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Abstract

Bcc-hcp transition of Ti was investigated by the first principles calculations. Very
accurate calculations using the gradient-corrected FP-LMTO correctly estimated
the hcp structure slightly lower in energy than the ω structure. The adiabatic po-
tential energy surfaces of the distortions related to the structural transformations
showed similar with those of Zr. The curvatures of the potential surfaces at the equi-
librium bcc point are very small and negative, which suggests that Ti has strong
anisotropic characters of bondings. The electronic thermal contribution stabilizes
the bcc structure over the hcp structure above 3000K.
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1 Introduction

Bcc-hcp transition is one of the most frequently observed structural changes in
martensitic transformation. It occurs not only in shape memory alloys but also
in pure elements such as Ti and Zr. Experimentally, Petry and co-workers [1–3]
studied the origin of the stability of the bcc structure in Ti, Zr and Hf metals by
measurements of phonons at high temperatures, and they concluded that the
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increased entropy due to the low lying T1[ξξ2ξ] and T1[ξξ0] phonon branches
plays a main role.

There are a number of researches on the electronic structure of Zr by the first
principles calculations [4], lattice dynamics using empirical many body po-
tentials [5–8], and realistic microstructural evaluations by molecular dynamic
simulations [9]. All the calculations qualitatively show a consistent view on the
relations of vibrational and electronic contributions, and are also consistent
with the experimental data [2].

In contrast with the case of Zr, the first principles calculations on Ti are
ambiguous. The main difficulty in the energy calculations for Ti comes from
their accuracy, where the ω phase is incorrectly estimated to be more stable
than the hcp structure [10,11].

Very recently, accurate calculations on Ti were performed by the authors [12]
using full-potential linear muffin-tin orbitals (FP-LMTO) [13,14]. In this pa-
per, we first summarize the current theoretical understanding on the bcc-hcp
transition of Zr and Ti. Then we will show our results of first principles calcu-
lations on Ti. We will clarify the bonding characters of bcc Ti at the ground
state and the electronic contributions to the stability of the bcc structure at
high temperatures.

2 Phonon effects on bcc stability

In 1947 Zener [15] proposed a soft-mode model for the bcc-hcp transition,
where the shear modulus C ′ = 1

2
(C11 − C12) of the bcc structure approaches

zero at the transition temperature. A similar model by Friedel concentrates on
a particular short-wavelength phonon becoming unstable [16]. About a decade
ago, Petry and co-workers [1–3] measured phonons in group-IV transition met-
als at the high temperatures where the bcc phase is stable. They concluded
that the origin of the stability of the bcc phases comes mainly from the in-
creased entropy due to the low lying T1[ξξ2ξ] and T1[ξξ0] phonon branches,
as reproduced in Fig. 1 for bcc Ti.

The crystallographic relation in the bcc-to-hcp martensitic transformation was
established in 1934 by Burgers [17]:

(110)bcc//(0001)hcp and [1̄11]bcc//[2̄110]hcp. (1)

The transition can be achieved by the superposition of two phonons: i) the
zone boundary [110]T1 phonon (we call it T1N phonon hereafter), and ii)
two equivalent long wavelength shears, for instance (11̄2)[1̄11] and (1̄12)[11̄1],
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Fig. 1. Phonon dispersions of Ti measured at 1293K by Petry et al. [1]. The fine
line shows a Born-von Kármán fit. The curves are calculated using the embedded
atom method. The frequency of the N-point phonon of the T1 branch along the
[ξξ0] direction is imaginary due to an unstable potential.

which change the orthogonal lattice with an angle of 109.47◦ to the hexagonal
lattice with 120◦. These shears are roughly those given by the initial slope of
the transverse [ξξ2ξ] phonon branch with almost [111̄] polarization. Another
martensitic transition of bcc-to-ω can be achieved by a longitudinal phonon
of [2/3 2/3 2/3] (we call it ω phonon hereafter).

These three phonons, which achieve the displacements necessary for the two
martensitic transitions, lie in the same phonon branch with [ξξ2ξ] propaga-
tion and transverse polarization as pointed out by Petry[2]. These are well
visualized in Fig. 2. Fig. 2(a) shows the transverse [ξξ2ξ] phonon branch with
[111̄] polarization. The T1N phonon mode is identical with the transverse
phonon in [ξξ2ξ] direction with a (110) polarization and ξ = 1/2 as shown
in Fig. 2(b). The ω phonon mode is identical with the displacements of the
transverse phonon in [ξξ2ξ] direction with (1̄11) polarization and ξ = 1/3 as
shown in Fig. 2(c).

