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situations can lead to critical errors for GBs [20–22]. Although a recent 
DFT study attempted to perform a TI method for GBs, simulation cells 
seemed to be rather small with limited statistical samples [23]. To date, 
anharmonicity in γGB is not fully understood even for simple metals. 

Recently, machine-learning potentials [24–27] have become a 
method of choice to predict properties of lattice defects including GBs 
[21,22,28,29]. Our recent work constructed an artificial-neural-network 
(ANN) potential for Al and demonstrated its high accuracy to predict 
atomic structures and energetics of GBs from low to high temperatures, 
while an embedded atom method (EAM) potential involved larger errors 
[30]. To elucidate anharmonic effects on γGB, this work combined the 
ANN potential with a TI method based on lattice dynamics and MD 
simulations. Then dominant factors in anharmonicity in γGB were 
identified by analyzing atomic environments and potential energy sur-
faces at GBs. 

DFT calculations were performed using the projector augmented 
wave (PAW) method [31,32] implemented in the Vienna ab initio 
simulation package (VASP) [33,34]. The exchange-correlation energy 

was computed using a modified version of the generalized gradient 
approximation parameterized by Perdew, Burke and Ernzerhof 
(GGA-PBEsol) [35]. The energy cutoff of the plane-wave basis set was set 
to 450 eV. In k-point sampling, 14 × 14 × 14 meshes were used for a 
cubic unit cell. The convergence criterion for self-consistent calculation 
was set at 10−6 eV. 

Symmetric tilt GBs with the [001] and [110] rotational axes were 
examined by varying misorientation angles of two grains θ. Their most 
stable structures predicted by the ANN potential agree with previous 
studies, as demonstrated elsewhere [30]. The detail of simulation cells 
for GBs is given in the Supporting Information. 

The ANN potential was then combined with a TI method. For given 
two states, the TI method enables us to compute their free-energy dif-
ference ΔF, which in our case is the anharmonic component in the free 
energy. Here, one state is the potential energy obtained directly from the 
ANN potential EANN. The other is the HA potential energy EHA =
1/2uTΦu, where u is the displacement vector of all atoms from their 
equilibrium positions, and Φ is the force constant matrix. Φ was ob-

Fig. 1. (a) ΔFGB−BULK as a function of temperature for the [110] and [001] systems in the left and right panels, respectively. In test calculations, the dependence of 
ΔFGB−BULK on simulation cell size was examined for Σ9(221). In the left panel, the yellow points at 400 K and 800 K were obtained from a simulation cell whose 
periodicity in the y-axis direction is twice that for the green points. The yellow and green points were found to have close values, suggesting that the simulation cell 
sizes used in this work are adequate to obtain converged values of ΔFGB−BULK. It can be expected that the other GBs also exhibit similar trends in convergence of 
ΔFGB−BULK to the Σ9(221) GB. (b) GB energies obtained from the QHA and those involving ΔFGB−BULK, which are represented by the blue and red plots, respectively. 
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A B S T R A C T   

Anharmonicity in grain boundary (GB) energies for Al is elucidated by employing a thermodynamic integration 
method with a high-accuracy artificial-neural-network potential. Symmetric tilt GBs with the [001] and [110]
rotational axes are examined. It is found that anharmonic components tend to be small at low temperatures and 
increasingly contribute to reduction of GB free energies at elevated temperatures. The magnitude of anharmo-
nicity is roughly correlated with excess volume at GBs. This is presumably because GB atoms tend to have longer 
bond lengths than the bulk atom, and hence the inclination of the potential energy surface at GBs is more 
moderate than in the bulk. On the other hand, the Σ13(510) GB takes non-negligible values of the anharmonic 
component even at intermediate temperatures. This GB contains a distinct atom around which the potential- 
energy curve significantly deviates from that of the harmonic approximation. Similar trends are also observed 
for other [001] GBs.   

Structural materials are typically used as polycrystals and thus 
involve grain boundaries (GBs). A fundamental quantity associated with 
GBs is GB energy, γGB, which is excess free energy arising from deviation 
in atomic environment of GBs from the bulk. Its magnitude determines 
grain growth [1–3], impurity segregation [4,5] and interfacial phase 
transformation [6,7], thereby governing polycrystalline macrostructure 
and properties. From the thermodynamic point of view, γGB depends on 
temperature unless excess entropy vanishes. Indeed, γGB has been 
measured to decrease with increasing temperature [7–10], although its 
absolute value is inaccessible with experiment. It is thus essential to 
identify the physical origin of γGB by considering atomic structure and 
temperature, with the goal of fabricating advanced polycrystalline ma-
terials at various temperatures and of better understanding thermody-
namics of GBs. 

For pristine GBs, vibrational entropy may dominate the temperature 
dependence of γGB. For this issue, the harmonic approximation (HA) and 
the quasi-harmonic approximation (QHA) have been employed in 
conjunction with empirical interatomic potentials [11–14] and 
density-functional-theory (DFT) calculations [15–17]. An early work by 
Hashimoto et al. indicated that for the Σ5(310) GB in Al, a metastable 
structure exhibits a larger vibrational entropy than the most stable one 
due to a structural unit with large space [11]. Our previous studies of Al, 

MgO and Si indicated a clear correlation between bond lengths and 
atom-projected vibrational entropies of GB atoms [16,17]. Scheiber 
et al. examined possible factors in determining γGB for W and indicated 
that HA and QHA values are close at least up to half of the melting point 
[15]. However, these approximations assume that the total potential 
energy can be expanded up to the second order in terms of atomic 
displacement from the equilibrium. This may be insufficient at high 
temperature since anharmonicity typically becomes pronounced. 
Furthermore, GBs often exhibit lower symmetry in atomic structure than 
the bulk, which may also manifest anharmonicity. 

