First principles calculations of stacking fault energy of P doped Si crystal

<u>S.R.Nishitani¹</u>, K. Togase¹, Y. Ohno², Y. Tokumoto², and I. Yonenaga²

 ¹ Department of Information, Kwansei Gakuin University, Gakuen 2-1, Sanda, 669-1337 Japan.
² Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577 Japan.

Obrigado, moderador.

Boa tarde, senhores e senhoras,

Sou Prof. Shigeto Robert Nishitani do Universidade Kwansei Gakuin, que localiza no oeste do Japão.

O Brasil me lembrar o famoso ganhador(winner) do Prêmio Nobel Richard Feynman, seu livro popular "O senhor está brincando, Sr. Feynman!" Isso é minha origim de fazer alguma coisa em abordagem teórica para a ciência de materiais.

Depois de vinte anos, estou ainda batalhando com física difícil,

mas graça do Calphad Meeting e seu organizador principal, professor Andre Costa de Silva,

estou um poquinho(little) familiar com o português,

For Fe

Ishida & Nishizawa, Nippon Kinzoku Gakkaishi, 36(1972), 1238

Fig.5 γ/ϵ stabilizing parameter of alloying elements at 500°K

Results I

dopant	structure energy difference	∆E [eV]
non-doped	E2H-si - E3C-si	0.1331
Ρ	E2H-SI(P) - E3C-SI(P)	0.0632
B	E2H-SI(B) - E3C-SI(B)	0.0871

11年9月16日金曜日

11年9月16日金曜日

Results II

- Consistency
 - P: S.F.Energy decrease
 - B: No change

P-doped Si

