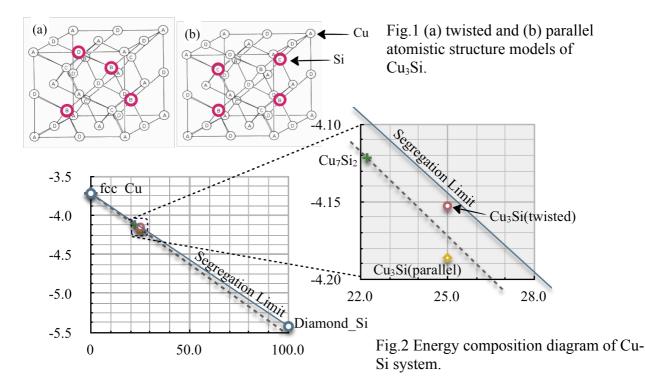
Oral [] / **Poster** [\circ]

First principles calculations of the copper silicide precipitates

<u>R. Taniguchi¹</u>, S. R. Nishitani¹, Y. Ohno², and I. Yonenaga²

¹ Department of Informatics, Kwansei Gakuin University, Gakuen 2-1, Sanda, 669-1337, Japan.


² Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-85777, Japan.

Very recently, the authors have reported the experimental observation of the precipitates of Cu_3Si in a heavily copper doped Si. In this research, the energetic assessment of this precipitation behavior has been investigated by the first principles calculations.

Figure 1 shows two atomistic structure models of Cu_3Si based on the Zintl phases [1]; one is the $D0_3$ type structure called 'twisted', and the other is arranged on the position of Si sites called 'parallel'. The reported stable intermetallic structure of Cu_7Si_2 is also calculated. The energy calculations with the outer and inner relaxes of atomistic structures are performed by the VASP(Vienna Ab-initio Simulation Package) code.

Figure 2 shows that two Cu_3Si phases are both more stable than the segregation limit of pure Cu and Si. Although the experimentally observed precipitates show the very close structure with the Cu_3Si twisted model, the parallel Cu_3Si is more stable than the twisted one. The outer shape of the parallel model, however, is very irregular, and its c-axis is 41.2% larger than the a-axis. Both models of Cu_3Si show no band gap, which indicates that the phases are conductor.

The other phase of Cu_7Si_2 is also more stable than the segregation limit. The tie line between pure Cu and Cu_7Si_2 drawn by the dashed line indicates that the twisted model of Cu_3Si is metastable to $Cu + Cu_7Si_2$, and the parallel model of Cu_3Si is most stable. Because the twisted Cu_3Si shows cubic shape and the good lattice coherency with Si, it would appear as the structure of the precipitates. [1] N. E. Christensen, Phys. Rev. B, 32 No.1, (1985), pp.209-228.