Anharmonicity in γGB can be directly quantified using thermody-
namic integration (TI) methods [18,19]. Foiles showed that for Cu, γGB 

obtained from a TI method exhibits a larger variation with temperature 
than the QHA value, resulting in relatively large differences between 
their γGB at elevated temperatures [18]. Freitas et al. examined anhar-
monic contribution to transformation between different structural units 
for Cu [19]. However, TI methods require many Monte Carlo samples or 
long-time scale molecular dynamics (MD) simulations in statistical 
sampling and thus often need to be combined with empirical potentials. 
Their empirical parameters are typically fitted without the consideration 
of GBs. Additionally, physically-inspired analytic functions are adopted, 
resulting in limited flexibility for various atomic environments. These 
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図3:(a)ばねモデルと(b)Einsteinモデル．

となる．ここで等比級数の無限和の公式
∞∑

n=0

x
n

=
1

1−x
(37)

を使えば，
Z=

(
exp(−!ω/2kBT)

1−exp(−!ω/kBT)

)3N

(38)

と計算できる．これからヘルムホルツ自由エネルギーは(28)式に代入して

F=−kBTlnZ=−3kBTNln

(
exp(−!ω/2kBT)

1−exp(−!ω/kBT)

)
(39)

で求まる．エネルギー，比熱なども(31)，(34)式を通じて

E=kBT
2dlnZ

dT
=3N!ω

2

1+exp(−!ω/kBT)

1−exp(−!ω/kBT)
(40)

C=
dE

dT
=3NkB

(
!ω

kBT

)2
exp(−!ω/kBT)

(1−exp(−!ω/kBT))
2(41)

となる．これらの関数の温度依存性を図4に示した．
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図4:Einsteinモデルに基づく各熱力学関数の温度依存性．

このモデルで高温極限をとると１モルあたりの比熱は，Avogadro数をNAとすると

CV≃3NAkB=3R(42)

Fi(T, a) = E0
i (a) − kBT ∑

j=x,y,z

ln Zij

= E0
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accuracy of this assumption. Indeed, Fig. 1 indicates devia-
tions fromthesimple linearArrheniusbehavior [difference in
slopesbetweenpositronannihilationspectroscopy(PAS)and
differential dilatometry (DD) data], which have been exten-
sively and controversially discussed over the last decades
[1,15–19].
We show here by means of highly accurate finite

temperature DFT calculations that Gf for the two prototype
elements Al and Cu has a strong temperature dependence
and that the common assumption of a linear Arrhenius
extrapolation [Eq. (2)] may give rise to deviations of a few
tenths of an eV in the formation enthalpies and an order of
magnitude in the entropies. In particular, our results reveal
that anharmonic phonon-phonon interactions—efficiently
captured by the recently developed upsampled thermody-
namic integration using Langevin dynamics (UP-TILD)
method—explain the observed deviations of a few tenths of
an eV compared to the quasiharmonic approximation.
Because GfðTÞ is found to be strongly nonlinear in
temperature, we show that the almost universally accepted
linear Arrhenius assumption needs to be replaced by a local
Grüneisen theory (LGT) with a formation entropy linear in
the temperature. Only the LGT accurately captures the ab
initio computed temperature dependence. As will be dis-
cussed, these results have important implications for the
interpretation of experimental data, and we provide revised
T ¼ 0 K extrapolated vacancy formation enthalpies for Al
and Cu to guide future studies that rely on the availability of
highly accurate experimentally derived T ¼ 0 K data.
Using these newly derived T ¼ 0 K data, we show that

a large part of the previously reported discrepancies
between DFT-GGA and experimental vacancy formation
energies disappears. Consequently, previously introduced
concepts such as surface corrections [16] or the AM05
functional that aim at correcting DFT errors and that have
been justified by benchmarking against experimental T ¼
0 K extrapolated vacancy formation enthalpies must be
revisited.

II. METHODOLOGY

A. General approach to compute the Gibbs energy
of vacancy formation

Key to computing the temperature dependence of Gf is
the calculation of the bulk and vacancy supercell free
energies containing the relevant excitation mechanisms,

F ¼ E0K þ Fel þ Fqh þ Fah; (3)

all being computed by DFT: the T ¼ 0 K energy E0K and
the electronic, quasiharmonic, and anharmonic free energy,
Fel, Fqh, and Fah, respectively. The computation of the first
three contributions is standard and described in detail, e.g.,
in Ref. [20]. The computationally most challenging con-
tribution is the anharmonic one, which only recently
became accessible on a DFT level [21–23]. Converging
the anharmonic contribution of the defect formation energy
Gf to a precision similar to the contribution to the bulk free
energy F is a completely new challenge since the relevant
energy is scaled to the defect and not to the atom, as is the
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FIG. 1 (color online). Experimental (black symbols) and DFT [blue/orange (LDA/GGA-PBE) lines] Gibbs energy of formation of
vacancies in (a) Al and (b) Cu. Experiments (PAS ¼ positron annihilation spectroscopy [1], DD ¼ differential dilatometry [1,2]) are
limited to a region (gray shaded) close to the melting point, Tmelt

Al=Cu. Extrapolations of available PAS [1,3–7] and DD data [2,1,3,8–12] to
T ¼ 0 K using the common Arrhenius ansatz, GfðTÞ ¼ Hf − TSf, introduce scatter in the reported values (filled/empty black bars
mark corresponding intervals). Formation energies computed by common ab initio approximations such as the T ¼ 0 K (dotted line)
and the electronic-plus-quasiharmonic (elþ qh; dashed line) approach are shown. The full curve (elþ qhþ ah) includes all free-energy
contributions in particular anharmonicity. The error resulting when assuming the Arrhenius extrapolation, ΔArr, is marked by the orange
arrow at T ¼ 0 K.
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Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies:
The Importance of Local Anharmonicity Revealed by Ab initio Thermodynamics

A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer
Max-Planck-Institut für Eisenforschung GmbH, D-40237 Düsseldorf, Germany

(Received 5 November 2013; published 10 February 2014)

We study the temperature dependence of the Gibbs energy of vacancy formation in Al and Cu from
T ¼ 0 K up to the melting temperature, fully taking into account anharmonic contributions. Our results
show that the formation entropy of vacancies is not constant as often assumed but increases almost linearly
with temperature. The resulting highly nonlinear temperature dependence in the Gibbs formation energy
naturally explains the differences between positron annihilation spectroscopy and differential dilatometry
data and shows that nonlinear thermal corrections are crucial to extrapolate high-temperature experimental
data to T ¼ 0 K. Employing these corrections—rather than the linear Arrhenius extrapolation that is
commonly assumed in analyzing experimental data—revised formation enthalpies are obtained that differ
up to 20% from the previously accepted ones. Using the revised experimental formation enthalpies, we
show that a large part of the discrepancies between DFT-GGA and unrevised experimental vacancy
formation energies disappears. The substantial shift between previously accepted and the newly revised
T ¼ 0 K formation enthalpies also has severe consequences in benchmarking ab initio methods against
experiments, e.g., in deriving corrections that go beyond commonly used LDA and GGA exchange-
correlation functionals such as the AM05 functional.

