1.4. 積層欠陥の第一原理計算

関西学院大·理工·情報科学科 戸賀瀬健介,山下裕二郎,正木 佳宏,山本洋佑,西谷滋人

1. はじめに

本研究では、fcc 鉄の積層欠陥エネルギーへの 添加元素の影響を第一原理計算から求める試み を紹介する.第一原理計算は、原子の格子モデ ルから電子構造を計算して、系のエネルギーを精 確にもとめる強力な手法である.しかし、材料の機 械的性質を支配している転位の計算に適用され た例は少ない.電子エネルギーを計算する第一 原理計算では、計算の精度と速度を上げるため、 周期的境界条件が不可欠である.これを転位の 計算に適用するには、原子の周期を崩さず境界 で力がキャンセルするように、四重極子のような構 成が不可欠となり、扱える独立な原子系の大きさ が制限されてしまう.

一方,原子間ポテンシャルを用いた計算では信 頼できる精度が原理的に得られない.添加元素 の影響などは原子間ポテンシャルを構築する際 のフィッティングパラメータとなっているからである. モデルポテンシャルを用いた大規模なシミュレー ションの計算は可能であるが,材料の開発現場で 要求されるような Fe 母相や添加元素を具体的に 指定して機械的性質に与える影響を理論的に求 めることは非常に難しい.そこで,第一原理計算 の周期的境界条件を緩やかにして,大きな原子 系で境界の原子に不均一な力を加えて,第一原 理から計算する Flexible 境界条件のコード開発 が進行している.残念ながら一般利用出来るには もう少し時間がかかる[1-3].

以上述べたように、転位運動の直接シミュレーションから、転位と添加元素の直積的な相互作用を 見積もることは現段階では困難である.しかし、実際の転位の塑性変形に寄与している添加元素の 影響を探ることは可能と考えられる.これは、拡張 転位を支配する積層欠陥エネルギーに与える添 加元素の影響を精密に計算することによって可能 となる.本研究では面欠陥の第一原理計算を通し て,拡張転位の挙動を支配する積層欠陥エネル ギーを見積もる計算を行った.最初に我々が別の 研究で行った,化合物半導体および Si 中での計 算を紹介する.これは積層欠陥エネルギーおよび 添加元素が与える影響について計算が実験と整 合性のある結果を与えた例である.また,金属系 の代表として Al, Cu での計算結果を示す.これら の経験に基づいて計算モデルを立て,fcc 鉄で行 った結果を最後に示す.

2. 第一原理計算

本研究では、平面波基底擬ポテンシャル法の汎 用 コードで ある VASP(Vienna Ab Initio Simulation Package)を用いた[5-7]. また、長周期 の積層構造のモデル作成には視覚的で直感的な 操作が可能なプリプロセッサーの Medea を用い た[8]. 電子の交換相関相互作用には GGA (Generalized Gradient Approximation)を[9]、擬ポ テンシャルには PAW(Projector Augmented Wave)法を用いている[10]. エネルギーカットオフ としては、半導体の計算では 1000 eV 必要だが、 Al, Cu, Fe などの金属系合金の計算では 400eV にとった. さらに、Fe の計算では spin polarized の 条件で行った.

3. 半導体での計算結果

i) cubic-hexagonal エネルギー差

周知の通り、fcc 構造の積層周期 ABCABC… が、積層欠陥が入ることによって、図1に示した通 りの乱れを生じる.この領域では CACA という hcp 構造を取っている.そこで、hcp 構造と fcc 構造を 効率よく表示するために、ABC の並びの代わりに hexagonal 的か cubic 的かで h と c の表記を使う. 前後の積層周期によって 1 レイヤーごとに表示で きる. そうすると積層欠陥では h 的な構造が 2 周 期分存在すると捉えることができる.

図1. Fcc 構造中に積層欠陥が入った場合の積 層周期の変化. ABC の表記からh, c 表記にする ことで積層順序が明確となる.