These phonon-related energies and electronic structures of Zr have been in-
vestigated in detail by Ho and co-workers using the first-principles frozen-
phonon calculations [4,18,19]. They have shown that the adiabatic potential
for the T1N phonon is unstable with a double-well shape [4], different from
the metastable potential for the ω phonon [19]. This gave an impact on the
following researches of phenomenological theories or atomistic simulations and
brought a notice on the stability of the bcc structure emphasizing the role of
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Fig. 2. Displacements of atoms in (110) planes due to (a) the shear of the transverse
[ξξ2ξ] phonon branch with [111̄] polarization, (b) T1N phonon, and (c) ω phonon.
Closed circles: atoms in the (110) plane, open circles: atoms in the (110) planes
below and above.
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Table 1
Experimental or calculated electronic and vibrational entropies of bcc-hcp transition
of Zr and Ti in unit of kB. The electronic contributions given in parentheses are
derived from the other experimental values.

Zr ∆Svib ∆Sband ∆Stot

exp. 0.26 [3] (0.17) 0.40 [20]

calc. 0.126 [7] 0.4 [21]

0.143 [5] 0.17 [22]

Ti ∆Svib ∆Sband ∆Stot

exp. 0.29 [1] (0.13) 0.42 [20]

calc. 0.27 [22]

the anharmonic effect of the T1N phonon as shown in Fig.1. In order to obtain
the phonon dispersion curves in such unstable potentials, renormalization of
the potential or finite-temperature atomistic simulations is necessary.

Willaime and Massobrio [5] derived a simple embedded atom potential for Zr
which shows unstable T1N phonon at the ground state. This anharmonic po-
tential, however, shows a finite frequency at higher temperatures by molecular
dynamic simulations. Using the same potential, Salomons [7] calculated the
absolute free energies of the hcp and bcc phases as a function of temperature
using Monte Carlo simulations with the Einstein-crystal method. The exper-
imental and calculated values of the electronic and vibrational entropies are
summarized in Table 1. There is quantitative inconsistency: the vibrational
entropies calculated using interatomic potentials show the half of the exper-
imental values. Aside from the inconsistency, the anharmonicity of the T1N
phonon is conceived to play a main role in bcc-hcp transition.

In contrast with the case of Zr, the first principles calculations on Ti are in-
accurate, where the ω phase is incorrectly estimated to be more stable than
the hcp structure [10,11]. Aside from the accuracy of the ground state calcula-
tions, the rough estimations of thermal contributions of electrons and phonons
on the bcc-hcp transition have been discussed [22–24]. Atomistic simulation
on Ti-V alloys has been made by Crujicic and Dang [25]. Although these re-
searches have shown similar features on bcc-hcp transitions of Ti to those of
Zr, it is necessary to investigate the ground state and the thermal effects on
electronic structure using accurate first principles calculations.

5



3 Computational method

Calculations of the electronic structure have been performed using the full-
potential linear muffin-tin orbital (FP-LMTO) method [13,14]. The core en-
ergy shifts and Perdew and Wang (PW91) type generalized-gradient approxi-
mation (GGA) [26] are included. 3s and 3p electrons are treated as “semicore”
states so that they are allowed to form narrow bands. Three Hankel tail func-
tions are used. Their decay parameters are chosen−κ2 = −0.01Ry (for s, p and
d), −1.0Ry (for s, p and d) and −2.0Ry (for s and p). In the calculations, par-
ticular care had to be taken for the total energy convergence because of small
energy differences between the ω and hcp structures. Very stable convergence
was achieved by evaluating the total energy using the Harris-Foulkes [27,28] en-
ergy functional of the output and input densities at each iteration. In this con-
nection, we refer the reader to the observation [29,30] that the Harris-Foulkes
functional tends to give better energy than that the usual Hohenberg-Kohn-
Sham functional would give for an approximate (and nearly self-consistent)
“input” density. This property of Harris-Foulkes functional should also be use-
ful in the case where we have undesired small numerical errors in the density.
For the calculations at finite electronic temperatures, we replace the band en-
ergy part Eband(T = 0) in the self-consistent total energy at the ground state
with the band free energy Fband(T ) = Eband(T )− TSband, namely

