0.3. THE FUNCTION Lo co-domoin P { F 3

N Y b
f:D—F

means that f is a function whose domain is the set D and whose co-domain (the set of possible
outputs) is the set F. (More briefly: “a function from D to F”, or “a function that maps D to
F‘”)

The notation

L - 8% L7
Example 0.3.3: (Caesar was said to have used a cryptosystem in which each letter was replaced
with the one three steps forward in the alphabet (wrapping around for X.Y, and Z).% Thus the
plaintext MATRIX would be encrypted as the cyphertext PDWULA. The function that maps
each plaintext letter to its cxghedext replacement could be written as

= ﬂr‘i
A@D,B»—)E,Cu—)F,DHG,W&—)Z,X»—):},I_/»—)E,_ZHQ

This function’s domain and co-domain are both the alphabet {A,B,...,Z}.

“Some imaginary historians have conjectured that Caesar’s assasination can be attributed to his use of
such a weak cryptosystem.

Example 0.3.4: The cosine function, cos, maps from the set of real numbers (indicated by
R) to the set of real numbers. We would therefore write “ve?

E:R—)R

Of course, the outputs of the cos function do not incluzie all real numbers, only those between -1
and 1. 1
X
The image of a function f is the set of images of all domain elements. That is, the image of
[is the set of elements of the co-domain that actually occur as outputs. For example, the image
of Caesar’s encryption function is the entire alphabet, and the image of the cosine function is
the set of numbers between -1 and 1.

Example 0.3.5: Consider the function prod that takes as input a pair of integers greater than
1 and outputs their product. The domain (set of inputs) is the set of pairs of integers greater
than 1. We choose to define the co-domain to be the set of all integers greater than 1. The
image of the function, however, is the set of composite integers since no domain element maps
to a prime number.

0.3.1 Functions versus procedures, versus computational problems

There are two other concepts that are closely related to functions and that enter into our story,
and we must take some care to distinguish them.

e A procedure is a precise description of a computation; it accepts inputs (called arguments)
and produces an output (called the return value).

Example 0.3.6: This example illustrates the Python syntax for defining procedures:

def(mul(p,q): return p*q

In the hope of avoiding confusion, we diverge from the common practice of referring to
procedures as “functions”.

* A computational problem is an input-output specification that a procedure might be re-
quired to satisfy.

4 CHAPTER 0. THE FUNCTION

Example 0.3.7: | — input: a pair (p,q) of integers greater than 1
— output: the product pg

Example 0.3.8:

— input: an integer m greater than 1
— output: a pair (p,g) of integers whose product is m

How do these concepts differ from one another?

e Unlike a procedure, a function or computational problém does not give us any idea how
to compute the output from the input. There are often many different procedures that
satisfy the same input-output specification or that implement the same function. For
integer multiplication, there is ordinary long multiplication (you learned this in elementary
school), the Karatsuba algorithm (used by Python for long-integer multiplication), the
faster Schonhage-Strassen algorithm (which uses the Fast Fourier Transform, discussed in
Chapter 10), and the even faster Fiirer algorithm, which was discovered in 2007.

o Sometimes the same procedure can be used for different functions. For example, the
Python procedure(mul can be used for multiplying negative integers and numbers that are
not integers.

e Unlike a function, a computational problem need not specify a unique output for every
input; for Example 0.3.8 (Page 4), if the input is 12, the output could be (2,6) or (3,4) or
(4,3) or (6,2).

0.3.2 The two computational problems related to a function

All the king’s horses and all the king’s men
Couldn't put Humpty together again.

Although function and computational problem are defined differently, they are clearly related.
For each function f, there is a corresponding computational problem:

The forward problem: Given an element a of f’s domain, compute f(a), the image of a under f. l

Example 0.3.7 (Page 4) is the computational problem that corresponds in this sense to the
function defined in Example 0.3.2 (Page 2).
However, there is another computational problem associated with a function:

The backward problem: Given an element r of the co-domain of the function, compute any
pre-image (or report that none exists).