以上のような単純なモデルから直感的に hcp 構 造と fcc 構造とのエネルギー差と積層欠陥エネル ギーには相関があることが予測される.四面体構 造をもつ化合物半導体でも,fcc の代わりに Zincblende 構造が, hcp の代わりに Wurtzite 構造 が対応するが,多くの系において密接な相関があ ることが調べられている. 図2は, 実験的に得られ た化合物半導体の積層欠陥エネルギーと, 我々 が求めた Zincblende-Wurtzite 構造エネルギー差 の計算値との相関を示している. 積層欠陥エネル ギーは電子顕微鏡観察の部分転位の幅を, weak-beam 法あるいは高分解能像から求めてい る[11]. 計算値は我々が VASP で求めた結果で ある. Zincblende と Wurzite 構造の安定性に対す る計算結果は CdTe を除いて実験結果を再現し ている.この構造エネルギー差と積層欠陥エネル ギーとは正の相関を示しており、これらの値の間 に線形近似が成り立つことを期待させる.ところが, その相関はそれほど高くない.これは,積層間の 相互作用が単純な2層間の短距離の相互作用だ けで決まるわけではないことを示唆している.

図2. 化合物半導体の積層欠陥エネルギーの実験値と Zincblende-Wurtzite 構造エネルギー差の計算値との相関.

ii) Si 中の P による積層欠陥エネルギーの変化

半導体 Si 中に P がドープされると積層欠陥エネ ルギーが低下するという電子顕微鏡観察結果が 大野らによって最近報告された[12]. この現象を 説明するためにおこなった計算結果を詳述する. まず単純に Zincblende 構造, Wurtzite 構造の中 の一原子を P で置換した結果を示す.1 行目が Wurtzite 構造の純 Si(E_{W-Si})と Zincblende 構造の 純 Si(E_{ZB-Si})のエネルギー差である. 一方, 2行目 はそれぞれに P を一原子置き換えた時のエネル ギー差を示している. これからわかるとおり, P を 添 加 した ほうが, 積 層 欠 陥 エ ネル ギー が 0.07eV/Layer 程度減少する.

表1 純粋な Si で P 一原子を置換したモデルの Zincblende 構造, Wurtzite 構造のエネルギー差.

	$\Delta E [eV]$
$E_{ ext{W-Si}}$ - $E_{ ext{ZB-Si}}$	0.1330
$E_{ ext{W-Si}(ext{P})}$ - $E_{ ext{ZB-Si}(ext{P})}$	0.0635

次に Zincblende 構造の Si の中に intrinsic な積 層欠陥を入れたモデルを構築した.これは半導体 で考えられる glide set と shuffle set の積層欠陥の うち,四面体配位を崩さない, glide set の積層欠 陥に相当する.その様子を図3の左パネルに示し た.周期性を保つように16層をとり, No.9-10お よび No.11-12の 2 層が h 的な構造, つまり積層 欠陥の位置となっている. このそれぞれの原子を P に置き換えてエネルギーを計算すると図 3 の右 パネルのような結果が得られた. 基準エネルギー を P が何も入ってない状態でのモデルとしている. この結果から明らかなように, P は積層欠陥部に 入りやすく, しかも積層欠陥エネルギーを 0.12eV/layer 程度も下げることを示唆している.

図3. Si 半導体の積層欠陥モデルの模式図と, 各層の原子を P に置換した場合のエネルギー変化.

これまで示した結果は1原子層すべてを置換させ たようなモデルであり、P が含まれる層の P 濃度は 100%である.現実の結晶では P 濃度がより低い ことが見込まれる.そこで、よりの濃度の低いモデ ルを作るため、ユニットセルの底面積を 2x2 と広 げた.これによって、1原子層あたり25%が P に 置換したモデルとなる.代表的な完全結晶、積層 欠陥の原子位置として、図3の左パネルの No.1site と No.11-site に置換した結果を表2に示した. これによると、1-site と 11-site のエネルギーを比較 すると、P 濃度25%でも明らかに 11-site が低くな っており、この層に優先的に入ることを示している. また、積層欠陥エネルギーが低くなることを示唆し ている.この計算結果は実験結果を裏付けるもの である.

表2 拡張面積モデルによる P を一原子置換した 積層欠陥モデルのエネルギー差(単位 eV).

P が含まれる層の P 濃	P 濃 度	P 濃 度
度	25%	100%
11-site	0.2622	0.2453
1-site	0.3211	0.3528

Si 中の P の影響をまとめると次のとおりである.