DOI: 10.1103/PhysRevX.4.011018 Subject Areas: Computational Physics,
Condensed Matter Physics,
Materials Science

I. MOTIVATION

Vacancies in a crystal are known to have a strong impact
on mechanical strength and ductility, e.g., by enabling
material transport, acting as pinning centers for disloca-
tions, or by enabling a dislocation climb. A key quantity to
characterize vacancies is their temperature-dependent
Gibbs energy of formation, GfðTÞ, since it provides direct
information regarding thermodynamic stability, equilib-
rium concentration, and solubility. In the dilute limit, the
concentration c is related to Gf by

c ¼ g expð−Gf=kBTÞ; (1)

with g a geometry factor (e.g., g ¼ 1 for monovacancies
and g ¼ 6 for divacancies in fcc) and kB the Boltzmann
constant. The experimental determination of c faces severe
difficulties: (i) The vacancies must occur in concentrations
well above the experimental detection limit, (ii) their
detection should not be shadowed by other defects or
impurities, and (iii) their concentration must have reached
equilibrium. Particularly, conditions (i) and (iii) force
experimentalists to go to high temperatures, where

concentrations are high and defect kinetics is fast. In
practice, measurements are restricted to a temperature
range between ≈60% and 100% of the melting point, as
indicated in Fig. 1 for Al and Cu by the gray shaded area.
Ab initio calculations, in particular, density-functional

theory (DFT), have become the work horse to compute
energies of defect formation. The majority of these studies,
however, have been performed at T ¼ 0 K, and only
recently, the quasiharmonic approximation or empirical
potentials were used to estimate finite temperature effects in
defect systems [13–15]. The inclusion of explicit anhar-
monicity due to phonon-phonon interactions—relevant at
high temperatures—was computationally too expensive to
be evaluated on a DFT level.
Taking into account the theoretical restriction to low

temperatures and the experimental restriction tohigh temper-
atures, it becomes evident that a direct and conclusive
comparison of experiment and theory has so far been
hampered by a large temperature gap. To bridge this gap
and to provide a temperature dependence of Gf, a common
approach is the assumption of an Arrhenius-like behavior,

GfðTÞ ¼ Hf − TSf; (2)

with temperature-independent enthalpy and entropy of for-
mation,Hf and Sf, that are obtained by a fit to experimental
data. As shown in Fig. 1, the limited and scattered exper-
imental data (black symbols) do not allow one to check the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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UP-TILD(upsampled thermodynamic integration using Langevin dynamics)

divacancy, which had been postulated to fit the exper-
imentally observed non-Arrhenius behavior (green dashed
vs green solid line) [8,35,36]. The consequence of these
observations is that divacancies [model (b)] can be clearly
ruled out as a source of the non-Arrhenius behavior for both
elements [16]. The strong temperature dependence of the
formation energy of the monovacancy therefore remains an
exclusive source. Thus, a crucial question to be answered is
what type of physical excitation mechanism can lead to
such a strong temperature dependence.
For answering this question, the fully ab initio approach

described here is ideally suited. Its advantage is that all
free-energy contributions are available, allowing one to
identify the responsible one(s) for the strong non-Arrhenius
behavior. The corresponding analysis reveals the explicit
anharmonic contribution, i.e., the one describing excita-
tions beyond the quasiharmonic approximation, as the main
source: When it is excluded, we find an almost linear
dependence in the Gibbs energy of formation (orange
dashed lines labeled “elþ qh” in Fig. 1) and negligible
contributions to the entropy of formation (thin orange
dashed and solid lines in Fig. 2). The strong impact of
explicit anharmonicity is surprising since for fcc crystals it
is generally assumed to be small. To understand the origin,
we have analyzed in detail how temperature affects the
distribution function ρV;Tðx; yÞ of the metal atoms closest to
the vacancy:

ρV;Tðx; yÞ ¼
X

i

δðXNN
V;T;i − xÞ · δðYNN

V;T;i − yÞ: (5)

Here, the sum runs over all time steps of a molecular-
dynamics run at a fixed volume V and temperature T; δðxÞ
is equal to 1 for x ¼ 0 and otherwise 0. Further, XNN

V;T;i and
YNN
V;T;i are the coordinates of all the first nearest neighbors of

the vacancy at the ith molecular-dynamics step transformed
into the first quadrant of the xy plane by proper point group
symmetry operations. Figure 3a shows an example of
ρV;Tðx; yÞ for Cu at the melting temperature, and Fig. 3b
shows the Gauss broadened projection onto the [110]
direction,

ρV;TðdÞ ¼
X

i

δ

!
1ffiffiffi
2

p ½XNN
V;T;i þ YNN

V;T;i& − d
#
; (6)

i.e., along the line through the vacancy center and the
neighboring atom. Using the ab initio computed distribu-
tion function, the temperature-dependent effective potential

veffV;TðdÞ ¼ −kBT ln ρV;TðdÞ (7)

is constructed. Both ρV;T and veffV;T show an anisotropy and
softening towards the vacancy [Fig. 3b], which can be
intuitively understood by the fact that bond compression is
absent in this direction. As a consequence, the effective

potential resembles a Morse potential and leads to a
displacement of the time-averaged position towards the
vacancy center with increasing temperature [orange dia-
monds in Fig. 3b]. This net inward relaxation with
increasing temperature leads to a local expansion of the
host matrix at the expense of the vacancy volume.
The large anharmonicity in the effective potential is a

direct consequence of destroying the inversion symmetry
that an atom has in a perfect fcc crystal: While in the ideal
bulk the effective potential will be symmetric and thus
effectively cancel third- and higher-odd-order anharmonic
contributions, the loss of inversion symmetry of an atom
near the vacancy center gives rise to sizable odd-order
contributions, as shown in the effective potential in Fig. 3b.
The presence of odd, in particular, third-order asymmetric
contributions near the vacancy (or any defect destroying
inversion symmetry locally) naturally explains the surpris-
ingly large anharmonic effects.
Based on this discussion, the largest anharmonic con-

tributions should be along directions where inversion
symmetry is destroyed locally. Indeed, this behavior is
found in the distribution shown in Fig. 3a: Odd-order
anharmonicity is large towards the vacancy center (along
[110]) but absent for directions perpendicular to the [110]
direction because of the presence of a mirror symmetry.