Tow very different are these two computational problems? Suppose there is a procedure
P(z) for computing the image under flof any element of the domain. An obvious procedure for
computing the pre-image of r is to iterate through each of the domain elements g, and, one by
one, apply the procedure P(z) on ¢ to see if the output matches 7.

This approach seems fidiculousiy profligate—even if the domain is finite, it might be so large
that the time required for solving the pre-image problem would be much more than that for
P(z)—and yet there is'no better approach that works for all functions.

Indeed, consider Example 0.3.7 (Page 4) (integer multiplication) and Example 0.3.8 (Page
4) (integer factoring). The fact that integer multiplication is computationally easy while integer
factoring 1s computationally difficult isjin fact the basis for the security of the(RSA cryptosystem,
which is at the heart of secure commerce over the world-wide web.

And yet, as we will see in this book, finding pre-images)can be quite useful. What is one to
do?

In this context, the generality of the concept of function is also a weakness. To (misquote
Spiderman,

Wit great generality comes great computational difficulty.

0.3. THE FUNCTION 5

This principle suggests that we consider the pre-image problem not for arbitrary functions but
for specific families of functions. Yet here too there is a risk. If the family of functions is
too restrictive, the existence of fast procedures for solving the pre-image problem will have
no relevance to real-world problems. We must navigate between the Scylla of computational
intractability and the Charybdis of inapplicability.

In linear algebra, we will discover a sweet spot. The family of linear functions, which are
introduced in Chapter 4, manage to model enough of the world to be immensely useful. At the
same time, the pre-image problem can be solved for such functions.

0.3.3 Notation for the set of functions with given domain and co-
domain

For sets D and F, we use the notation FP to denote all functions from D to F. For example,
the set of functions from the set W of words to the set R of real numbers is denoted RY.
This notation derives from a mathematical “pun”:

Fact 0.3.9: For any finite sets D and F, |DF| = |DJ|IF!.

0.3.4 Identity function
For any domain D, there is a function idp : D — D called the identity function for D, defined
by

idp(d) =d

for every d € D,

0.3.5 Composition of functions

The operation functional compositior. combines two functions to get a new function. We will later
define matrix multiplication in terras of functional composition. Given two functions f : A — B
and g : B — C, the function go f, called the composition of g and f, is a function whose domain
is A and its co-domain is C. It is defined by the rule

(go f)(z) = g(f(x))

for every z (€ A.
If the image of f is not contained in the domain of g then go f is not a legal expression.

Example 0.3.10: Say the domain and co-domains of f and gareR, and f(z) =z +1 and
9(y) =) Then go f(z) = (z + 1)2.

Example 0.3.11: Define the function
f:{4,B,C,...,Z2} — {0,1,2,...,25}

by
A= 0,B—1,C—2,---,Z2+25

Define the functior(g)as follows. The domain and co-domain of g are both the set {0,1,2,...,25},
and g(z) = (z + 3)mod)26. For a third function k, the domain is {0,...25} and the co-domain
is {A,...,Z},and 0 — A, 1 » B, etc. Then ho(go f) is a function that implements the Caesar
cypher as described in Example 0.3.3 (Page 3).

For building intuition, we can use a diagram to represent composition of functions with finite
domains and co-domains. Figure 1 depicts the three functions of Example 0.3.11 (Page 5) being
composed.

6 CHAPTER 0. THE FUNCTION

O @ O
N ORONC
HONON®
. ® ©

@—&—2—@
Figure 1: This figure represents the composition of the functions f, g, h. Each function is repre-

sented by arrows from circles representing its domain to circles representing its co-domain. The
composition of the three functions is represented by following three arrows.

0.3.6 Associativity of function composition

Next we show that composition of functions is associative:

Proposition 0.3.12 (Associativity of composition): For functions f, g, h,
ho(gof)=(hog)of

if the compositions are legal.

Proof

Let = be any member of the domain of f.