Eband(T ) =
∫

εn(ε)f (x)dε (2)

and

Sband(T ) = kB

∫
n(ε)σ(x)dε, (3)

where f(x) = (1+ex)−1 is the Fermi function, σ(x) = −f ln f−(1−f) ln(1−f)
is the entropy function and x = (ε − µ)/(kBT ) with chemical potential µ.
Note that n(ε) is the density of states at the ground state. Therefore, the
free energy at finite temperatures is no longer self-consistent (in the sense of
the Kohn-Sham theory at finite temperatures) since the redistribution of the
charge density due to the inclusion of thermally excited electronic states is
neglected. However, this treatment can be justified to first order because the
energy change due to the charge redistribution should be a second order effect.

To describe the bcc to hcp transition, we consider Burgers’ distortions. By the
following distortions, we obtain the c/a ratio of 1.565[31], which is close to
the experimental value of 1.586 for Ti. Keeping the atomic volume constant,
the simplest path of transition from a bcc lattice into the hcp structure is
through the base-centered orthorhombic structure (oS4 in Pearson’s symbol;
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Fig. 3. Transition modes of λ1 and λ2 distortions.

space group Cmcm). This includes two independent processes, i.e., a shear de-
formation from bcc(110) plane to the hexagonal basal plane and an alternate
shuffle along [11̄0] of the planes (T1N mode in bcc). Intermediate oS4 struc-
tures may be mapped on a two-dimensional parameters space, say (λ1, λ2),
where λ1 represents the shear deformation and λ2 represents the shuffle dis-
placement. This is illustrated in Fig. 3. The λ1 shear is roughly given by the
initial slope of the transverse [ξξ2ξ] phonon branch with [111̄] polarization as
shown in Fig. 2(a). The λ2 shuffling is identical with that shown in Fig. 2(b).
The bcc and hcp structures are denoted by (0,0) and (1,1) respectively. Tak-
ing the bcc lattice constant a, the orthorhombic lattice parameters are then
written as a0(λ1) = a/α(λ1), b0(λ1) = α(λ1)

√
2a, and c0 =

√
2a with

α(λ1) = 1 +
{
(3/2)(1/4) − 1

}
λ1. (4)

The primitive cell has one of the atoms at

�τ(λ1, λ2) =

[
0,
3 + λ2

12
b0(λ1),

1

4
c0

]
(5)

which derives other atoms by the crystal symmetry.
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Fig. 4. Electronic density of states at the ground state for the bcc, hcp and ω
structures of Ti.

To describe the bcc to ω transition, we consider the displacements shown
in Fig. 2(c). The linear parameter λ3 is taken to be 0 and 1 for bcc and ω
structures respectively.

4 Results on the ground state

Since our discussions below rely mainly on the shape of the density of states
(DOS) curves, we display our calculated DOS for bcc, hcp and ω structures
in Fig. 4. The DOS of bcc is much different from that of hcp. The Fermi level
cuts the DOS in the middle of the T2g peak in the bcc structure, whereas it
lies in a dip of the DOS for the hcp structure. Those two DOSs are almost
identical with those obtained by the previous research [22]. The ω phase shows
spiky DOS because of the presence of two sites but the outline is very similar
to that of the hcp structure.

The volume dependence of the ground-state energy for hcp, bcc and ω struc-
tures of Ti is shown in Fig. 5. The abscissa is the normalized atomic volume
Ω/Ω0, where Ω0 = 119.1 au3 is the experimental equilibrium atomic volume of
hcp Ti. The c/a ratios of hcp and ω structures are fixed to be the experimen-

tal value of 1.586 and an ideal value of 1/
√
8/3, respectively. A subtle relative
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Fig. 5. Volume dependence of the energy at the ground state of Ti for bcc, hcp and
ω structures.

stability between the hcp and ω structures is demonstrated in the lower panel
of Fig. 5 in an enlarged scale. The calculated values of the equilibrium vol-
ume, total energy and bulk modulus are shown in Table 2. Different from
the other first principles calculations, hcp structure is correctly estimated to
be the most stable structure. From the common tangent for the hcp and ω
curves, the transition pressure between them is predicted to be 0.4 GPa, which
is comparable to the experimental value of 2 GPa. Those consistent results
guarantee that the ground-state calculation for Ti is very accurate.
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Table 2
Equilibrium volume, total energy and bulk modulus of bcc, hcp and ω structures.