1. Zincblende と Wurtzite 構造のエネルギー差は 積層欠陥エネルギーと相関があるが,比例関係 ではない.

2. 積層欠陥を含んだ系で各層の Si を P と置き 換えたモデルの第一原理エネルギー計算は, 実 験的に得られている積層欠陥エネルギーの変化 を再現している.

3. このような傾向は、より簡単なモデルである、 Zincblende と Wurtzite 構造の完全結晶の一原子 を不純物に置換したモデルによってもエネルギー 差を見積もることができる.

4. Al, Cu における c-h 積層比へのエネルギ 一依存性

ダイアモンド構造での Zincblende と Wurtzite との エネルギー差が積層欠陥エネルギーと相関が低 い理由を示すために Al, Cu において仮想的な c, h 周期のモデルを作って検証を行った. c-層と h-層が周期的に並んだ構造を有する多形の 3C, 2H, 4H の積層モデルを図3に示した。

3C(100:0)	2H(0:100)	4H(50:50)	
c 0 0 0 0	$h \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$h \circ \phi \phi \circ$	
c o	ho q-q o	c 0 0 0 0	
c 0 0 0 0	h o o o o	h o o o c	
c 0 0 0 0	h 6 0 0	c 0 0 0 0	
co beb o	h 🔿 🔿 🔿 🔿	$h \circ \bullet \bullet \circ$	
図2 30,2H,4H構造の機器とchの比率			

図4. 3C, 2H, 4H の積層モデル

これらの格子モデルを用いて, Al, Cu について 第一原理計算を行った. Cu の結果を図5に示し た. 点で示した値は, 各構造での1原子あたりの エネルギーである. 横軸には, 積層周期の比率に 従った位置を示している. すなわち, 4H は完全な fcc 構造(3C)と hcp 構造(2H)とのちょうど真ん中に, 6H は 2:1, 8H は 3:1 の位置である. これらの結果 は 3C と 2H を結んだ直線上にほぼ並んでおり, h と c が線形に近似できることを意味している. さら にこれらのエネルギーから求めた双晶界面エネル ギーは 22mJ/m² となり, ほぼ一定の結果を与える. 一方, Al の結果は図6に示したようになる. 2H 構 造から求めた値は 60mJ/m²となる. Cu, Al の積層 欠 陥 エネルギーの実験値はそれぞれ 45, 200mJ/m² である[13]. 図1から積層欠陥では, h 周期が 2 層あるとして線形近似すると 44, 160mJ/m² と見積もることができ, 比較的満足のい く推測値が得られる.

図5. Cu の多形のエネルギーとその値から見積も った双晶界面エネルギー(TBE).

図6. Al の多形のエネルギーとその値から見積も った双晶界面エネルギー(TBE).

しかし, Al では 2H と 3C とを直線で結んだ線形 近似から相当離れた値となっていることがわかる. 正しくは、3C に近い領域での接線から見積もるべきである.これが化合物半導体で Zincblende とWurtzite 構造のエネルギー差と積層欠陥エネルギーとの間の相関があまり高くなかった原因で、化合物によって層間の相互作用のおよぶ範囲に違いがあることを示唆している.

5. Fe の場合の困難さ

Fe においても金属系である Al や Cu と同様の 見積ができそうであるが、Fe に特有の2つの点か らそれを困難にしている. それは, 1) 安定相が bcc であり転位構造モデルが難しいこと, 2)磁性 の効果が大きく第一原理計算に困難が生じること である. ここではこれらの研究の現状について簡 単にまとめておく.ただし,次の章で示すように,こ の困難さを回避して fcc-Fe で添加元素が積層欠 陥エネルギーに与える影響を見積もることは可能 である.2)の第一原理計算に対する磁性の効果 に関しては、電子の交換相関相互作用に GGA (Generalized Gradient Approximation)を採用する ことによって劇的に改善されている. 図7に示した とおり、我々の計算でも spin-polarized 計算によっ て,基底状態が強磁性(Ferromagnetic)の bcc 構 造となることが再現出来ている.

図7. Fe の各種原子並びに磁気構造の違いによ る体積エネルギー変化の計算結果.

