |). We assume that the first arrival event of node i
occurs with the probability di/(2 |E |), and expected time m
of first arrival time fa:i is given by

m =
n∑
i=1

di

2 |E | fa:i

=

n∑
i=1

n∑
l=2

1
λl

(
q2
l (i) − ql (a) ql (i)√

da

√
di

)

=

n∑
l=2

1
λl

*,
n∑
i=1

q2
l (i) − ql (a)

√
da

n∑
i=1

ql (i)
√

di
+-

=

n∑
l=2

1
λl

*,
n∑
i=1

q2
l (i) −

√
2 |E | ql (a)
√

da

n∑
i=1

ql (i) q1(i)+-
=

n∑
l=2

1
λl
. (13)

†Note that “expected value” does not mean “arithmetically av-
erage”. The expected value of a variable is defined by the weighted
average using the probability of its occurrence as the weight.

When we derived the above equation, we used q1(i) =√
di/(2 |E |) and the property that ql is the orthonormal basis.

From the above equation, we find that m can be calculated
with only eigenvalue λl of normalized Laplacian matrix N ,
and does not depend on starting node a. In our analysis, we
use m as the information propagation metric of the social
network.

Equation (13) is also derived as Eq. (3.3) in [14]. How-
ever, Eq. (3.3) is slightly different from Eq. (13) because λk
in [14] is defined as the k-th eigenvalue of D−1/2AD−1/2. In
this paper, λk is the k-th eigenvalue of N = I−D−1/2AD−1/2.
Hence, λk in this paper corresponds to 1 − λk in [14]. Ac-
cording to the difference between these definitions, Eq. (13)
is equivalent to Eq. (3.3) in [14].

4.2 The Information Propagation Speed with the Univer-
sality of Normalized Laplacian Matrix N

Using the universality shown in Sect. 3, we analyze the in-
formation propagation speed. According to the universality,
eigenvalue frequency distribution fN (λ) of N for randomly-
weighted networks is approximated by ρN (λ), which given
by Eq. (7). We first derive m̃ that is the approximated value
of m with the assumption that fN (λ) ≃ ρN (λ). Then, we
discuss the information propagation speed on the basis of m̃.

If fN (λ) ≃ ρN (λ), expected value m of first arrival
time fa:i is approximated by

m =
n∑
l=2

1
λl
≃ (n − 1)

nh∑
i=1

1
θi

fN (θi)

≃ (n − 1)
∫ λn

λ2

1
λ
ρN (λ) dλ

=
2 (n − 1)
π r2

∫ λn

λ2

1
λ

√
r2 − (λ − 1)2 dλ

=
2 (n − 1)

r2

(
1 −

√
1 − r2

)
= m̃, (14)

where θi = λ2 + (i − 1/2) hb and hb = (λn − λ2)/2. The
detailed deviation process of Eq. (14) is provided in the ap-
pendix. According to Eq. (14), m̃ is only determined by the
number n of nodes, and radius r of the semicircle distribu-
tion.

On the basis of Eq. (14), we analyze the worst-case
speed of the information propagation in a social network.
Figure 6 shows m̃ given by Eq. (14) as the function of radius r .
Note that r is within the range (0, 1) because 0 < λ2, λn < 2.
From this figure, m̃ is the monotonically increasing function
of r because of d m̃/d r > 0 for 0 < r < 1. Hence, if m is
able to be approximated by m̃, the worst-case speed of the
information propagation in a social network becomes slower
as r increases. Moreover, since the range of r is 0 < r < 1,
the lower bound and upper bound of m̃ are given by n − 1
and 2 (n − 1), respectively. Hence, if the structure (i.e.,
relationship among people) of a social network changes, the
worst-case speed of the information propagation changes up
to twice.
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Fig. 6 Radius r vs. m̃.

4.3 The Validity of Our Analysis

Our analysis is valid if the difference between m and m̃
is sufficiently small. To investigate the difference, we use
relative error ϵm, which is defined by

ϵm =
|m̃ − m |

m
. (15)

In the investigation, we repeat the generation of N 100
times, and calculate the average of related error ϵm. Like
Sect. 3, we use the the parameter configuration shown in
Table 1 as default, and randomly-weighted ER or cut BA
networks. These networks have no clusters that are the set
of densely-connected nodes, and are often observed in an
actual social network. A network with no clusters can be
obtained from a network with clusters by replacing clusters
to nodes. Hence, our investigation of the information prop-
agation using ER and cut BA networks corresponds to the
investigation ignoring the information propagation time in
each cluster. In general, the information propagation in a
cluster is very fast. Hence, when investigating the informa-
tion propagation in a network with clusters, it is important to
analyze the information propagation times among the clus-
ters. Therefore, our investigation also helps to understand
the information propagation in networks with clusters.

Figure 7 shows relative error ϵm for randomly-weighted
ER and cut BA networks. According to this figure, ϵm ap-
proaches to 0 as kave increases regardless of the link weight
distribution and network topology. Although the discretiza-
tion error due to n and nh affects relative error ϵ of eigenvalue
frequent distribution fN (λ), it does not affect ϵm. This char-
acteristic is useful for the information propagation analysis.

By the comparison between Figs. 2 and 7, we conclude
that our analysis based on Eq. (14) is valid for social networks
if the degree condition k2

min ≫ kave is fulfilled.

