粒界エネルギーの大槻ジレンマ; 転位論のどこがおかしいか? Otsuki's dilemma of boundary energy; where is wrong in dislocation theory

関西学院大・工¹, 京大・エネ科 (元)², 西谷滋人¹, 大槻 徴² Kwansei Gakuin Univ., Eng.¹, Kyoto Univ., Energy Sci.², S. R. Nishitani¹, A. Otsuki²

概要

小傾角の粒界エネルギーは Read-Shockley の転位モデルによって解釈できるとさ れてきた.しかし、大槻の実験結果はこのモデルを否定するものであった.西谷はこ の実験と理論の齟齬を有限温度第一原理計算によって解決した.転位モデルのどこに 問題があったのかを計算によって得られた知見から議論する.

1 小傾角粒界の転位論モデル

小傾角粒界の転位モデルは Read and Shockley によって転位論の初期の段階で提案された [1, 2]. 彼らのモデルでは、粒界を転位が等間隔で整列した状態とみなす. そのエネルギーは弾性論から模式図1のようなエネルギー依存性で考えられる [3]. 転位のエネルギーを転位芯 ($E_{\rm II}$) と周りの弾性場 ($E_{\rm II}$) およびその他の領域 ($E_{\rm III}$) に分け、このうち弾性場のエネルギーが支配的とみなす. 力学定数 $\tau = \tau_0 \mathbf{b}/R$ とすると、転位周辺の帯状のエネル ギー E_{\perp} を微分方程式

$$dE_{\perp} = \frac{1}{2}\tau \mathbf{b}dR = \frac{\mathbf{b}^2 \tau_0}{2} \frac{dR}{R}$$

図 1: Read and Shockley のモデル.

図 2: Al, Cu の実験および計算 $E/\theta - \log \theta$ プロット [7, 8, 9].

とみなして転位芯 r_0 から隣の転位との境界 D/2 まで積分を取り、そこに蓄積される弾性 場のエネルギーを求める.これはバーガースベクトル (b) の 2 乗に比例する.粒界の傾角 $\theta = \mathbf{b}/D$ より、粒界エネルギー $E_{\rm b}$ は

$$E_{\mathbf{b}} = \frac{E_{\perp}}{D} = E_{\perp} \frac{\theta}{\mathbf{b}} = \frac{\mathbf{b}\tau_0}{2} \theta (A - \log \theta)$$

と求められる. さらに変形して

$$\frac{E_{\rm b}}{\theta} = \frac{\mathbf{b}\tau_0}{2}(A - \log\theta)$$

となり, $E_{\rm b}/\theta - \log \theta$ でプロットすると図 2 のような直線関係が得られ, 幾何学的に必要 な転位 (Geometrically Necessary Dislocation: GN 転位) のバーガースベクトル **b** の大き さによって, (100) 方位の場合, 0° 側と 90° 側でその傾きに違いが出る.

さらに,この直線の切片 A は転位芯のエネルギーとみなされ,多くの系で小さい値となる. 粒界や転位研究者の常識を記した文章として,鈴木秀次 [4] より抜粋すると,

結晶境界エネルギーの測定値が,転位模型から計算した値と,以上のようによ く一致するということは,転位論の発展の初期にすでに明らかにされたことで あり,その当時から転位論の正しいことを示すもっとも重要な証拠の一つとみ なされている [pp.350-1].

として, 粒界エネルギーの再現性が, 転位論の妥当性あるいは, 予測可能性を証明する有 力な証拠とされていた. さらに,

結晶粒界エネルギーと両側の結晶のなす角の関係から,転位の芯のエネルギー を求めることができる.転位のエネルギーの大部分は弾性的な歪みとみなされ る領域の弾性エネルギーとしてたくわえられており,転位のエネルギーは μb² に比例する [p.77].(著者注:先ほどの力学定数 τ₀ は剛性率 μ に比例するので)

図 3: Al(100) 対称傾角粒界エネルギーの測定値 (Experimental), および基底状態 (ground state), 経験ポテンシャル (EAM), 有限温度 (Einstein at 513K) の計算値.

これが,鈴木秀次らが信じていた,転位エネルギーは弾性エネルギーが支配的とする論拠 となっていた.

