26 CHAPTER 0. THE FUNCTION

The previous task provided a way to compute three elements i, j, k of § whose sum is
zero—if there exist three such elements. Suppose you wanted to determine if there were a
hundred elements of S whose sum is zero. What would go wrong if you used the approach
used in the previous task? Can you think of a clever way to quickly and reliably solve the
problem, even if the integers making up S are very large? (If so, see me immediately to
| collect your Ph.D.)

Obtaining a list or set from another collection

Python can compute a set from another collection (e.g. a list) using the constructor set(-).
Similarly, the constructor 1ist(-) computes a list, and the constructor tuple(:) computes
a tuple

>>> set([0,1,2,3,4,5,6,7,8,9])
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> set([1,2,3])

{1, 2, 3}

>> 1list({1,2,3h)

[1, 2, 3]

>> set((1,2,3))

{1, 2, 3}

Task 0.5.17: Find an example of a list L such that len(L) and len(list(set(L))) are

‘),} _/_l\ /11__ _{\L different. é{}-nz;}[

0.5.7 Other things to iterate over
Tuple comprehensions—not! Generators

One would expect to be able to create a tuple using the usual comprehension syntax, e.g.

P (i for i in [1,2,3]1) but the value of this expression is not a tuple. It is a igenerator.
Generators are a very powerful feature of Python but we don’t study them here. Note,
however, that one can write a comprehension over a generator instead of over a list or set or
tuple. Alternatively, one can use set(-) or 1list(.) or tuple(-) to transform a generator
into a set or list or tuple.

Ranges 2,‘8‘

A range plays the role of a list consisting of the elements of an arithmetic progression. For
any integer n, range(n) represents the sequence of integers from 0 through n—1. For exam-
ple, range (10) represents the integers from 0 through 9. Therefore, the value of the following
comprehension is the sum of the squares of these integers: sum({i*i for i in range(10)}).

Even though a range represents a sequence, it is not a list. Generally we will either
iterate through the elements of the range or use set(-) or list(-) to turn the range into a
set or list.

>>> list(range(10))
o, 1, 2, 3, 4, 5, 6,7, 8, 9]

Task 0.5.18: Write a comprehension over a range of the form range(n) such that the
value of the comprehension is the set of odd numbers from 1 to 99.

4

You can form a range with one, two, or three arguments. The expression range (a,b)
represents the sequence of integers ¢,a+1,a+2,..., b — 1. The expression range (a,b,c)
represents a,a + ¢,a + 2¢, ... (stopping just before b).

P ?
+ ¢ fr from Qb
42159\ 6 %o 9 R step by C

-

04. LAB: INTRODUCTION TO PYTHON 27

Zip_
Another collection that can be iterated over is a zip. A zip is constructed from other
collections all of the same length. Each element of the zip is a tuple consisting of one

element from each of the input collections.

>>> list(zip([1,3,5],[2,4,6]1))
1, 2, @3, 9, (5, 6]
>>> characters = ['Neo', 'Morpheus', 'Trinity']
>>> actors = ['Keanu', 'Laurence', 'Carrie-Anne']
>>> sit(zip(chuacters, actors)) '
@'Trip:.i.f‘f, 'Carrie-Anne'), ('Neo', 'Keanu'), ('Morpheus’, 'Laurence'@
>>> [character+' is played by '+actor
I, for (character,actor) in zip(characters,actors)]
['Neo is played by Keanu', 'Morpheus is played by Laurence',
'Trinity is played by Carrie-Anne']

Task 0.5.19: Assign toL the list consisting of the first five letters ['A" ,'B','C','D','E'].
Next, use L in an expression whose value is

[¢0, ’A%), (1, ’B?), (2, °C?), (3, 'D?), (4, ’E’)]
Your expression should use a range and a zip, but should not use a comprehension.

