Individual Differences Analysis of Affective Traits for Chord Listening -Study of Triads-

Tomonori Nishida Yoichi Yamazaki Noriko Nagata

Nagata Laboratory, Department of Human System Interaction, Graduate School of Science and Technology, Kwansei Gakuin University (KGU), Japan

Introduction

Background

- Promoting design that considers individual differences
- > Enhance wellbeing
- ➢ Reduce social loss
- \succ Realize a sustainable society
- Researchers have conducted many studies that quantify sound impressions
- > Comfort with dissonance (Popescu et al., 2019)
- \succ Affections associated with cadences (Smit et al., 2020)
- > Individual differences in affective evaluation of chords have rarely been examined

Purpose

- Model individual differences in affective evaluation of triads

Methods

Result 2 (Model construction)

- Structural equation modeling (Fig. 9)
- Construction by type
- Visualization of the connection between acoustic features and each evaluation item
- Structural differences between types (Fig. 10)
- Pleasant
- > Weak positive, strong negative: increases with increasing modality
- \succ Weak negative: increases with decreasing modality
 - More than twice as many valid paths exist than other types

感情層

感情層

感情層

高次印象層

低次印象層

高次印象層

低次印象層

高次印象層

低次印象層

Fig 1. Overview of our research flow

- Participants: 30 students (15 musicians, 15 non-musicians)
- Musicians have at least 8 years of music experience (Taniguchi, 1989)
- Environment: Face to face in a sealed darkroom (Fig. 2)
- Stimuli: 20 stimuli (5 triads × 4 tones)
- Triads: Major, Minor, Dim, Aug, Sus4 (Fig. 3)
- Tones: Piano, Clarinet, Trumpet, Violin

ものたりない	.444	.125	.169	.208
柔らかい	.162	.895	060	.748
溶け合う	275	.681	128	.700
溶け合わない	.416	549	.120	.656
浮かんだ	273	.370	.145	.282
重厚な	.224	.168	824	.747
低音にのびのある	.122	.208	632	.463
弱々しい	.371	.486	.599	.571
因子寄与	3.157	2.605	1.616	

白, 刺激性

的, 軽快

重さ, 協和, 弱さ

激性 (-), 淡白, 深さ

協和 (-), 重厚, 弱さ

性, 刺激性, 淡白

重さ,弱さ,協和

• Evaluation

- Affect Grid method (4 evaluation per 1 stimulus)
- Rating scale method (1 evaluation per 1 stimulus)

≻ 61 words

- ➤ 7 scales
- Procedure
- **1** Listening (4 sec) →**2** Evaluation (Fig. 4 or Fig. 5) →**3** Silence for 10 sec →**4** Listening (4 sec) (Repeat $1 \sim 4$ for each stimuli) **F**

Fig 4. Evaluation screen of Affect Grid method

再生

Fig 3. Triads used for experimental stimuli

今聞いた音について当てはまると思う部分にスライドを動かし

Fig 9. Analysis Flow

Fig 10. Construct by type

Result 1 (Type classification)

Conclusion

- Cluster analysis (Ward's method)
- Based on correlation coefficients > Between pleasure and arousal
- Representative value: Average of 4 evaluations
- Divided into 3 types (Fig. 6)
- Weak positive: 8 people (3 musicians)
- > Weak negative: 12 people (6 musicians) Strong negative: 10 people (6 musicians)

Fig 6. Distribution of correlation coefficients

相関係数

Fig 7. Average rating per stimulus

Fig 8. Average rating per stimulus by type

- Result 1 (Type classification)
 - No association between musical experience and tendency to evaluate affections
- Result 2 (Model construction)
 - Construct models by type
- 3 types of evaluation exist for the same sound

•Future Study

- Review the model construction
- Validate the constructed model \succ Validate the estimation accuracy >Compare with previous studies