FIG. 3 (color online). (a) Harmonic (black) and anharmonic
(orange) distribution ρV;Tðx; yÞ according to Eq. (5) for Cu at
Tmelt ¼ 1360 K. The vacancy center is placed at (0, 0), and the
equilibrium position of the first nearest neighbor is marked by a
green cross. The points (black/orange) show the molecular-
dynamics trajectory of the atom at discrete time steps of 10 fs.
The region close to the equilibrium position is densely populated,
and thus the individual points are not resolvable on this scale. The
harmonic data are obtained from thermodynamic integration runs
at zero coupling constant. (b) Distribution function ρV;TðdÞ
(dashed lines) according to Eq. (6), i.e., projection of
ρV;Tðx; yÞ onto the [110] direction indicated in (a), and corre-
sponding effective potential according to Eq. (7) (solid lines). The
zero line of the distribution function is shifted upwards by the
energy kBTmelt according to the temperature at which ρV;TðdÞwas
calculated. The orange diamonds mark the shift of the center of
mass of the anharmonic ρV;TðdÞ shown and additional anhar-
monic distributions (not explicitly shown) towards the vacancy at
the following temperatures: 250, 450, 800, 1100, 1250 K (related
to the energy axis by kBT). For clarity, the latter curve is scaled by
a factor of 10 on the d axis.
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case for bulk properties. The targeted precision therefore
needs to bemuch higher. To estimate the necessary accuracy,
let us consider a precision of 1 meV (see Ref. [22] for a
discussion on the required precision) to sample the anhar-
monic contribution of a supercell containing 100 atoms. Our
molecular-dynamics runs are performed for the bulk and
defect systems on a quasiharmonic reference, as described in
Ref. [22]. Since both reference systems are of similar quality,
the standard deviation σ of the sampled energy differences is
very similar in the bulk and defect cases, σbulk ≈ σdefect. In a
bulk calculation with 100 atoms, extensivity holds and the
standard error σn can be calculated as a per-atom quantity. In
the case of defect formation energy, we are interested in
energy differences of the two supercells (defect minus bulk),
and the standard error will therefore be 100 times larger
compared to the bulk free-energy calculation. Using the
definition of the standard error σn≔ σffiffi

n
p , with n being the

number of time steps in the corresponding molecular-
dynamics run, we see a dramatic effect on ndefect=nbulk: To
obtain the sameprecision in the defect formation energy as in
thebulkfree-energycalculation,weneedasamplingtimethat
is 104 times longer. Since converging the anharmonic bulk
free energy to 1meV/atom is already a difficult task on an ab
initio level, it becomesclear that to convergedefect formation
energies toa similarquality is aconsiderablechallenge.Here,
we employ the UP-TILD [22] approach, which is based on a
successive coarsening of configuration space, while simul-
taneously increasing accuracy in the energy calculation. At
the final level, only a few hundred fully converged DFT
configurations are needed to achieve statistical error bars of
0.1 meV/atom in FðV; TÞ and 10 meV/defect in a corre-
sponding 108 (107) atom cell for Gf.
Using this approach, we calculate all contributions

entering the free energy of the vacancy cell and perfect
bulk cell, Fvac and Fbulk, as a function of volume and
temperature. The temperature- and pressure-dependent
Gibbs energy of formation is then given by

GfðP; TÞ ¼ FvacðΩ; T;NÞ − NFbulkðV; TÞ þ Pvf: (4)

The volume of the defect supercell Ω with N atoms and the
volume per atom V of the perfect bulk are self-consistently
determined to correspond to a given pressure P (standard
atmospheric pressure). The volume of vacancy formation is
given by vf ¼ Ω − NV.

B. Technical details

For our calculations, we employ the projector augmented
wave method [24] as implemented in VASP [25,26]. The
exchange-correlation functional is described by the local-
density and generalized-gradient approximations (LDA/
GGA) within the scheme of Ceperley-Alder [27] as
parametrized by Perdew and Zunger [28] for LDA and
Perdew-Burke-Ernzerhof (PBE) [29] for GGA. Additional
calculations were performed at T ¼ 0 K with the Perdew
Wang (PW91) [30] parametrization to GGA and with

the AM05 functional [31], which is assumed to largely
overcome the deficiencies of the LDA and GGA func-
tionals in describing vacancy formation energies.
Extensive convergence tests were conducted for all free-

energy contributions entering Eq. (3): E0K, Fel, Fqh, and
Fah. In general, convergence parameters are optimized such
as to guarantee a precision of better than 10 meV/defect in
the formation energies Gf. This corresponds to converging
the bulk free-energy contributions to ≈0.1 meV=atom in a
108-atom cell (3 × 3 × 3 ¼ 33 fcc supercell), as described
in the previous section. For clarity, we consistently specify
meV/atom when referring to free energies while using
meV/defect for defect formation energies Gf. The number
of atoms per supercell given below refers to perfect bulk
supercells, while corresponding monovacancy or divacancy
cells have one or two atoms less. The supercells are given in
units of the conventional fcc unit cell. To minimize errors,
all calculations are performed using equal convergence
parameters for the bulk and defect calculations.
The T ¼ 0 K contribution E0K was investigated for Al

up to a 43 supercell (256 atoms). Differences between a 33

(108 atoms) and a 43 supercell are below 2 meV/defect. In
Cu, we find a difference of 6 meV/defect between a 23

(32 atoms) and a 33 supercell. We carefully checked the
k-point convergence up to 1 million k-points times atom.
Both Al and Cu converge at roughly 100,000 k-point times
atom to our chosen convergence criterion. We tested plane-
wave cutoffs up to 500 eV, and we find that 300 eV for Al
and 400 eV for Cu are sufficient.
For the electronic contribution Fel, a well-converged

formation energy is achieved by a parametrization of the
ðT; VÞ dependence on a grid including seven T steps and
four volumes employing 32,000 k-points times atom. The
exact details of the parametrization follow the scheme
introduced in Ref. [32]. By separating out the T ¼ 0 K
contribution, an accuracy of better than 2 meV/defect is
easily obtained. For Al and Cu, convergence tests were
performed in a 23 supercell, and we find that the electronic
contribution to Gf is negligible in both elements.
Phonon calculations for obtaining the quasiharmonic free

energyFqhweredonein23 and33 supercells,andninevolume
points were found for both elements to ensure converged
vibrational free-energy contributions. We also carefully
checked the k-point convergence up to 130,000 (90,000)
k-points times atom for Al (Cu) and find converged results
already at 55,000 (23,000) k-points times atom. For the Al
phonon part, we tested plane-wave cutoffs of 300 eV and
400 eVand found the lower value to be well converged. For
Cu, we tested cutoffs up to 500 eVand found a difference of
2 meV/defect compared to a cutoff of 400 eV.
The anharmonic free energy Fah was investigated in a 23