Task 0.5.20: Starting from the lists [10, 25, 40] and [1, 15, 20], write a compre-
hension whose value is the three-element list in which the first element is the sum of 10
and 1, the second is the sum of 25 and 15, and the third is the sum of 40 and 20. Your
expression should use zip but not list.

reversed

To iterate through the elements of a list L in reverse order, use reversed(L), which does
not change the list L:

>>> [x*x for x in reversed([4, 5, 10])]
[100, 25, 16]

0.5.8 Dictionaries

We will often have occasion to use functions with finite domains. Python provides collec-
tions, called dictionaries) that are suitable for representing such functions. Conceptually, a
dictionary is a set of key-value pairs. The syntax for specifying a dictionary in terms of its
key-value pairs therefore resembles the syntax for sets—it uses curly braces—except that
instead of listing the elements of the set, one lists the key-value pairs. In this syntax, each
key-value pair is written using (colon|notation: an expression for the key, followed by the
colon, followed by an expression for the value:

key :\value

1T B
The function f that maps each letter in the alphabet to its rank in the alphabet could be
written as

(A':0, 'B':1, 'C':2, 'D':3, 'E':4, 'F':6, 'G':6, 'H':7, 'I':8,
'J':9, 'K':10, 'L':11, 'M':12, 'N':13, '0':14, 'P':15, 'Q':16,
'R':17, 'S':18, 'T':19, 'U':20, 'V':21, 'W':22, 'X':23, 'Y':24,
122

28 CHAPTER 0. THE FUNCTION

As in sets, the order of the key-value pairs is irrelevant, and ;ge_@must be immutable

(no sets or lists or dictionaries). For us, the keys will mostly be intégers, strings, or tuples

of integers and strings. ’) :
“The keys and values can be specified with expressions.

>>> {2+1:'thr'+'ee', 2#2:'fo'+'ur'}
{§: 'three', 4: ‘four'}

To each key in a dictionary there corresponds only one value. If a dictionary is given multiple
values for the same key, only one value will be associated with that key.

) ¥
>>> {0:'zero', 0:'nothing'}
{0: 'nothing'}

Indexing into a dictionary

Obtaining the value corresponding to a particular key uses the same syntax as indexing a
list or tuple: right after the dictionary expression, use square brackets around the key:

>>> {4:"four", 3:'three'}[4]

'fO_lI' -=

>>> mydict = {'Neo':'Keanu', 'Morpheus':'Laurence’,
"Trinity':'Carrie-Anne'}

>>> mydict['Neo']

'Keanu' o

If the key is not represented in the dictionary, Python considers it an error:

>>> mydict['Oracle’]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'Oracle’

Testing dictionary membership

You can check whether a key is in a dictionary using the in operator we earlier used for
testing membership in a set:

>>> ‘Oracle' in mydict

False B

>>> mydict['Oracle'] if 'Oracle’ in mydict else 'NOT PRESENT'
'NOT PRESENT'

>>> mydict['Neo'] if 'Neo' in mydict else 'NOT PRESENT'
'Keanu'

Lists of dictionaries

- Task 0.5.21: Suppose dlist is a list of dictionaries and k is a key that appears in all the
dictionaries in d1ist. Write a comprehension that evaluates to the list whose ith element
is the value corresponding to key k in the it* dictionary in dlist.

Test your comprehension with some data. Here are some example data.

dlist = [{'James':'Sean', 'director':'Terence'}, {'James':'Roger’,
‘director':'Lewis'}, {'James':'Pierce', 'director': 'Roger'}]
k = 'James'

0.4. LAB: INTRODUCTION TO PYTHON

Task 0.5.22: Modify the comprehension in Task 0.5.21 to handle the case in which k
might not appear in all the dictionaries. The comprehension evaluates to the list whose it*
element is the value corresponding to key k in the i** dictionary in dlist if that dictionary
contains that key, and 'NOT PRESENT' otherwise.