一方,1)の bcc の積層欠陥や転位芯の構造,そ れらが機械的性質に及ぼす影響は古くから議論 されてきている.初期の研究は竹内によってまと

められている[14-15]. このころから bcc 金属の転 位芯の構造が問題となっていた. 最近の計算機 シミューレションの報告では、渡辺が EAM ポテン シャルを用いて系統的におこない[16],一方,第 一原理計算からは、Yan や森らによって{110}面 上の y -surface が計算されている[17-18]. しかし そこからは転位の拡張が起こっているかどうかの 指摘は見当たらない.一方,実験的には,最近の 総説においても bcc 金属では,転位の拡張や特 別な芯構造を考える必要がないと指摘されている [19-20]. また,転位芯の拡張が影響している1つ の証拠とされてきた降伏応力の方位異方性は,外 部応力の負荷によって引き起こされるとする報告 が Vitek らのグループから最近なされている[21-22]. いずれにしろ,十分に大きな原子系での第 一原理計算によって,工業的に重要な bcc 系の 降伏応力の起源を明らかにすることが必要であろ う.

5. fcc 鉄の積層欠陥エネルギーへの添加元素の影響

ダイアモンド構造のSiにPを加えた計算の類推 から、fcc鉄の基底状態がbcc構造であるにもかか わらず、仮想的なfcc構造に添加元素を加えること で、積層欠陥エネルギーへの添加元素の影響を 次のような論理によって見積もることができる. 3C と2Hの構造の1原子を添加元素に置き換えた結 晶モデルを考える. それぞれのエネルギーをE'hep, E'fccとするとそれぞれの純粋なhcp、fcc構造での エネルギーEhep、Efccと、不純物が入ることによるエ ネルギーE^Ain hepとE^Ain fccとからなる. したがって、こ のエネルギー差 γ 'は式(1)のように変形されて純 粋なhcpとfccのエネルギー差 γ_0 と、添加元素によ るエネルギー差d γ との和に分解することができる. $\gamma' = E'_{hcp} - E'_{fcc}$ = $(E^A_{in hcp} + E_{hcp}) - (E^A_{in fcc} + E_{fcc})$

$$= (E_{\text{in hcp}}^{A} - E_{\text{in fcc}}^{A}) + (E_{\text{hcp}} - E_{\text{fcc}})$$
$$= \delta \gamma + \gamma_{0}$$
(1)

 3C(100:0)
 2H(0:100)

 c
 ○
 h
 ○
 ○

 c
 ○
 h
 ○
 ○
 ○

 c
 ○
 h
 ○
 ○
 ○
 ○

 c
 ○
 ●
 ○
 h
 ○
 ○

 c
 ○
 ●
 ○
 h
 ○
 ○

 c
 ○
 ○
 h
 ○
 ○
 ○

 c
 ○
 ○
 h
 ○
 ○
 ○

 g8. Fec 構造と hep 構造に固溶元素を入れた構
 造モデル.
 当
 ○
 ○

この計算式にしたがって、図8に示したようなhcp, fcc構造に添加元素を加えたモデルを計算した. 図9はこの計算結果を模式的に示しており、純粋 なfcc構造のエネルギーを E_{fcc} ,添加元素を入れた 構造を E'_{hcp} , E'_{fcc} で示した.添加した原子のエネ ルギーは同じなので、両構造共にキャンセルする. つまり、fccのエネルギーの上がり具合と、hcpのエ ネルギーの上がり具合を比べれば、たとえ基本と なる $\gamma_0 = E_{hcp} - E_{fcc}$ が再現されていなくとも、添加元 素による積層欠陥エネルギーの変化動向を予測 することが可能と期待できる.

図9. hcp構造とfcc構造で完全結晶と添加元素を 入れた場合のエネルギー変化の模式図.

このようにして求めた結果を図10に示した. すべ ての結果はfcc構造の純粋なFeを基準にとってお り, 黒丸がhcp構造を, 黒四角がfcc構造を示して いる. 横軸には, それぞれ添加した元素を取って いる. hcpよりもfccの計算値が高い元素では, 積 層欠陥エネルギー γ が減少し, 逆にhcpよりもfcc の計算値が低い元素では, γ が増加することが期 待できる. これによると, γ は, Ti, V, Crで増加が, P, Mn, Co, Ni, Ptで変化は無く, その他では減少 することが期待される.

