

Tilt boundary (Einstein)

AI <100> tilt boundary energy

Boundary energy [mJ/m^2]

temperature dependency of BE

Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.journals.elsevier.com/scripta-materialia

Anharmonicity in grain boundary energy for Al: Thermodynamic integration with artificial-neural-network potential

M. Matsuura^a, T. Yokoi^{a,*}, Y. Ogura^a, K. Matsunaga^{a,b}

Using ANN potential and Thermod.ynamical Integration from QHA, with Langevin thermostat

Mono vacancy (Anhramonicity?)

Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies: The Importance of Local Anharmonicity Revealed by *Ab initio* Thermodynamics

A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer

UP-TILD(upsampled thermodynamic integration using Langevin dynamics)

FIG. 3 (color online). (a) Harmonic (black) and anharmonic (orange) distribution $\rho_{V,T}(x, y)$ according to Eq. (5) for Cu at $T^{\text{melt}} = 1360$ K. The vacancy center is placed at (0, 0), and the

Phonon calculations for obtaining the quasiharmonic free energy F^{qh} were done in 2^3 and 3^3 supercells, and nine volume points were found for both elements to ensure converged vibrational free-energy contributions. We also carefully

The anharmonic free energy F^{ah} was investigated in a 2^3 (32 atoms) and a 3^3 (108 atoms) supercell and treated with the UP-TILD method [22]. The corresponding moleculardynamics simulations used a time step of 10 fs and a friction parameter of 0.01 for Al and 0.03 for Cu for the

Perfect lattice (Moment + Frenkel-Ladd(MC))

SMM (Statistical Moment Method) WC

N. Tan, V. V. Hung, "Investigation of the Thermodynamic Properties of Anharmonic Crystals by the Momentum Method", Phys. Stat. Sol. (B), vol. 149, pp.511–519, 1988.

$$\begin{split} F_{\text{anharm}} &\approx E_0 + F_{\text{harm}} & \theta = k_{\text{B}}T, x = \frac{\hbar\omega}{2\theta} \\ &+ 3 \left\{ \frac{\theta^2}{k^2} \left[\gamma_2 x^2 \coth^2 x - \frac{2\gamma_1}{3} \left(1 + \frac{x \coth x}{2} \right) \right] & F_{\text{harm}} = \theta[x + \log(1 - e^{-2x})], \\ &+ \frac{2\theta^3}{k^4} \left[\frac{4}{3} \gamma_2^2 x \coth x \left(1 + \frac{x \coth x}{2} \right) & k = \frac{1}{2} \sum_j \left(\frac{\partial^2 \varphi_{j0}}{\partial u_j^2} \right) = m\omega^2 \\ &- 2(\gamma_1^2 + 2\gamma_1\gamma_2) \left(1 + \frac{x \coth x}{2} \right) (1 + x \coth x) \right] \right\}, & \gamma_1 = \frac{1}{48} \sum_j \frac{\partial^4 \varphi_{j0}}{\partial u_{j\beta}^4}, \gamma_2 = \frac{6}{48} \sum_j \frac{\partial^4 \varphi_{j0}}{\partial u_{j\alpha}^2 \partial u_{j\beta}^2} \\ & E_{\text{higher}}(l') = E_0(l') + \sum_{[k,l,m]} k_{klm}(l') \delta x^k \times \delta y^l \times \delta z^m \end{split}$$

TABLE I.	Higher order	coefficients of the	e energy potential.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	indexes	analytical	numerical	numerical	harmonic	VASP(2x2x2)	VASP(2x2x2)	VASP(3x3x3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			p4 dev.= 0.04	p4 dev.= 0.10		dev.=0.04	dev.=0.10	dev.=0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 [0 0 0]	-2.47840	-2.47840	-2.47840	-3.72303	-3.69879	-3.723027	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 \ [2 \ 0 \ 0]$	6.60522	6.60496	6.60288	6.66320	3.30538	3.37042	4.26487
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2 \ [0 \ 2 \ 0]$	6.60522	6.60496	6.60288	6.66320	3.33010	3.35011	4.27330
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3 [0 \ 0 \ 2]$	6.60522	6.60496	6.60288	6.66320	3.39418	3.35422	4.28811
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 [0 \ 1 \ 1]$		1.720e-12	2.842e-13		0.02135	0.01158	-0.00212
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5 [1 \ 1 \ 0]$		1.600e-11	-1.125e-12		-0.02505	-0.01058	0.00217
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$6 [1 \ 0 \ 1]$		1.720e-12	8.527e-13		0.03010	0.01165	-0.00154
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 [3 0 0]		-2.852e-09	-1.218e-10		-0.05000	0.00020	0.00054
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 [0 3 0]		-1.158e-09	-5.801e-11		-0.25417	-0.00222	0.00374
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$9 [0 \ 0 \ 3]$		-2.147e-09	2.404 e- 11		0.25833	-0.00588	0.02284
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$10 [1 \ 1 \ 1]$		-2.224e-26	-8.807e-12		-0.04375	0.00024	0.00056
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$11 \begin{bmatrix} 2 & 2 & 0 \end{bmatrix}$	29.14519	29.23755	29.34441		53.12500	9.96245	10.62694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$12 \ [2 \ 0 \ 2]$	29.14519	29.23755	29.34441		46.30102	9.91347	10.73143
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$13 \begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$	29.14519	29.23755	29.34441		40.24235	10.46694	10.46041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$14 \ [4 \ 0 \ 0]$	6.35142	6.51689	6.84933		-3.54167	0.30400	-0.56800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$15 [0 \ 4 \ 0]$	6.35142	6.51690	6.84933		-14.47916	2.01067	-1.22133
standard dev. 0.00000 0.000014 0.000025 0.000047 0.000031	$16\ [0\ 0\ 4]$	6.35142	6.51689	6.84933		-47.29167	1.58400	-2.62133
	standard dev.		0.000000	0.000014		0.000025	0.000047	0.000031

Free energy- volume curves

▲ ■ ● ♦ 🖾 🖓 🗉 🖬 🖓 🚸 📟 🚍 🚛

Volume

higher_moment/new_moment_al/einstein/analysis/harm.rb

LJ-Frenkel ./frenkel/p3_lj/figs

skip=1

nergy[eV]

-15

sum 067

total energy dud

inace 2

trace 3.

total energy

trace 6 - trace 7 total energy

total energy

- dudi

 dudi trace 10 trace 11

dud

Monte Carlo simulation

skip=1000

504

r_seed_average:lambda dep of MC,r_seed: 0, sum_period = 0.67 .. -1

r_seed_average:lambda dep of MC,r_seed: 0, sum_period = 0.67 .. -1

1506

iteration

2006

250k

1004

Frenkel integrated anharmonic free energy

Free energy- volume curves

higher_moment/new_moment_al/frenkel/calc_all_frenkel.rb

Surface (MC simulations)

Layer dependency of spring constants

<110>

<111>

Slab model

Surface expansion during MC simulation.

修士論文

Al表面の有限温度第一原理計算

47019706 河野 大登

summary

- 1. Lattice defects free energy
 - 1. Vacancy, Surface
- 2. Einstein(Harmonic) + Frenkel-Ladd(Anharmonic)
- 3. Boundary (Harm. + small Anharm.)
- 4. Vacancy (Harm.: ?)
- 5. Perfect (Moment method)
 - 1. Volume, but ...
- 6. Surface
 - 1. Harm.:X, Anharm.:?