(32 atoms) and a 33 (108 atoms) supercell and treated with
the UP-TILD method [22]. The corresponding molecular-
dynamics simulations used a time step of 10 fs and a
friction parameter of 0.01 for Al and 0.03 for Cu for the
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0.1 meV/atom in FðV; TÞ and 10 meV/defect in a corre-
sponding 108 (107) atom cell for Gf.
Using this approach, we calculate all contributions
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Gibbs energy of formation is then given by
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The volume of the defect supercell Ω with N atoms and the
volume per atom V of the perfect bulk are self-consistently
determined to correspond to a given pressure P (standard
atmospheric pressure). The volume of vacancy formation is
given by vf ¼ Ω − NV.

B. Technical details

For our calculations, we employ the projector augmented
wave method [24] as implemented in VASP [25,26]. The
exchange-correlation functional is described by the local-
density and generalized-gradient approximations (LDA/
GGA) within the scheme of Ceperley-Alder [27] as
parametrized by Perdew and Zunger [28] for LDA and
Perdew-Burke-Ernzerhof (PBE) [29] for GGA. Additional
calculations were performed at T ¼ 0 K with the Perdew
Wang (PW91) [30] parametrization to GGA and with

the AM05 functional [31], which is assumed to largely
overcome the deficiencies of the LDA and GGA func-
tionals in describing vacancy formation energies.
Extensive convergence tests were conducted for all free-

energy contributions entering Eq. (3): E0K, Fel, Fqh, and
Fah. In general, convergence parameters are optimized such
as to guarantee a precision of better than 10 meV/defect in
the formation energies Gf. This corresponds to converging
the bulk free-energy contributions to ≈0.1 meV=atom in a
108-atom cell (3 × 3 × 3 ¼ 33 fcc supercell), as described
in the previous section. For clarity, we consistently specify
meV/atom when referring to free energies while using
meV/defect for defect formation energies Gf. The number
of atoms per supercell given below refers to perfect bulk
supercells, while corresponding monovacancy or divacancy
cells have one or two atoms less. The supercells are given in
units of the conventional fcc unit cell. To minimize errors,
all calculations are performed using equal convergence
parameters for the bulk and defect calculations.
The T ¼ 0 K contribution E0K was investigated for Al

up to a 43 supercell (256 atoms). Differences between a 33

(108 atoms) and a 43 supercell are below 2 meV/defect. In
Cu, we find a difference of 6 meV/defect between a 23

(32 atoms) and a 33 supercell. We carefully checked the
k-point convergence up to 1 million k-points times atom.
Both Al and Cu converge at roughly 100,000 k-point times
atom to our chosen convergence criterion. We tested plane-
wave cutoffs up to 500 eV, and we find that 300 eV for Al
and 400 eV for Cu are sufficient.
For the electronic contribution Fel, a well-converged

formation energy is achieved by a parametrization of the
ðT; VÞ dependence on a grid including seven T steps and
four volumes employing 32,000 k-points times atom. The
exact details of the parametrization follow the scheme
introduced in Ref. [32]. By separating out the T ¼ 0 K
contribution, an accuracy of better than 2 meV/defect is
easily obtained. For Al and Cu, convergence tests were
performed in a 23 supercell, and we find that the electronic
contribution to Gf is negligible in both elements.
Phonon calculations for obtaining the quasiharmonic free

energyFqhweredonein23 and33 supercells,andninevolume
points were found for both elements to ensure converged
vibrational free-energy contributions. We also carefully
checked the k-point convergence up to 130,000 (90,000)
k-points times atom for Al (Cu) and find converged results
already at 55,000 (23,000) k-points times atom. For the Al
phonon part, we tested plane-wave cutoffs of 300 eV and
400 eVand found the lower value to be well converged. For
Cu, we tested cutoffs up to 500 eVand found a difference of
2 meV/defect compared to a cutoff of 400 eV.
The anharmonic free energy Fah was investigated in a 23

(32 atoms) and a 33 (108 atoms) supercell and treated with
the UP-TILD method [22]. The corresponding molecular-
dynamics simulations used a time step of 10 fs and a
friction parameter of 0.01 for Al and 0.03 for Cu for the

BREAKDOWN OF THE ARRHENIUS LAW IN DESCRIBING … PHYS. REV. X 4, 011018 (2014)

011018-3



3x3x3(107-108)

Va
ca

nc
y 

fo
rm

at
io

n 
en

er
gy

 [e
V]

Temperature [K]

2x2x2(31-32)

Vacancy formation energy spring constant dispersion (at 500K)

2x2x2(31-32)

3x3x3(107-108)

dL_perfect = 0.014

dL_vacancy = 0.010

dL_perfect = 0.014

dL_vacancy = 0.012

sp
rin

g 
co

ns
ta

nt
 [e

V/
A^

2]

site-direction

sp
rin

g 
co

ns
ta

nt
 [e

V/
A^

2]

sp
rin

g 
co

ns
ta

nt
 [e

V/
A^

2]
di

st
an

ce
 c

ha
ng

e[
%

]

distance from vacancy site

di
st

an
ce

 c
ha

ng
e[

%
]



Perfect lattice 
(Moment +  

Frenkel-Ladd(MC))



N. Tan, V. V. Hung, “Investigation of the Thermodynamic 
Properties of Anharmonic Crystals by the Momentum Method”, 
Phys. Stat. Sol. (B), vol. 149, pp.511–519, 1988. 