(ho(go f))z)

h((g o f)(x)) by definition of ho (g o f))
h(g(f(z)) by definition of g o f

(ho g)(f(z)) by definition of hog

((h o g) o f)(z)) by definition of (hog) o f

1

g

Associativity means that parentheses are unnecessary in composition expression: since h o
(g o f) is the same as (ho g) o f, we can write either of them as simply hogo f.

0.3.7 Functional inverse

Let us take the perspective of a lieutenant of Caesar who has received a cyphertext: PDOWULA.
To obtain the plaintext, the lieutenant must find for each letter in the cyphertext the letter that
maps to it under the encryption function (the function of Example 0.3.3 (Page 3)). That is, he
must find the letter that maps to P (namely M), the letter that maps to D (namely A), and so
on. In doing so, he can be seen to be applying another function to each of the letters of the
cyphertext, specifically the function that reverses the effect of the encryption function. This
function is said to be the functional inverse of the encryption function.

For another example, consider the functions f and k in Example 0.3.11 (Page 5): f is a
function from {A4,...,Z} to {0,...,25} and A is a function from {0,...,25} to {4,...,2}.
Each one reverses the effect of the other. That is, ho f is the identity function on {A,...,Z},
and f o h is the identity function on {0,..., 25}. We say that h is the functional inverse of f.
There is no reason for privileging f, however; f is the functional inverse of h as well.

In general,

Definition 0.3.13: We say that functions f and g are functional inverses of each other if

0.3. THE FUNCTION 7

I

L I 4
c‘iiK

Figure 2: A function f : U — V is depicted that is not onto, because the fourth element of the
co-domain is not the image under f of any element

y v
.

Figure 3: Afunction f : U — V is depicted that is not one-to-one, because the third element of
the co-domain is the image under f of more than one element.

e fogis defined and is the identity function on the domain of g, and

¢ go f is defined and is the identity function on the domain of f.

Not every function has an inverse. A function that has an inverse is said to be invertible.
Examples of noninvertible functions are shown in Figures 2 and 3

Definition 0.3.14: Consider a function f : D — F. We say that f is one-to-one if for every
T,y € D, f(z) = f(y) implies z = y. We say that f is onto if, for every z € F, there exists
z € D such that f(z) = z.

Example 0.3.15: Consider the function prod defined in Example 0.3.5 (Page 3). Since a prime
number has no pre-image, this function is not onto. Since there are multiple pairs of integers,
e.g. (2,3) and (3,2), that map to the same integer, the function is also not one-to-one.

Lemma 0.3.16: An invertible function is one-to-one.

Proof

Suppose f is not one-to-one, and let z; and z, be distinct elements of the domain such
that f(z;) = f(z2). Let y = f(z,). Assume for a contradiction that [is invertible. The
definition of inverse implies that FYy) = z; and also F~Yy) = x2, but both cannot be
true. a

Lemma 0.3.17: An invertible function is onto

Proof

Suppose f is not onto, and let § be an element of the co-domain such that § is not the
image of any domain element. Assume for a contradiction that f is invertible. Then § has

8 CHAPTER 0. THE FUNCTION

an image # under f~!. The definition of inverse implies that f(£) = 7, a contradiction. DJ

Theorem 0.3.18 (Function Invertibility Theorem): A function is invertible if! it is one-
to-one and onto.

Proof

Lemmas 0.3.16 and 0.3.17 show that an invertible function is one-to-one and onto. Suppose
conversely that f is a function that is one-to-one and onto. We define a function g whose
domain is the co-domain of f as follows:

For each element § of the co-domain of f, since f is onto, f’s domain contains
some element % for which f(&) = §; we define g(9) = %.

We claim that g o f is the identity function on f’s domain. Let Z be any element of f’s
domain, and let § = f(&). Because f is one-to-one, £ is the only element of f’s domain
whose image under f is §, so g(§) = &. This shows go f is the identity function.

