LED警告灯の視認性向上のための感性指標に基づく
点滅パターン解析 *

白石 史** 飛谷 謙介*** 下水 貴之**** 敷目 博也****
藤澤 隆史** 藤田 祐里子**** 南田 幸子**** 金村 純三****

An Analysis of the Flickering Patterns of LED Warning Lights for Visibility Improvement
Based on Psychophysical Measurements

Aya SHIIRA, Kensuke TOBITANI, Takayuki SHIMOTOMI, Hisaya INOME,
Takashi X. FUJISAWA, Eriko AIBA, Noriko NAGATA and Yasuhiko KITAMURA

Recently, the number of emergency vehicles equipped with light-emitting diode (LED) warning lights has increased. Unlike traditional beanie lights, LED warning lights can display various flickering patterns because these patterns are controlled by computers. The purpose of this study was to develop flickering patterns that had a high level of visibility. Lighting time (ON time), no-lighting time (OFF time), light intensity and rising time (UP time) were controlled by a microcomputer. Further, the visibility of each LED flickering pattern was evaluated quantitatively. Specifically, the visibility of the flickering patterns using the psychophysical measure of "conspicuity (easy to stand out)" from Bradley-Terry paired comparison model was identified. Results showed that OFF time had a significantly greater influence on visibility than ON time. Moreover, the flickering pattern with 66 msec of OFF time provided optimal visibility, regardless of the ON time, by making the visibility map, which represented the degree of visibility between ON time and OFF time. Therefore, the ideal combination between ON time and OFF time was determined.

Key words: visibility, conspicuity, LED, flickering pattern, Bradley-Terry paired comparison model

1. 詳言
緊急走行中の緊急車両（救急車・消防車・パトロールカーなど）は、早急な目的地到着のため、赤信号であっても交差点を通過したり右側を走行したりする場合がある。その際、発生する恐れのある問題として、緊急車両と一般車両の衝突事故が挙げられる。これらの事故の要因は、緊急車両が一般車両に早急に接近していないためであると考えられる。本研究では、平成23年度の総務省消防庁による「平成24年度緊急・救急の現状」1)によると、後退中の自己安全確認段階も含め、点滅されている。この増加要因のひとつとして、自動車社会の拡大によって交通量が増加しているため、緊急車両を視認しにくくなっている可能性が挙げられる。

このような状況の中、緊急車両の走行支援装置である警告灯は、これまで回復灯が用いられてきたが、近年、発光ダイオード（LED：light-emitting diode）を用いたものが増えてきている。LEDは、電源に比べて、光の広がりが少なく、直進する性質を持つため、遠方からでも、その光を確認しやすいという性質を持っている。したがって、その光を確認しやすいという要因を持つ。また、LED警告灯は、回復灯と異なり、光の点滅を、すなわち点滅パターンを、コンピュータを介して自由に設定できるという利点がある。しかしながら、警告灯の製造現場では、従来の点滅パターンを模倣する形で設計が行われているのが実情である。それ故に、緊急走行を円滑に行い、また走行中に事故を極力減らすためにも、視認性の高い点滅パターンの設計が求められている。

本研究では、点滅パターンの開発を目的とし、点滅時間、減点時間、増点時間、立ち上がりの平均値を経験者によってご対照させることによって、点滅パターンの視認性評価実験を行う。

2. 先行研究
光流動の視認性に関する研究は、これまで、表示方法や照明、サインなどの視覚標示物に関して多くの研究が行われてきた2)。なお、視認性とは対象物の見やすさの度数と定義されている3)。表示方法における視認性は、主に“読みやすさ（可読性）”や“目立ちやすさ（視認性）”の観点から、文字の大きさ、色、背景色、色の組み合わせなどが視認性や視認性に及ぼす影響、観察者、背景色、解像度の関係が議論されている。例えば、交通表示で使用されるような、LEDをドットマトリックスに並べた情報表示装置の文字色と背景色の組み合わせから可読性や視認性を向上させる研究も行われている4)。この研究では、視認の高い色と基盤色をいくつか、赤を含む色を使用することによって視認性が、文字色の背景を設けることによって視認性が向上することが報告された。さらに、可読性と視認性には、トレードオフの関係があることが示されている。