SMM ( Statistical Moment Method )

E = E0 +
∂E
∂xi

dxi +
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dx2
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1st -0.8025 -0.0067

2nd 20.7770 21.2321

3rd 0.0 -5.8513

4th 0.0 -2.5690
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TABLE I. Higher order coefficients of the energy potential.

indexes analytical numerical numerical harmonic VASP(2x2x2) VASP(2x2x2) VASP(3x3x3)
p4 dev.=0.04 p4 dev.=0.10 dev.=0.04 dev.=0.10 dev.=0.10

0 [0 0 0] -2.47840 -2.47840 -2.47840 -3.72303 -3.69879 -3.723027
1 [2 0 0] 6.60522 6.60496 6.60288 6.66320 3.30538 3.37042 4.26487
2 [0 2 0] 6.60522 6.60496 6.60288 6.66320 3.33010 3.35011 4.27330
3 [0 0 2] 6.60522 6.60496 6.60288 6.66320 3.39418 3.35422 4.28811
4 [0 1 1] 1.720e-12 2.842e-13 0.02135 0.01158 -0.00212
5 [1 1 0] 1.600e-11 -1.125e-12 -0.02505 -0.01058 0.00217
6 [1 0 1] 1.720e-12 8.527e-13 0.03010 0.01165 -0.00154
7 [3 0 0] -2.852e-09 -1.218e-10 -0.05000 0.00020 0.00054
8 [0 3 0] -1.158e-09 -5.801e-11 -0.25417 -0.00222 0.00374
9 [0 0 3] -2.147e-09 2.404e-11 0.25833 -0.00588 0.02284
10 [1 1 1] -2.224e-26 -8.807e-12 -0.04375 0.00024 0.00056
11 [2 2 0] 29.14519 29.23755 29.34441 53.12500 9.96245 10.62694
12 [2 0 2] 29.14519 29.23755 29.34441 46.30102 9.91347 10.73143
13 [0 2 2] 29.14519 29.23755 29.34441 40.24235 10.46694 10.46041
14 [4 0 0] 6.35142 6.51689 6.84933 -3.54167 0.30400 -0.56800
15 [0 4 0] 6.35142 6.51690 6.84933 -14.47916 2.01067 -1.22133
16 [0 0 4] 6.35142 6.51689 6.84933 -47.29167 1.58400 -2.62133
standard dev. 0.000000 0.000014 0.000025 0.000047 0.000031

TABLE II. Comparing the analytical and numerical SMM.

Vu Van Hung ours
”vkfcc” 105827.3173 105823.1461
”omega” 31.670e+9 31.670e+9
”gamma1” 4.4221e+20, 5.2206e+20
”gamma2” 2.2147e+21 2.3421e+21
”vkfcc” 105827.3173 105823.1461
gamma 1.06279e+22] 1.1456e+22]
u0 -28760.49150 -28760.4915
psi0 -4.8865e-13 -4.8865e-13
gt k2 0.1179 0.1271
psi nonli 7.15346e-15 7.1519e-15

Because the difference between the harmonic and an-
harmonic L-J potential plots are small but distinctive, we
will examine the anhamonic contribution of L-J potential
in detail by the Frenkel-Ladd method.

D. Frenkel-Ladd integration of L-J potential

For the Frenkel-Ladd thermodynamical integration,
the Metropoilis algorith was performed in the MC sim-
ulations with the integration parameter of λ. Whene
the λ = 1, the perfect ideal system, the pegging of the
Einstein system was off. At this situation, the system
will drift, and the integrand diverged to negative infin-
ity. There have been proposed two ways of pegging; one is
the all atoms free but the center of mass will be shifted
to adjust the drifted system, and the other is the one
atom fixed to peg the other all system. We call them the
all-free and the one-fix systems, hereafter. The examples
of the total and ∂E/∂λ energy dependences on the iter-
ation are shown in Fig. 3. Although the total energies

FIG. 1. Whole scale dependency of harmonic free energy of
LJ-Cu at each temperature.

of both methods shows the same, the ∂E/∂λ of all-free
system shows almost identical after 10K iterations but
that of one-fix system shows once platou near 50k steps
but decreased to -60eV at the 200K iteration steps. The
detail investigation of the positions of atoms shows that
the all the system drifts gradually. The one-site fix is not
enough to peg the whole system to stay in a place.

When we see the Frenkel-Ladd intergration of such a
system, the difference on the Frenkel-Ladd integrations

Fanharm ≈ E0 + Fharm

+3 { θ2
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Fig. 4. Surface free energy density Ñ⇠(T ) vs., temperature for (a) FCC and (b) BCC metals, in comparison to MD data and literature values (Wang et al. [28] and Schönecker et al.
[29]) obtained from Density Functional Theory (DFT).

Table 4
Surface free energy densities Ñ⇠ for all metals and surface orientations studied here. All
values are in eV/Å

2
.

Cu Ni Al

(001) (011) (111) (001) (011) (111) (001) (011) (111)

0 K 0.0840 0.0921 0.0774 0.1389 0.1480 0.1283 0.0625 0.0691 0.0569
100 K 0.0833 0.0914 0.0768 0.1379 0.1469 0.1274 0.0623 0.0687 0.0566
300 K 0.0820 0.0900 0.0756 0.1350 0.1437 0.1247 0.0617 0.0679 0.0561
500 K 0.0806 0.0884 0.0744 0.1326 0.1408 0.1224 0.0612 0.0670 0.0555

Fe W V

(001) (011) (111) (001) (011) (111) (001) (011) (111)

0 K 0.1538 0.1469 0.1654 0.1857 0.1628 0.2083 0.1157 0.1016 0.1279
100 K 0.1522 0.1455 0.1640 0.1851 0.1623 0.2076 0.1152 0.1009 0.1270
300 K 0.1492 0.1426 0.1611 0.1839 0.1613 0.2062 0.1137 0.0995 0.1252
500 K 0.1464 0.1398 0.1584 0.1828 0.1602 0.2046 0.1122 0.0981 0.1234

free energy of both the slab and bulk geometries. We report the total
number of MD time steps and GPP iterations required for both samples,
and the total simulation times taken by the respective techniques for
both samples. Consequently, the GPP framework provides an effective
computational speedup of 46.5 times for Cu and of 43.1 times for Fe
(bearing in mind that our home-grown GPP code is likely to be less
efficient than the implementation of LAMMPS). Moreover, GPP requires
a comparably small number of atoms, unlike in MD simulations (which
ideally approach the thermodynamic limit), and hence the number
of processors used per simulation can be reduced extensively in our
framework.