We also claim that f o g is the identity function on g’s domain. Let § be any element of
g's domain. By the definition of g, f(g(9)) = §. O

Lemma 0.3.19: Every function has at most one functional inverse.

Proof

Let f : U = V be an invertible function. Suppose that g; and go are inverses of f. We
show that, for every element v € V, g1(v) = g2(v), so g1 and g, are the same function.

Let v € V be any element of the co-domain of f. Since f is onto (by Lemma 0.3.17),
there is some element u € U such that v = f(u). By definition of inverse, g1 (v) = v and

g2(v) = u. Thus g;(v) = g2(v)-

0.3.8 Invertibility of the composition of invertible functions

In Example 0.3.11 (Page 5), we saw that the composition of three functions is a function that
implements the Caesar cypher. The three functions being composed are all invertible, and the
result of composition is also invertible. This is not a coincidence:

Lemma 0.3.20: If f and g are invertible functions and f o g exists then f o g is invertible and
(fog)™t=gtof.

Problem 0.3.21: Prove Lemma 0.3.20.

Problem 0.3.22: Use diagrams like those of Figures 1, 2, and 3 to specify functions g and f
that are a counterexample to the following:

False Assertion 0.3.23: Suppose that f and g are functions and fog is invertible. Then f
and g are invertible.

O

0.4, PROBABILITY 9

f fog

o
/

60 00 oo
5 f! & g-l & (fog{ l=g-lofl

Figure 4: The top part of this figure shows two invertible functions f and g, and their composition
fog. Note that the composition f o g is invertible. This illustrates Lemma 0.3.20. The bottom
part of this figure shows g~*, f~! and (fog)~!. Note that (fog)~! = g~!o f1. This illustrates
Lemma, 0.3.20.

0.4 Probability

int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.

Random Number (http://xkecd.com/221/)

One important yse of vectors and matrices arises in probability. For example, this is how they
arise in Google’s PageRank method. We will therefore study very rudimentary probability theory
in this course.

In probability, theory, nothing ever happens—probability theory is just about what could
happen, and how likely it is to happen. Probability theory is a calculus of probabilities. It is
used to make predictions about a hypothetical experiment. (Once something actually happens,
you use statistics to figure out what it means.)

0.4.1 Probability distributions

A function Pr(-) from a finite domain € to the set R+ of nonnegative reals is a (discrete) proba-
bility distribution if)", .o Pr(w) = 1. We refer to the elements of the domain as butcomes, The
image of an outcome under Pr(-) is called the probability of the outcome. The probabilities are
supposed to be proportional to the relative likelihoods of outcomes. Here I use the term likelihood
to mean the common-sense notion, and probability to mean the mathematical abstraction of/it,

10 CHAPTER 0. THE FUNCTION
TM PSYCHIC, OKAY, THINK OF ANUMBER | T TRY NOTTO LET IT DON'TWORRY ABOUT IT.
YOU KNOW. FROM o?rzm ONE HUNDRED, | AFFECT MY LIFETOO MUOH.| |FORGET I SAID ANYTHING.

\ NT [Bur-
THERE'S NO ys. | S WAIT, L (A [
SUCH THING. Y HoLY SHIT BELIEVE THIS. %HOVCE. \
({ (J
I, ...
OK, SURE.-

Psychic, ht

Uniform distributions

THIS TRICK MAY ONLY WORK 1% OF THE TME,
BUT WHEN IT DOES, IT5 TUTALY WORTH IT.

tp://xked.com/628/

For the simplest examples, all the outcomes are equally likely, so they are all assigned the same
probabilities. In such a case, we say that the probability distribution is uniform.