Test your comprehension with k = 'Bilbo' and k = 'Frodo’ and with the following
list of dictionaries:

dlist = [{'Bilbo':'Ian','Frodo': ‘Elijah'},
{'Bilbo': 'Martin’, 'Thorin':'Richard'}]

Mutating a dictionary: indexing on the left-hand side of =

You can mutate a dictionary, mapping a (new or old) key to a given value, using the syntax
used for assigning a list element, namely using the index syntax on the left-hand side of an
assignment:

=>>> mydict['Agent Smith'] = 'Hugo!
>>> mydict['Neo'] = 'Philip’
>>> mydict)
{'Neo': 'Philip’', 'Agent Smith'_:"yugo:, 'Trinity’': 'Carrie-Anne’,
‘Morpheus': ‘Laurence’} o

Dictionary comprehensions

You can construct a dictionary using a comprehension.

>>> { k:v for (k,v) in [(3,2),(4,0),(100,1)] }

{3: 2, 4: 0, 100: 1}

>>> { (x,y):x*y for x in [1,2,3] for y in [1,2,3] }
{(1, 2): 2, 3, 2): 6, (1, 3): 3, (3, 3:9, (3, 1): 3,
(2, 1): 2, (2, 3): 6, (2, 2): 4, (1, 1): 1}

Task 0.5.23: Using range, write a comprehension whose value is a dictionary. The keys
should be the integers from 0 to 99 and the value corresponding to a key should be the
square of the key.
The identity function on a set D is the function with the following spec:
e input: an element z of D
e oulput: x
That is, the identity function simply outputs its input.
Task 0.5.24: Assign some set to the variable D, eg. D ={'red','white’', 'blue'}.

Now write a comprehension that evaluates to a dictionary that represents the identity
function on D.

30

CHAPTER 0. THE FUNCTION

Task 0.5.25: Using the variables base=10 and digits=set (range(base)), write a dic-
tionary comprehension that maps each integer between zero and nine hundred ninety nine
to the list of three digits that represents that integer in base 10. That is, the value should be

1
{0: [0, 0, 01, 1: [0, O, 11, 2: [0, O, 2], B: o, o, 31, ...,
10: [0, 1, 0], 11: fo, 1, 11, 12: o, 1, 21, ...,
999: [9, 9, 91}

Your expression should work for any base. For example, if you instead assign 2 to base and
assign {0,1} to digits, the value should be

{o: [0, 0, 01, 1: [0, O, 1], 2: [0, 1, 0}, 3: [0, 1, 1],
., 720, 1, 11}

Comprehensions that iterate over dictionaries

You can write list comprehensions that iterate over the keys or the values of a dictionary,
using keys() or values():

>>> [2#%x for x in {4:'a',3:'b'}.keys() 1]
(e, 8] ¥

>>> [x for x in {4:'a', 3:'b'}.values()]
['b', lal]

Given two dictionaries A and B, you can write comprehensions that iterate over the union

or intersection of the keys, using the union operator | and intersection operator & we learned
about in Section 0.5.4.

>>> [k for k in {'a':1, 'b':2}.keys() | {'b':3, 1c':4} . keysQ]
[lal, Icl' lbl]

>>> [k for k in {'a':1, 'b':2}.keys() & {'b':3, 'c':4}.keys(]
('b']

Often you’ll want a comprehension that iterates over the (key, value) pairs of a dictionary,

using items(). Each pair is a tuple.

>>> [myitem for myitem in mydict.items()]
[('Neo', 'Philip'), ('Morpheus', 'Laurence’),

('Trinity', 'Carrie-Amne'), ('Agent Smith', 'Hugo')]
g g

Since the items are tuples, you can access the key and value separately using unpacking:

>>> [k + " is played by " + v for (k,v) in mydict.items()]

['Neo is played by Philip, 'Agent Smith is played by Hugo’,

'Trinity is played by Carrie-Amme', 'Morpheus is played by Laurence']
>>> [2%k+v for (k,v) in {4:0,3:2, 100:1}.items()]

[s, 8, 201]

Task 0.5.26: Suppose d is a dictionary that maps some employee IDs (a subset of the
integers from 0 to n — 1) to salaries. Suppose L is an n-element list whose i** element is
the name of employee number i. Your goal is to write a comprehension whose value is a
dictionary mapping employee names to salaries. You can assume that employee names are
distinct.