4.2. Isothermal surface stresses and surface elastic constants

Following the procedure outlined in Section 3, we here report the
variations of surface stresses and surface elastic constants, as obtained
from the GPP approach (and validated by reference MD calculations).

Table 5
Computational speed-up achieved by the GPP approach as compared to conventional
MD simulations. We show here, as an example, the times required to calculate the
surface free energy of the relaxed (001) surfaces of Cu and Fe at 300 K.

FCC BCC

LAMMPS GPP LAMMPS GPP

No. of atoms 32,800 5248 16,400 2624
No. of processors 256 40 128 25
No. of time steps/iterations 4.8 � 107 617 4.8 � 107 767
Bulk simulation time (min) 218 4.05 201 3.54
Slab simulation time (min) 261 6.20 221 6.25
Total time (min) 479 10.3 422 9.79

Section 4.2.1 summarizes all FCC metal data, followed by the BCC met-
als in Section 4.2.2. We start with the variation of the average surface
stress ⌧avg = (⌧11 + ⌧22)_2 vs. temperature, including a comparison with
MD results for Cu and Fe. For visualizing the surface elastic tensor,
we present the directional compliance S in a polar plot for different
surfaces. The directional compliance as a function of the direction d
can be computed as

S(d) = C
*1
ijkl

d
i
d
j
d
k
d
l
, where d = 1 (15)

and we use Einstein’s summation convention over repeated indices.
The directional stiffness E(d) = 1_S(d) is the inverse of S. However,
since the surface elastic tensor C is not necessarily positive definite (as
also emphasized by Shenoy [32]), the value of S may changes sign
while traversing along the polar axis. As this creates large jumps in
the directional stiffness, we rather plot S = 1_E in the polar plots. We
stress that a lack of positive-definiteness in the surface elastic constants
(unlike the bulk elastic constants) does not necessarily constitute a
material instability. In fact, all slabs investigated here were stable under
the given boundary conditions. This is due to the sub-surface atoms
in the slab, whose potential energy may stabilize a surface with non-
positive-definite elastic constants. It is interesting to note that this also
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A B S T R A C T

Experimental measurement of surface energy is rather difficult at finite temperature. This work develops a first-
principles method to estimate the effects of finite temperature on the surface energy of Al alloys. The surface
energies of four planes, namely, (100), (110), (111) and (112) planes, have been calculated as a function of the
finite temperature, as well as the interaction energies between the solute atoms and these surfaces. The uniform
distribution (UFD) model is used to treat the distributions of solute atoms in investigating the microcrack nu-
cleation mechanism. The results suggest that the four surface energies of pure Al decrease slightly with in-
creasing the temperature. While Sn atom can drastically reduce the four surface energies of Al alloys at relatively
high solute concentration, which obviously increases the probability of forming a new surface, inducing more
microcracks in Al alloys. Interestingly, Cu atom can inhibit the microcrack nucleation of (100) and (111) sur-
faces by slightly increasing their surface energies. Microcracks in Al alloys prefer to nucleate along the (111)
surface due to the lower surface energy. This work provides a valuable insight for further exploring the surface
characteristics of Al alloys at finite temperature.

1. Introduction

Generally, the surface energy is defined as the minimum energy of
forming two free surfaces in the bulk material, which plays a key role in
affecting many surface behaviors of materials, like crack nucleation,
crack propagation, corrosion, oxidation, catalysis, electrochemistry,
absorption and crystal growth, etc. [1–6]. Due to the anisotropy of
material, the different planes behave the inconsistent surface char-
acteristics in the bulk material, and then, the surface energy can be well
considered as a physical variable in terms of interpreting these surface
characteristics [7]. Although the surface energies of many metals have
been experimentally obtained by means of surface tension measure-
ments in the liquid phase and extrapolated to zero temperature, it is
rather difficult to get these available experimental data, even yielding
uncertainties of unknown magnitude, especially for the anisotropic
materials with impurities [5,7–9]. Hence, many calculation and simu-
lation methods have been proposed for calculating the surface energy of

anisotropic materials, including first-principles methods [2,10,11],
tight-binding parameterizations [12,13] and semi-empirical methods
[14–19], and first-principles method was deemed as an effective tool to
investigate the surface characteristics of materials by accurately cal-
culating the surface energy [20–23].

Over the years, Methfessel et al. [10] utilized the full-potential (FP)
linear-muffin‑tin-orbital (LMTO) method to study the trends of the
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A B S T R A C T

Experimental measurement of surface energy is rather difficult at finite temperature. This work develops a first-
principles method to estimate the effects of finite temperature on the surface energy of Al alloys. The surface
energies of four planes, namely, (100), (110), (111) and (112) planes, have been calculated as a function of the
finite temperature, as well as the interaction energies between the solute atoms and these surfaces. The uniform
distribution (UFD) model is used to treat the distributions of solute atoms in investigating the microcrack nu-
cleation mechanism. The results suggest that the four surface energies of pure Al decrease slightly with in-
creasing the temperature. While Sn atom can drastically reduce the four surface energies of Al alloys at relatively
high solute concentration, which obviously increases the probability of forming a new surface, inducing more
microcracks in Al alloys. Interestingly, Cu atom can inhibit the microcrack nucleation of (100) and (111) sur-
faces by slightly increasing their surface energies. Microcracks in Al alloys prefer to nucleate along the (111)
surface due to the lower surface energy. This work provides a valuable insight for further exploring the surface
characteristics of Al alloys at finite temperature.

1. Introduction
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ments in the liquid phase and extrapolated to zero temperature, it is
rather difficult to get these available experimental data, even yielding
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materials with impurities [5,7–9]. Hence, many calculation and simu-
lation methods have been proposed for calculating the surface energy of
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A B S T R A C T

Surface energies and surface elasticity largely affect the mechanical response of nanostructures as well as the
physical phenomena associated with surfaces such as evaporation and adsorption. Studying surface energies at
finite temperatures is therefore of immense interest for nanoscale applications. However, calculating surface
energies and derived quantities from atomistic ensembles is usually limited to zero temperature or involves
cumbersome thermodynamic integration techniques at finite temperature. Here, we illustrate a computational
technique to identify the energy and elastic properties of surfaces of solids at non-zero temperature based
on a Gaussian phase packets (GPP) approach (which in the isothermal limit coincides with a maximum-
entropy formulation). Using this technique, we investigate the effect of temperature on the surface properties
of different crystal faces for six pure metals – copper, nickel, aluminium, iron, tungsten and vanadium – thus
covering both FCC and BCC lattice structures. While the obtained surface energies and stresses usually show a
decreasing trend with increasing temperature, the elastic constants do not show such a consistent trend across
the different materials and are quite sensitive to temperature changes. Validation is performed by comparing
the obtained surface energy densities of selected BCC and FCC materials to those calculated via molecular
dynamics.