structure Ω/Ω0 Etotal[eV/atom] B[GPa]

bcc 0.979 -6.4931 107

hcp 0.990 -6.5863 112

ω 0.977 -6.5857 112

Figure 6 shows adiabatic potential-surface for Burgers’ path at a fixed atomic
volume Ω0. The bcc structure is located at an unstable saddle point with a
strongly negative curvature along the λ2 displacement. Against the λ1 shear,
the bcc structure is barely stable; the curvature at the minimum is very small.
We find that the potential is a double-well against λ2 for any value of λ1.
For example, at λ1 = 0 two minima occur at ±0.2506 Å with a barrier of
59 meV. This situation is similar to the case of Zr, but the positions of the
minima are twice as far and the barrier height is three times larger than
those in Zr [4]. Such wider and deeper shape against λ2 and shallow curve
against λ1 distortions leads to an expectation of larger displacements in Ti
than those in Zr. The mean-square displacement estimated from the harmonic
approximation with the phonon DOS, however, shows an opposite trend: 0.053
10−2nm2 for bcc-Ti at 1293K, and 0.06 10−2nm2 for bcc-Zr at 1188K. We have
no guarantee on the application of the harmonic approximation in such an
anharmonic system.

The first principles calculations by Ho et al. [18] show that in bcc-Zr the
valence charge is highly localized along [111] chains under λ3 distortions, which
form linear chains along [111] with very weak interaction between neighboring
chains. They pointed out that the ω phonon leaves [111] chains undisturbed,
i.e. does not compress or stretch the highly localized d-bonds.

5 Effect of electronic temperature

Temperature dependence of the potential energy against λ2 distortion is shown
in Fig. 7. At the experimental transition temperature of 1155K, the energy
difference between the bcc structure and the hcp structure is reduced but
shows still a very large value of 80 meV. Along λ2 distortion the potential
shows still clear a double-well shape. The depth of the well decreases with
increasing temperature, but is still large at the transition temperature. The
thermal excitation is about 100meV at 1155K, which is just above the energy of
the bcc structure measured from the hcp. At temperatures higher than 3000K,
the bcc structure becomes more stable than hcp, being convex downward at
λ2 = 0.
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The temperature dependence of the electronic energy contributions is under-
stood easily from the electronic density of states at the ground state and
recalling that the electronic entropy is roughly proportional to the electronic
density of state at the Fermi level. As shown in Fig. 4, the bcc structure
shows very high density of states in comparison to the hcp structure at the
Fermi level. This value decreases the entropy term −TSband faster for the bcc
structure than for the hcp with increasing temperature. The thermal elec-
tronic contribution obtained by our calculations is close to that obtained by
Craievich et al. [23]

Temperature dependence of the potential at λ3 distortion is shown in Fig. 8.
At 0K the bcc structure is located at a locally stable but very shallow potential
point. The curvature around the bcc structure is much smaller than that of
Zr calculated by Chen et al. [4] Thus the frequency of the ω phonon mode is
much lower than those of Zr. The curvature at the bcc structure is virtually
unchanged at the transition temperature. Again as the λ2 distortion above
3000K the bcc structure is more stable than the hcp and the ω.

The potential surfaces of phonon modes of Ti are not very different from
those of Zr. The thermal electronic effects induce little difference from the
ground state at the transition temperature, and no drastic change in compar-
ison to Zr. The double-well potential of T1N phonon, however, is much deeper
and wider than that of Zr. The curvature at bcc along ω mode is barely
positive. The atomic displacements should show strong anisotropic behavior
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and make it difficult to estimate the vibrational entropy. Thus the Gaussian
distribution employed by Moroni et al. [24] is too simple for Ti. The vibra-
tional contributions on the bcc-hcp transition should be carefully investigated
by molecular dynamics using atomistic potentials reproducing the adiabatic
potential-surfaces obtained in this research.

6 Conclusions

We performed accurate first principles calculations of Ti and correctly esti-
mated the ground-state structure. The potential surfaces of specific phonon
modes related to the structure transitions are qualitatively similar to those of
Zr, but quantitatively different: the minima of the double-well potential of the
T1N phonon mode is deeper and wider, and the curvature of the ω phonon
mode is extremely small. Those indicate that Ti shows strong anisotropic char-
acter of bondings. The thermal electronic contribution leads the bcc structure
more stable than the hcp structure above 3000K, but it is very small in mag-
nitude at the transition temperature.
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