5. Conclusion and Future Work

Spectral graph theory cannot be simply applied to social

Fig. 7 Relative error ϵm of expected value of first-arrival time fa:i for
randomly-weighted ER and cut BA networks.

network analysis because the matrix elements used in the
theory cannot be given exactly to represent the structure of
a social network. For this reason, we first discussed the
universality of random matrices with the feature of social
networks. As such a random matrix, we used the normal-
ized Laplacian matrix N for a network where link weights
are randomly given. We clarified that the universality (i.e.,
the Wigner semicircle law given by Eq. (7)) of normalized
Laplacian matrix N appears regardless of the link weight
distribution in ER networks and cut BA networks, which are
the modified version of the BA networks [5]. According to
the universality, eigenvalue frequency distribution fN (λ) of
N is is determined by only the number n of nodes and semi-
circle radius r = 1 − λ2 or λn − 1 where λ2 and λn are the
second minimum eigenvalue and the maximum eigenvalue
of N , respectively. Then, we analyzed the information prop-
agation speed in a social network on the basis of the spectral
graph theory and the clarified universality. In this analysis,
we modeled the information propagation by a random walk
in light of the resemblance between their characteristics,
and investigated expected value m of first arrival times of the
random walker for each node. Our analysis showed that the
worst-case speed of the information propagation changes up
to twice if the structure (i.e., relationship among people) of
a social network changes.

As future work, we will investigate the relationship be-
tween topological property (e.g., scale-free property) and ra-
dius r since r determines the information propagation speed
in a social network. Next, we plan to design a social me-
dia for effective information propagation on the basis of the
finding by our work.
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Appendix:

We describe the detailed deviation process of Eq. (14). If
eigenvalue frequency distribution fN (λ) is given by the
Wigner semicircle law, expected value m of the first-arrival
time is approximated by m̃. m̃ is given by

m̃ = (n − 1)
∫ λn

λ2

1
λ
ρN (λ) dλ

=
2 (n − 1)
π r2

∫ λn

λ2

1
λ

√
r2 − (λ − 1)2 dλ. (A· 1)

By substituting λ = r cos θ + 1 into Eq. (A· 1), we obtain

m̃ =
2 (n − 1)
π r2

∫ π

0

r2 sin2 θ

r cos θ + 1
dθ

=
2 (n − 1)
π r2

∫ π

0

r2 − 1 + 1 − r2 cos2 θ

r cos θ + 1
dθ

=
2 (n − 1)
π r2

∫ π

0

(
r2 − 1

r cos θ + 1
+ 1 − r cos θ

)
dθ

= I1(r) + I2(r), (A· 2)

where I1(r) and I2(r) are given by

I1(r) =
2 (n − 1)
π r2

∫ π

0

r2 − 1
r cos θ + 1

dθ, (A· 3)

l2(r) =
2 (n − 1)
π r2

∫ π

0
(1 − r cos θ) dθ, (A· 4)

respectively. When we use the half-angle formula of cos θ,
l1(r) is given by

I1(r) =
2 (n − 1)
π r2

×
∫ π

0

r2 − 1
r
(
cos2 θ

2 − sin2 θ
2

)
+

(
cos2 θ

2 + sin2 θ
2

) dθ

=
2 (n − 1)
π r2

∫ π

0

r2 − 1
(1 + r) cos2 θ

2 + (1 − r) sin2 θ
2

dθ

=
2 (n − 1)
π r2

∫ π

0

r2 − 1
(1 + r) + (1 − r) tan2 θ

2

1
cos2 θ

2
dθ

=
2 (n − 1)
π r2

∫ π

0

r − 1
1 − i2 1−r

1+r tan2 θ
2

1
cos2 θ

2
dθ, (A· 5)

where i is the imaginary unit. By substituting x =√
1−r
1+r tan θ

2 into Eq. (A· 5), l1(r) is derived as

I1(r) =
2 (n − 1)
π r2

∫ ∞

0

−2
√

1 − r2

1 − (i x)2 dx

=
2 (n − 1)
π r2

×
∫ ∞

0

(
−
√

1 − r2
) (

1
1 + i x

+
1

1 − i x

)
dx

=
2 (n − 1)
π r2

(
−
√

1 − r2
)

×
[1

i
log(1 + i x) − 1

i
log(1 − i x)

]∞
0

=
2 (n − 1)
π r2

(
i
√

1 − r2
)

× lim
x→∞

[
log(1 + i x) − log(1 − i x)

]
. (A· 6)

When we use log z = log |z | + i arg(z), I1(r) is derived as

I1(r) =
2 (n − 1)
π r2

(
i
√

1 − r2
)

lim
x→∞

2 i tan−1 x

= −2 (n − 1)
r2

√
1 − r2. (A· 7)

Then, l2(r) is derived as

I2(r) =
2 (n − 1)
π r2

∫ π

0
(1 − r cos θ) dθ

=
2 (n − 1)
π r2

[
θ − r sin θ

]π
0

=
2 (n − 1)

r2 . (A· 8)

By substituting Eqs. (A· 7) and (A· 8) into Eq. (A· 2), m̃
is given as
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m̃ = I1(r) + I2(r)

=
2 (n − 1)

r2

(
1 −

√
1 − r2

)
. (A· 9)
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