視覚標示物における視認性は、主に“見えやすさ（可視性）”
LED警光灯の視認性向上のための感性指標に基づく点滅パターン解析

の観点から、視認の影響や色の影響について調べられている。例えば、濃露の中における視認性に関する研究は、霧発生装置を用いて実験を行い、霧の濃度が高くなるに従って、物体の見かけの色が明度および色度の双方において減少し、さらに、その影響は、表面形状が低くなりやすくなり、物体の色が変化することも確認されている。

一方、点滅する光を照輝に関しては、1997年に高島の「ポケモン事例」を基に、高島の色感覚が視覚域に影響を与えるかが明らかになってきた。点滅視覚に関しては、視覚の反射は10～15 Hzで最も顕著である。「ポケモン事例」では、赤・青の波長視覚が多用されているので、水銀の場合、点滅速度数が、この範囲であったことも要因としてされている。

これまでに、LEDの点滅パターンと視認性の関係に関する目立った研究はほとんどない。先駆研究では、周辺数と視認性を繋げたものであり、感性評価によって、点滅周波数2 Hzと5 Hzの点滅視覚が目立つ傾向にあると報告されている。しかしながら、予めように見やすくいう感性評価が、気づきやすい、すなわち視覚的観察の実験があるという点については、明らかになっていない。また、現象発生等では、点滅時間と減点時間が異なる点滅パターンを表現することはできない。“目立たやすい”の要因を詳細に特定するためには、点滅時間と減点時間を別に考慮することが必要であると考えられる。

我々はこれまでに、コンピュータグラフィックス(CG)を用いて11種類の模擬点滅パターンを作成し、心理尺度評価実験により、各パターンの“目立たやす”“目立たしない”という心理尺度を算出した。その後、心理尺度評価結果の上位5種類のパターンを用いて、各宜好点減点視覚を行った。その結果、点滅パターンの違いによって“目立たやすい”“目立たない”という心理尺度が変化することを確認した。

本研究では、次の方法として、実験のLEDを使用して、点滅時間(点滅時間、減点時間)や点滅周波数(立ち上がり時間)等、各種点滅条件を組み合わせて、視認性評価実験を実施。これにより、視認性(目立たやす、目立たない)と点滅パラメータの関係を明らかにし、目立たやすいにおいては最適な点滅パターンを設計することを目的とする。

3. 点滅パターンに関する一覧比較

3.1 実験目的

本研究の目的は、目立たやすいLED点滅パターンを設計することである。そのために、各種点滅パラメータを組み合わせた点滅パターンに対して、視認性(観察者)の評価を行った。点滅パターンに関する各条件について、その影響を“どちらが目立たやすい”という観点から評価した

なお、本実験は、人間工学の「人間工学を学ぶための実験計画」および開戦学研における「人間工学に向けた実験・調査・実験研究倫理規定」に基づいて実施した。
3.2.4 実験環境

図3に実験環境の概念図を示す。実験対象物は一列ずつ棒子に貼られ、実験を行った。実験箇所の照明は適切に、LED
度の反射光および反射するプロジェクタからの背景の映像を防ぐために、比較する２
のLEDの間2m先にスクリーンを設置し、その前後にはプロジェクタによって投影した。投影された映像是、観察者から
見える市街地の映像を実際に撮影して、映像のプレミングに、
両方の映像をランダムに変えたものをランダムな順に示した。この順序は平均5.27秒であった。こうすることにより、一
見、グレースケールのノイズ映像の変化を示すが、実際に、
各寒帯が主成分を持つカラー映像が投影されている。これ
により、映像時の明るさの環境と物理環境は同様であるが、背景内の
被写体に依存しない市街映像を供給することができる。比較
する２つのLEDは、左右に120mm間隔に配置した。こ
れは、LED間の距離が近いと、右方のLED光が隣接するLED
に重複し合わぬためである。また、LEDは500～
700mmの距離範囲で、撮影位置に設置した。なお、この距離におい
t、2つのLEDは、どちらか一方に注目した際に、他方の
LEDがマトリックスの背景に入らないように調節されている。
実験では、左右に異なる点滅パターンを示した。また、パ
ターンの右後半および中央の右側はランダムであった。