Example 0.4.1: To model the flipping of@single coin, Q = {heads, tails}. We assume that the
two outcomes are equally likely, so we assign them the same probability: Pr(heads) = Pr(tails).
Since we require the sum to be 1, Pr(heads) = 1/2 and Pr(tails) = 1/2. In Python, we would
write the probability distribution as

>>> Pr = {'heads':1/2, 'tails':1/2}

Example 0.4.2: To model the roll of @single die, Q={1,2,3,4,5,6}, and Pr(1) = Pr(2) =
... = Pr(6). Since the probabilities of the six outcomes must sum to 1, each of these probabilities
must be 1/6. In Python,

¥5> Pr = {1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6}

Example 0.4.3: To model the flipping of two coins, a penny and a nickel,
Q= {HH,HT,TH,TT}, and each of the outcomes has the same probability, 1/4. In Python,

>>> Pr = {('H', 'H'):1/4, C'H', 'T'):1/4, ¢T','H'):1/4, ('T','T'):1/4}

Nonuniform distributions
In more complicated situations, different outcomes have different probabilities.
Example 0.4.4: Let @ = {4,B,C,...,Z}, and let's-assign_probabilities according to how

likely you are to draw each-letter at the beginning of a Scrabble|game. Here is the number of
tiles with each letter in Scrabble;

A9 Bl2C 2D |4
E|12flF[2]G |3|H|2
t o fly {2k |1ffLit
M2 lINl6[fO |8 P|2
Ql1 IRI&|S |4||T|6
ula Iviaflwiz2ifx]1
vyil2 {lz]|1

The likelihood of drawing an R is twice that of drawing a G, thrice that of drawing a C, and

0.4. PROBABILITY 11

six times that of drawing a Z) We need to assign probabilities that are proportional to these
likelihoods. We must have some number(¢ such that, for each letter, the probability of drawing
that letter should be ¢ times the number of copies of that letter.

Pr[drawing letter X] = c:number of copies of letter X
Summing over all letters, we get
1 = c- total number of tiles

Since the total number of tiles ic 95, we define ¢ = 1/95. The probability of drawing an E is
therefore 12/95, which is about .126. The probability of drawing an A is 9/95, and so on. In
Python, the probability distribution is

{'A':9/95, 'B':2/95, 'C':2/95, 'D':4/95, 'E':12/95, 'F':2/95,
'G':3/95, 'H':2/95, 'I':9/95, 'J':1/95, 'K':1/95, 'L':1/95,
'M':2/95, 'N':6/95, '0':8/95, 'P':2/95, 'Q':1/95, 'R':6/95,
'S':4/95, 'T':6/95, 'U':4/95, 'V':2/95, 'W':2/95, 'X':1/95,
'Y':2/95, 'Z':1/95}

0.4.2 Events, and adding probabilities

In Example 0.4.4 (Page 10), what is the probability of drawing a vowel from the bag?
A set of outcomes is called an event. For example, the event of drawing a vowel is represented
by the set {4, E,I,0,U}.

Principle 0.4.5 (Fundamental Principle of Probability Theory): The probability of
an event is the sum of probabilities of the outcomes making up the event.

According to this principle, the probability of a vowel is
9/95 +12/95 + 9/95 + 8/95 + 4/95
which is 42/95.

0.4.3 Applying a function to a random input

Now we think about applying a function to a random input. Since the input to the function is
random, the output should also be considered random. Given the probability distribution of the
input and a specification of the function, we can use probability theory to derive the probability
distribution of the output.

Example 0.4.6: Define the function f : {1,2,3,4,5,6} — {0,1} by

0 ifziseven
f(a:)={ 1 ifzisodd

Consider the experiment in which we roll a single die (as in Example 0.4.2 (Page 10)), yielding
one of the numbers in {1,2,3,4,5,6}, and then we apply £(-) to that number, yielding either
a 0 or a 1. What is the probability function for the outcome of this experiment?

The outcome of the experiment is 0 if the rolled die shows 2, 4, or 6. As discussed in
Example 0.4.2 (Page 10), each of these possibilies has probability 1/6. By the Fundamental
Principle of Probability Theory, therefore, the output of the function is 0 with probability 1/6 +
1/6 +1/6, which is 1/2. Similarly, the output of the function is 1 with probability 1/2. Thus
the probability distribution of the output of the function is {0: 1/2. , 1:1/2.}