1. Introduction

Surfaces of solids are known to have an energy in excess to that of
the bulk, which can be attributed to a lower coordination number of
the surface atoms. The effect of this surface energy is in proportion
to the surface-to-volume ratio of a sample. Hence, although negligi-
ble in large-scale structures, surfaces may have a pronounced effect,
when it comes to understanding the mechanical properties of nano-
scale structures. Experimental [1,2] and numerical [3–5] findings have
shown that the stiffness of mechanical structures tends to deviate
from its known large-scale values as one or more sample dimensions
approach the material length scale, which is the lattice parameter
for crystalline solids. For example, the elastic response of plates with
thickness approaching a few atomic planes is drastically different than
what that of thicker specimens. As shown by Zhou and Huang [6], such
nanostructures can be either softer or stiffer compared to the bulk.
Studying surface energies is of scientific interest for a wide range of
physical phenomena associated with surfaces, going beyond mechanics.
Size effects have been demonstrated to affect physical properties such
as the melting point [7,8] and the onset temperature of evaporation [9]
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for nanoparticles. Surface energy also plays an important role in the
phase transformation of gold nanowires [10]. Moreover, the strong
growth of nanotechnology and the use of nanoelectromechanical sys-
tems (NEMS) provide for a growing branch of engineering that requires
a careful understanding of surface energetics. Apart from their impor-
tance for nanostructures (where atomistic modeling techniques take
free surfaces explicitly into account), an interplay of surface and bulk
elastic parameters also governs the stability of surfaces [11], surface
melting [12] and roughness [13] across scales. It is therefore important
to infer surface energies, stresses, and elastic constants from atomistics
for use in continuum-level modeling for larger-scale applications.

In a continuum setting, the effect of surface energies can be captured
by considering the presence of an infinitely-thin deformable surface
layer covering the bulk material [14], which is endowed with surface
stresses and associated surface elastic constants. Important works in
the development of continuum surface theories include those of Shut-
tleworth [15] and Gurtin and Murdoch [16], which allowed for the
calculation of surface stress and elasticity tensors from atomistics by
calculating derivatives of the computed surface energies with respect
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cumbersome thermodynamic integration techniques at finite temperature. Here, we illustrate a computational
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entropy formulation). Using this technique, we investigate the effect of temperature on the surface properties
of different crystal faces for six pure metals – copper, nickel, aluminium, iron, tungsten and vanadium – thus
covering both FCC and BCC lattice structures. While the obtained surface energies and stresses usually show a
decreasing trend with increasing temperature, the elastic constants do not show such a consistent trend across
the different materials and are quite sensitive to temperature changes. Validation is performed by comparing
the obtained surface energy densities of selected BCC and FCC materials to those calculated via molecular
dynamics.
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from its known large-scale values as one or more sample dimensions
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what that of thicker specimens. As shown by Zhou and Huang [6], such
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Studying surface energies is of scientific interest for a wide range of
physical phenomena associated with surfaces, going beyond mechanics.
Size effects have been demonstrated to affect physical properties such
as the melting point [7,8] and the onset temperature of evaporation [9]

< Corresponding author.
E-mail addresses: prgupta@am.iitd.ac.in (P. Gupta), dmk@ethz.ch (D.M. Kochmann).
URL: http://mm.ethz.ch (D.M. Kochmann).

for nanoparticles. Surface energy also plays an important role in the
phase transformation of gold nanowires [10]. Moreover, the strong
growth of nanotechnology and the use of nanoelectromechanical sys-
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elastic parameters also governs the stability of surfaces [11], surface
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for use in continuum-level modeling for larger-scale applications.

In a continuum setting, the effect of surface energies can be captured
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layer covering the bulk material [14], which is endowed with surface
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Fig. 1. Schematic diagrams of the surface supercells along various crystal planes in Al alloys: (a) (100) surface supercell, (b) (110) surface supercell, (c) (111) surface
supercell, (d) (112) surface supercell.

Table 1
Comparisons of the surface energy (J/m2) of Al metal with the other calculations and experimental data at 0 K.

Crystal planes This work Other calculations Experiments

(100) 0.915 0.869 [40], 0.900 [41], 0.920 [4], 0.940 [42],
1.081 [43], 1.347 [5], 1.220 [51], 1.680 [6],

0.832 [44], 0.860 [45], 0.863 [46], 0.890 [47],
1.209 [18], 0.910 [48]

(110) 1.031 1.006 [40], 0.972 [41], 1.020 [4], 1.000 [42],
1.090 [49], 1.271 [5], 1.300 [51], 1.840 [6],

0.954 [44], 0.930 [45], 0.942 [46], 0.960 [47],
1.286 [18], 1.060 [48]

(111) 0.816 0.831 [40], 0.620 [41], 0.890 [4], 0.820 [42],
1.270 [2], 1.199 [5], 0.830 [50], 1.100 [51],
1.450 [6], 0.880 [3], 0.780 [44], 0.670 [45],
0.856 [46], 0.780 [47], 0.856 [18], 0.830 [48]

1.140 [7]

(112) 0.981 0.853 [41], 1.165 [18]

Fig. 2. The dependencies of the surface energy γsurf(T) on the finite temperature
with respect to various crystal planes. The discrete points indicate the com-
puted values, and the dotted lines denote the fitted curves of surface energy.

Fig. 3. The dependencies of the interaction energy Eint‐Li‐L1(T) on the finite
temperature with respect to Li solute atom doped in the L1 layer of various
surfaces.
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Surface expansion during MC simulation.



summary
1. Lattice defects free energy 

1. Vacancy, Surface 
2. Einstein(Harmonic) + Frenkel-Ladd(Anharmonic) 
3. Boundary (Harm. + small Anharm.) 
4. Vacancy (Harm.: ?) 
5. Perfect (Moment method) 

1. Volume, but … 
6. Surface  

1. Harm.:X, Anharm.:? 