また、LEDの点滅パターンの示す意味合いを評価するため、実験
データが各点滅パターンごとに評価される要因を決定する為
で、それぞれの要因でLEDを点滅させた。

3.2.5 実験課題

実験の要因は、左右のLEDの点滅パターンの存否を用い
て、一対比較により6段階で評価することで行った。実験に
用いたパターンは、左右のLEDで、「点滅パターン1、「点滅パターン2」、「点滅パターン3」、「点滅パターン4」、「点滅パターン5」、「点滅パターン6」の6パターンを用いた。

実験1セットは、点滅パターン50対（50回）であり、各実験
参加者は実験1セットを行った。試行数は、実験参加者の効率
を考慮し、1人の実験時間は10分以内に納めるため、50回
試行を決定した。実験の実験時間は2分で、実験1セット
は30秒で行った。

なお、今回対象とする点滅パターンは全て35パターンであり、
これらの反応速度を検証しようとする実験環境で大きな、効率的
なパターンの存否を示すために、予備実験を行った。実験と
同様に一対比較で点滅パターンの評価を行い、その結果に対し
て Fisher のP値を用いて、50対を決定した。これら50対
を評価することで、全点滅パターンを評価することができる。

3.3 解析方法

実験では、先行研究10）に拠って、それぞれの点滅パターン対に
対して、一対比較により6段階で評価を行った。実験データか
ら、点滅パターンの評価に対する個人の偏りが少ないこ
とが確認できたので、実験データの解析には、Bradley-Terryの
一対比較モデル21)を使用した。このため、実験データは、左右
の2パターンに変換した。

Bradley-Terryの一対比較モデルに、

\[\pi_{ij} = \frac{\theta_i}{\theta_i + \theta_j} = \frac{1}{1 + \exp(-\theta_j - \theta_i)} \] (1)

により、パラメータθ（θ1, θ2）を最大値法で決定する。
ただし、πijはパターンiとjの対で、iが選択される確率で
ある。θiは、

\[\pi_i = \exp(\theta_i) \] (2)

である。ここで求められるパラメータθは、パターン1に対する
視認性の感度を相当するものなので、実験データからのパ
ラメータ推定により、各点滅パターンの視認性の感度を推定する。

点滅時間、滅時間、光度、光度、立ち上がり時間の各要因の視認
性の感度を最大値パラメータθに対する影響を調査するために、
単回帰分析と分散分析を行った。分析にはGNU R (ver2.8.1)20)
を使用した。

3.4 実験結果

要因変数をそれぞれ、点滅時間、滅時間、光度、立ち上
がり時間、従属変数を点滅パターンとして単回帰分析を行った。
思う回帰分析とは、2つの変数間に因果関係が想定される場合、実
際には因果関係があるかどうかを解明する手法である。本解明の
場合、点滅時間、滅時間、光度、立ち上がり時間と、
視認性の感度を加味するパラメータθの関数関係を推定す
る。因果関係があるということとは、要因変数（本解明の場合、点
滅時間、滅時間、光度、立ち上がり時間）から従属変数（パ
ラメータθ）を予測できるということである。

単回帰分析の結果、点滅時間に関して有意な傾きが見られなかっ
た。すなわち、点滅時間とパターンθの間には、因果関係があ
るとは言えない。滅時間（a = -1.31×10^{-2}，p < 0.001）、光度
（a = 2.01，p < 0.001）、立ち上がり時間（a = -9.22×10^{-2}）
LED警光灯の視認性向上のための感性指標に基づく点滅パターン解析

$p < 0.001$に関しては有意な傾きが見られた。すなわち、滅灯時間、光強度、立ち上がり時間に関しては、パラメータθとの間には因果関係がある可能性がある。図4に、それぞれの結果を示すが、横軸はそれぞれ、滅灯時間（OFF）、光強度（Intensity）、立ち上がり時間（UP）であり、縦軸はパラメータθである。なお、相互相関を考慮していないため、パラメータθは通常、水準間が定らない。そのため、この分析において、図4(a)に示した光強度のグリッドと考えた結果を設定している。図4(b)、図4(c)において、強度は観察によって対数の直線関係にあり、という仮定のもとに対して影響を除き、θを補正している。図中の左右は外れ値である。