2 実験との比較

しかし,大槻は実験事実として転位論が予測する角度の非対称性が認められないと報告 していた [5, 6].転位論を根底から揺るがすという問題の大きさと,周囲の研究者に対す る説得力を上げるために,あるいは実験の間違いを見出すために,出来るだけ精度を高め て,再現性のある測定を試みたが,どれだけやっても粒界の転位モデルを否定する結果し か得られなかった.その結果が図 3にプロットされている膨大な測定値である.

一方,理論だけでなく,図3にある経験ポテンシャル (EAM) での計算値 [7] も,非対称な 角度依存性を示している. 粒界エネルギーの計算と実験のこのような不一致の原因として

1. 大域的な緩和が不十分

2. 計算モデルが小さい

3. 経験ポテンシャルがおかしい

4. 温度効果が入っていない

が考えられる.

そこで,西谷は経験ポテンシャルによる大規模な緩和計算や,第一原理計算を行ってき たが,その不一致の原因を特定できなかった [10, 11]. 今回は,小さなモデルで有限温度 の影響を見積もることを試みた [12]. 経験ポテンシャルの影響を除くために,第一原理計 算だけで値を求めることを方針とした.第一原理計算には VASP を用いているが,その設 定パラメータは前報に記した [11, 12].また,温度依存性は通常,フォノン法 [13, 14] を使 うが,粒界を含んだ複雑なモデルでの計算がうまくいかなかった.そこで,簡便な代替法 となる Einstein モデルでの計算プログラムを開発した.

図 4: Al(100) 対称傾角粒界の Boettger 法によるサイズ依存性.

図 5: Einstein 法と Frenkel 法の関係.

3 有限温度第一原理計算の原理と完全結晶の計算

まず,小さな計算モデルでもエネルギーを再現するかを基底状態で確かめた[11]. 図4に 示した通り,Boettger 法によるサイズ依存性は,ほとんど変化しない.そこで,これ以降 の有限温度計算は小さなモデルで行った.

有限温度計算に用いた Einstein 法と Frenkel 法を模式的に示すと図 5となる. Einstein 法は,原子の周囲からの相互作用によるエネルギー変化をあるサイトに釘付けされた調和 振動子に置き換える.ここから現実の第一原理計算で得られる (VASP) 系の振る舞いを仮 想的なエネルギー

$$E_{\text{total}} = \lambda E_{\text{VASP}} + (1 - \lambda) E_{\text{Einstein}}$$

と考えて、λを変化させながらモンテカルロシミュレーションを実行し、

$$F_{\text{total}} = F_{\text{Einstein}} + \int_0^1 \left\langle \frac{\partial E_{\text{total}}}{\partial \lambda} \right\rangle d\lambda = F_{\text{Einstein}} + \int_0^1 \left\langle E_{\text{VASP}} - E_{\text{Einstein}} \right\rangle d\lambda$$

から非調和効果を含めた自由エネルギーを熱力学的積分によって求めるのが Frenkel 法で ある.実際は後述する通り,Alの粒界エネルギーを実験的に求めた平衡温度 513K では, この影響は小さいことが判明した.

Einstein モデルによる解析的な自由エネルギー $F_i(T, a)$ は,格子定数 *a* を変えながら, サイト *i* の on-site エネルギー $E_i^0(a)$,および *j* 方向の Einstein 温度 $\Theta_{ij}(a)$ から,

$$F_i(T, a) = E_i^0(a) - k_{\rm B}T \sum_{j=x,y,z} \ln\left(\frac{\exp(-\Theta_{ij}(a)/2T)}{1 - \exp(-\Theta_{ij}(a)/T)}\right)$$

により求められる. k_B はボルツマン定数である. 完全結晶では, *ij* が等価となるので, 図 6 に示した通り格子定数を変えてある原子を x 方向に微少量偏位させ, フィッティングに

図 6: 完全結晶でのフィッティングから自由エネルギー計算の模式図.

図 7: 完全結晶での Einstein 法による熱物性の再現性.