Test your comprehension with the following data:

id2salary = {0:1000.0, 3:990, 1:1200.50}
names = ['Larry', 'Curly', '', 'Moe']

0.4. LAB: INTRODUCTION TO PYTHON

2 ‘1_\'1 .
0.5.9 Defining one-line procedures

The procedure twice : R — R that returns twice its input can be written in Python as
follows:

> def twice(z):-return 2*z

The wordiptroduces a procedure definition. The name of the function being defined is
The variable @is called the formal argument to the procedure. Once this procedure
is defined, you can invoke it using the usual notation: the Wame of the procedure followed
by an expression in parenthesis, e.g. twice(1+2)

The value 3 of the expression 1+2 is the actual argument to the procedure. When the
procedure is invoked, the formal argument (the variable) is temporarily bound to the actual
argument, and the body of the procedure is executed. At the end, the binding of the actual
argument is removed. (The binding was temporary.)

Task 0.5.27: Try entering the definition of twice(z). After you enter the definition, you
will see the ellipsis. Just press enter. Next, try invoking the procedure on some actual
arguments. Just for fun, try strings or lists. Finally, verify that the variable z is now not
bound to any value by asking Python to evaluate the expression consisting of z.

tvext IhfeeMs
Task 0.5.28: Define a one-line procedure nextlnﬁ(‘lf) specified as follows:
o input: list L of integers
o output: list of integers whose it* element is one more than the it* element of L
o example: input [1,5,7], output (2,86, 8].
*T‘\eSt- case” 3§ .
Task 0.5.29: Define a one-line procedure cube§(L) specified as follows:
o input: list L of numbers

® output: list of numbers whose i** element is the cube of the i** element of L
e example: input [1,2, 3], output W]
— 2 3?
Task 0.5.30: Define a one-line procedure dict2list(dct, keylist) with this spec:
® input: dictionary dct, list keylist consisting of the keys of dct
® output: list L such that L[] = detlkeylist[i]] for i = 0,1,2, ..., len(keylist) — 1

w o example: inputdct:{'.a':'A', ‘b':'B’, 'c¢':'C'}and keylist=['b','c','a'],
output ['B', 'C', 'A'] ’

Task 0.5.31: Define a one-line procedure list2dict(L, keylist) specified as follows:
e input: list L, list keylist of immutable items
e output: dictionary that maps keylist[i] to L[i] for i = 0,1,2,..., len(L) —1

® example: input L=[’A’,’B?,’C’] and keylist=[’a’,’b’,’c’],
output {'a':'A', 'b':'B', 'c':'C'}

Hint: Use a comprehension that iterates over a zZip or a range.

31

32

CHAPTER 0. THE FUNCTION

Thsh@ﬂ: Write a procedure all_3_digit_numbers(base, digits) with the follow-
ing spec:

e input: a positive integer base and the set digits which should be {0,1,2,..., base—1}.
e output: the set of all three-digit numbers where the base is base
For example,

>>> all_3_digit_numbers(2, {0,1})

{0, 1, 2, 3, 4, 5, 6, 7}

>>> all_3_digit_numbers(3, {0,1,2})

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26}

>>> all_3_digit_numbers(10, {0,1,2,3,4,5,6,7,8,9})

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999}

0.6 @ Python—modules and control structures—and inverse
index

In this lab, you will create a simple search engine. One procedure will be responsible for

reading in a large collection of documents and indexing them to facilitate quick responses to

subsequent search queries. Other procedures will use the index to answer the search queries.
The main purpose of this lab is to give you more Python programming practice.

0.6.1 Using existing modules

Python comes with an extensive library, consisting of components called modules. In order
to use the definitions defined in a module, you must either import the module itself or
import the specific definitions you want to use from the module. If you import the module,
you must refer to a procedure or variable defined therein by using its qualified name, i.e.
the name of the module followed by a dot followed by the short name.

For example, the library math includes many mathematical procedures such as square-
root, cosine, and natural logarithm, and mathematical constants such as 7 and e.

