Formation of BCC-Cu₃Si in CZ-Si

<u>¹Y. Ohno</u>, ¹T. Ohsawa, ¹K. Inoue, ¹K. Kutsukake, ¹Y. Tokumoto, ¹I. Yonenaga, ²H. Yoshida,

²S. Takeda, ³R. Taniguchi, and ³S. R. Nishitani

¹Institute for Materials Research, Tohoku University

²The Institute of Scientific and Industrial Research, Osaka University

³School of Science and Technology, Kwansei Gakuin University

With increasing use of metal Cu in Si device processes, control of the Cu impurity becomes of emergent importance, because it is a fast diffusive species among various impurities and causes degradation of devices. Cu can precipitate and act in silicide particles with a large structural variety, which is dependent on annealing temperature, quenching rate, doping, and presence of other extended defects. This paper reports the formation of novel copper silicides with a body-centered cubic (BCC) structure, which is not the thermal equilibrium η structure observed previously in Cu-doped Si [1], in Czochralski (CZ) grown Si crystals heavily doped with p-type dopant atoms.

When Cu atoms were doped, planar defects about 5 nm in thickness, laid on nearly $\{112\}$, were formed in CZ-Si doped with p-type dopant atoms (B or Ga atoms with the concentration up to 10^{20} cm⁻³), irrespective of dislocations. The planar size increased with increasing the concentration of p-type dopant atoms (up to a few tenth µm). The defects were not formed in heavily B-doped Si grown by the floating-zone (FZ) method and in CZ-Si doped with n-type dopant atoms (P, As, Sb). These results indicate that the defects were formed in Si including oxygen and p-type dopant atoms.

The defects were agglomerates of Cu_3Si nanocrystals with a BCC structure (a=0.285 nm), revealed by high resolution transmission electron microscopy combined with energy dispersive x-ray spectroscopy. The interface between a nanocrystal and the host Si crystal was of a sigma-3 type. It is theoretically suggested that a Cu_4 cluster, one substitutional Cu atom associated with three neighboring interstitial Cu atoms, is formed in Si [2], and the nucleus of the BCC-Cu₃Si nanocrystals may be the agglomerate of four Cu_4 clusters. Actually, we have shown that Cu atoms tend to form the BCC-Cu₃Si structure in Si rather than to dissolve in Si, by ab-initio calculations.

[1] M. Seibt, M. Griess, A. A. Istratov., H. Hedemann, A. Sattler, and W. Schroter, phys. stat. sol. (a) **166** (1998) 171.

[2] K Shirai, H Yamaguchi, A Yanase and H Katayama-Yoshida, J. Phys.: Condens. Matter 21 (2009) 064249.