6. 結言

化合物半導体およびSiでの第一原理計算では, 積層欠陥に対する添加元素の影響は,実験結果 を再現している.同様のモデルを用いてfcc-hcp鉄 の構造エネルギー差から添加元素による積層欠 陥エネルギーの変化を求めた.その結果,積層欠 陥エネルギーはTi, V, Crで増加, P, Mn, Co, Ni, Ptで変化は無く, Be, Na, Mg, S, Cu, Zn, Ag, Auで は増加することが期待される.

bcc構造とfcc構造の比較では、よく知られていると おり、状態図中のγ領域の変化に対応しているは ずである.一方、hcpとfccの添加元素の影響は、 ε相とγ相との安定性として石田らによってデー タがまとめられており、積層欠陥エネルギー、周期 律との高い相関が報告されている[23].しかし、本 研究で得られた y の傾向とは少しずれており, Ti, V, Cr, Mn, Fe, Co, Ni, CuとV字型に変化し, Mnで は減少, Cr, Coでは影響がなく, そのほかでは増 加する傾向を示している.

本計算では以下の2点を無視している. すなわち,

- 1. Fe中でfcc構造を安定化させるために入れて いる元素との相互作用が考慮されていない.
- 2. 状態図中でのfcc-hcp安定化の様子は有限温度での計算であるため,ここでは考慮していない振動エネルギー効果,体積膨張効果を加える必要がある.

今後,これらの影響を取り入れて計算を進め,実 験データとのより詳細な比較検討を進める必要が ある.

参考文献

- D. R. Trinkle, Phys. Rev. B, <u>78</u> (2008) , 014110.
- [2] C. Woodward, D. R. Trinkle, L. G. Hector, Jr., and D. L. Olmsted, Phys. Rev. Lett., <u>100</u>(2008), 045507.

図10. Hcp構造とfcc構造で完全結晶と添加元素を入れた場合のエネルギー変化から予想される添加元素による積層欠陥エネルギーの変化予測.

- [3] K. Ohsawa, E. Kuramoto, and T. Suzuki, Phil. Mag. A, <u>74</u> (1996), 431-449.
- [4] G. Kresse and J. Hafner: Phys. Rev. B, 47(1993), 558-561.
- [5] G. Kresse and J. Hafner, Phys. Rev. B, <u>49</u>(1994), 14251-14269.
- [6] G. Kresse and J. Furthmüller, Comp. Mat. Sci., <u>6(1996)</u>, 15-50.
- [7] G. Kresse and J. Furthmüller, Phys. Rev. B, <u>54</u>(1996) 11169-11186.
- [8] http://www.materialsdesign.com/
- [9] J. P. Perdew and Y. Wang, Phys. Rev. B, <u>45</u>(1992), 13244-13249.
- [10] G. Kresse and D. Joubert, Phys. Rev. B, <u>59</u>(1999), 1758-1775.
- [11] S. Takeuchi and K. Suzuki, phys. stat. sol.
 (a), <u>171</u> (1999), 99-103.
- [12] Y. Ohno, T. Taishi, Y. Tokumoto, and I. Yonenaga, J. Appl. Phys., <u>108</u>(2010), 073514.
- [13] 高村仁一,「材料強度の基礎」, 1999 (京大), p102.
- [14] S. Takeuchi, E. Furubayashi, and T. Taoka, Acta Metal., <u>15</u> (1967),1179-1191.
- [15] 竹内伸, 日本金属学会会報, <u>7</u> (1968), 14-26.
- [16] R. Watanabe, Strangth, Fracture and Complexity, <u>5</u> (2007), 13-25.
- [17] Jia-An Yan, Chong-Yu Wang, and Shan-Ying Wang, Phys. Rev. B, <u>70</u>(2004), 174105.
- [18] 森 英喜, 君塚 肇, 尾方成信, 日本金属 学会誌, <u>73(</u>2009),595-600.
- [19] 鈴木敬愛,竹内伸,まてりあ,<u>40(2001),164</u>.
- [20] 鈴木敬愛,「21世紀の格子欠陥研究に残 された課題」, (2003 吉岡書店),15-33.
- [21] K. Ito and V. Vitek, *Multiscale Modelling of Materials*, <u>538</u> (1999 MRS) p.87.
- [22] 伊藤和博,「21世紀の格子欠陥研究に残 された課題」, (2003 吉岡書店),47-53.

[23] 石田清仁,西沢泰二,日本金属学会誌, <u>36(1972)</u>,1238-1245.