よってバネ定数 k_{ii}(a) を求め,

$$\Theta_{ij}(a) = \frac{h\nu_{ij}(a)}{k_{\rm B}}, \ \nu_{ij}(a) = \frac{1}{2\pi} \sqrt{\frac{k_{ij}(a)}{m}}$$

として Einstein 温度,および振動数 $\nu_{ij}(a)$ が求められる.ここで,m は原子の質量,h は プランク定数である.さらに自由エネルギー $F_i(T,a)$ を温度 T と格子定数 a 上の曲面で プロットすると図 (b) の真ん中のようになり,この温度曲線上の格子定数微分から熱膨張 が求められる.

図 7は,108 原子に対して計算した Einstein モデルによる熱膨張,自由エネルギー,定 圧比熱について,高精度のフォノン計算法 Phonopy[14,15] および実験結果との比較を示 している.定圧比熱は自由エネルギーの計算値からフィッティングにより求めている.熱 膨張の結果は,第一原理計算に使う電子相関 (GGA)の影響で実験より 1%程度大きく出 る.温度依存性は Phonopy と同程度の再現性である.自由エネルギーは,Phonopy が実 験とほぼ一致しているのに対して,Einstein 法ではずれが確認できる.しかし,298K か

図 8: 傾角粒界での振動幅とバネ定数フィッティング.

らの差として比べた場合,500K ではその差は微小である.また,比熱は低温でのよく知られた Einstein の不一致が確認できるが,高温の非調和効果による差の方が大きいことがわかる.

このとおり, Einstein モデルによる自由エネルギーの再現性は, 500K 程度の温度域に おいては, フォノンの結果に比べて大きく劣っているわけではないことが確認できる.

4 粒界エネルギーの温度依存性

格子欠陥を含んだ系では全てのサイトについて*x*,*y*,*z*方向に微小偏位させてバネ定数を 求める必要がある.図8の左パネルは Σ5 (100) 対称傾角粒界の 40 原子モデルを示してい る.矢印で示したサイトが粒界の整合性から必要となる GN 転位の転位芯を示している. このサイトの微小偏位に伴うエネルギー変化を右パネルに示した.格子定数が小さい時に はあまり目立たないが、4 %膨張させた時の*x*方向の偏位では、放物線から大きくずれた 二重井戸型のポテンシャルとなっているのが確認できる.左のそれぞれサイトの楕円は、 513K の熱エネルギー 0.0442eV までのこれらのポテンシャルに対する振動領域を表してい る.転位芯では1Å程度の揺らぎが認められるが、それ以外では顕著な差は見らない.

こうして得られた粒界,完全結晶の各自由エネルギーを用いて,原子数(n)を合わせて

$$\Delta F = F_{\text{boundary}}(n) - nF_{\text{perfect}}$$

から,粒界エネルギーの温度依存性が図 9のように求められる.実験結果の温度依存性と よく一致している.0° 側 (0_5_40) と 90° 側 (90_5_56) モデルでその温度依存性に差が 見られることが確認できる.これは,0° 側が前掲図 8の GN 転位の転位芯に大きな空隙が あり振動エントロピーが大きく,高温になるにつれて安定性が増すのが寄与している.一 方,90° 側の GN 転位は空隙がなく,温度依存性が小さい.

この様子は Einstein 温度の分布からも確認できる.図 10は粒界のサイト・方向での Einstein 温度 (つまりバネ定数)の分布を示している.粒界サイトのバネ定数は,完全結晶 の値の上下にほぼ均等に分布しているが,0_5_40モデルでは低振動数に多くのサイトが 分布しており,これが自由エネルギーの低下を顕著にしている.

図 9: Al(100) 対称傾角粒界エネルギーの温度依存性.

図 10: 粒界サイトのバネ定数分布.

こうして得られた粒界エネルギーの角度依存性は,図3にEinstein(513K)と示した結果 で,大槻の実験において適用した平衡温度(513K)での測定値を誤差範囲で再現し,傾角 に対して対称な依存性となることが確かめられた.また,+Frenkelで示した非調和の影 響が小さいことが確認できる.

次に,傾角だけではなく,Alのねじり粒界での計算を行なった.図11のようなモデル を作成し,Einstein 法により自由エネルギーを計算した.

図 12は温度依存性を実験結果とともに示している.同時に示した傾角の結果に比べて 温度依存性が小さいことが確認できる.これは、粒界近傍サイトの空隙が小さいため、振 動エントロピーを得ることができず、完全結晶とそれほど変わらないことが原因と考えら れる.角度依存性を実験結果とともに示した図 13も、計算値が実験の測定誤差範囲内に収 まっていることが確認できる.

図 11: fcc (100) ねじり粒界モデル (longer).

図 12: Al(100) 対称ねじり、傾角粒界モデルとねじり粒界の実験結果の温度依存性.

図 13: ねじり粒界角度依存性の実験と計算結果の比較.

5 転位論の修正箇所

粒界エネルギーの有限温度第一原理計算の結果が正しいとして,転位論のどこに問題が あるのだろうか.得られた計算結果から,

- 絶対零度の角度依存性でもバーガースベクトルの差 (1.4) はない
- 小さいモデルでエネルギーが再現できる

ということを論拠として、「転位芯エネルギーが支配的」と考えるのが妥当であろう. これ はマイクロメカニクスにおける Eigen 歪, つまり「欠陥により生成したエネルギーの緩和 した名残」が周囲の弾性場と考える描像が妥当である.

ただ、粒界では、

• 遮蔽効果によって短距離に歪み場の影響が閉じ込められている

という特殊事情がある.従って,(完全)結晶内の孤立転位においては,弾性場が支配的という転位論の描像を完全に否定することはできない.いずれにしろ,転位エネルギーの出所は転位芯と考えることが妥当である.

6 謝辞

本研究は JSPS 科研費基盤研究 (C) JP20K05067「格子欠陥自由エネルギーの精密計算 法の開発」により実施したものです.

参考文献

- W. Shockley and W.T. Read, Quantitative predictions from dislocation models of crystal grain boundaries, Phys. Rev. 75 (1949), p. 692.
- [2] W.T. Read and W. Shockley, Dislocation models of grain boundaries, in Imperfections in Nearly Perfect Crystals, W. Shockley, ed., chap. 13, John Wiley, 1952, pp. 352–376.
- [3] W.T. Read, Jr., Dislocations in crystals, chap. 11, McGraw-Hill, 1953, pp. 155–172.
- [4] 「転位論入門」鈴木秀次, (1967 アグネ).
- [5] A. Otsuki, Dissertation: Research on boundary energy of Al, Kyoto Univ., 1990, in Japanese.
- [6] A. Otsuki, Energies of [001] small angle grain boundaries in aluminum, J. of Mater. Sci. 40 (2005), pp. 3219–23.
- [7] M.A. Tschopp and D.L. McDowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium, Phil. Mag. 87 (2007), pp. 3871–92.

- [8] G.C. Hasson and C. Goux, Interfacial energies of tilt boundaries in aluminium, experimental and theoretical determination, Scripta Met. 5 (1971), pp. 889–94.
- [9] N.A. Gjostein and F.N. Rhines, Absolute interfacial energies of [001] tilt and twist grain boundaries in copper, Acta Met. 7 (1959), pp. 319–30.
- [10] S.R. Nishitani, Energy of Small Angle Tilt Boundary in Al, in 10th International Conference on Processing and Manufacturing of Advanced Materials Processing, Fabrication, Properties, Applications (THERMEC), Materials Science Forum Vol. 941, Paris, France. 2018, pp. 2296–2299.
- [11] "第一原理計算の注意点 アルミニウム粒界のエネルギー収束性を例に", 西谷滋人, 大澤一人, 山本洋佑, 軽金属, 特集「軽金属に関わる数値シミュレーションの進歩」, 軽金属, 第 69 巻 10 号 (2019), pp.518-524.
- [12] S. R. Nishitani, Finite-temperature first-principles calculations of Al (100) symmetric tilt grain-boundary energy, Phil. Mag. 101(2021), 622, https://doi.org/10.1080/14786435.2020.1855371.
- [13] K. Parlinski, Z. Q. Li, and Y. Kawazoe, Ab initio calculations of phonons in LiNbO₃, Phys. Rev. B 61(2000), 272.
- [14] A. Togo, L. Chaput, I. Tanaka, and G. Hug, First-principles phonon calculations of thermal expansion in Ti₃SiC₂, Ti₃AlC₂, and Ti₃GeC₂, Phys. Rev. B 81(2010), 174301.
- [15] A. Togo, and I. Tanaka, First principles phonon calculations in materials science, Scripta Mater. 108 (2015), 1–5.