また、単回帰分析と同様に、説明変数をそれぞれ、滅灯時間、滅灯時間、光強度、立ち上がり時間、視認数をパラメータθとして4要因分析を行った。解析結果は、観察データの変動を、観察の変動と各要因による変動、要因の交互作用による変動に分けることにより、変数の影響度を交互作用の影響を解析する手続きである。

各分層の結果では、点滅時間に有意な主効果は示されなかった。主効果を、それぞれの説明変数が、独自に説明変数へ与える効果のあり、有意な主効果が示されるようなことは、ある説明変数がそれぞれの水準間で、説明変数への与える効果が異なることを意味する。従って、本解析の場合、単回帰分析の結果と同様に、点滅時間は、視認数の説明量に相当するパラメータθへの影響を及ぼしているとは言えない。

滅灯時間$(P(1, 334) = 131.55, p < 0.001)$、光強度$(P(1, 334) = 457.46, p < 0.001)$は、立ち上がり時間$(P(1, 334) = 40.52, p < 0.001)$については有意な主効果があった。すなわち、滅灯時間、光強度、立ち上がり時間に関しては、パラメータθに何らかの影響を及ぼしている可能性は考えられる。

交互作用において、点滅時間×滅灯時間に関して有意となった$(P(1, 334) = 63.36, p < 0.05)$。交互作用とは、説明変数を組み合わせた場合の複合効果のことであり、例えば、各要因の主効果だけでなく、その組み合わせによる相互作用の効果を指す。図5に、点滅時間と滅灯時間に関する感性比マップを示す。図5では、立ち上がり時間、滅灯時間の各組み合わせに対する点滅時間の感性比を示している。なお、既立ど評価された点滅パターンは、速いから表されている。本解析の結果、点滅時間はパラメータθに影響を及ぼしているとは言えなかったが、図5からも分かるように、滅灯時間と組み合わせることにより、特に点滅時間33～100msec、滅灯時間33～66msec周辺に、視認性のピークがあることが確認でき、点滅時間と滅灯時間の組み合わせにより、視認性への影響が異なっていることが分かります。

また、滅灯時間×立ち上がり時間に関しては、有意な交互作用が見られた$(P(1, 334) = 16.71, p < 0.01)$。立ち上がり時間に関する交互作用について調べた結果、立ち上がり時間0、33、66msecの場合の視認数マップを作成した(図6)。なお、立ち上がり時間0msecは立ち上がり時間ができない場合に設定している。図6(a)、図6(b)、図6(c)より、立ち上がり時間0msecの場合は視認性は確認できない。点滅時間66msecは未調のデータは存在しない。図6(a)、図6(b)、図6(c)より、立ち上がり時間0msecから33msecにかけて、視認性のピーク値が変動していることが確認できる。なお、立ち上がり時間66msecの場合は(図6(c)), 点滅時間80～100msec、滅灯時間66msec部分に、ピーク値があることが分かる。従って、視認性のピーク値の位置は変動しているが、点滅時間だけではなく、立ち上がり時間に関しても、滅灯時間66msec周辺にピークがあることが分かった。

考察

単回帰分析の結果から、光の強度と視認性(視認性)に関する関係(観察関係)が明らかとなり、直線と頂に過ぎない結果を得た。

立ち上がりの効果に関しては、単回帰分析で危険の効果が観察された。立ち上がり時間が数値の変数に対応するため、強度
LED警光灯の視認性向上のための感性指標に基づく点滅パターン解析

Fig. 5 Visibility map (relationship between ON and OFF time)

Fig. 6 Visibility map about 0, 33, and 66 msec of rising time
LED警光灯の視認性向上のための感性指標に基づく点滅パターン解析

光度度、立ち上がり時間の組合せをたして点滅パターンに対して、一つの検査法により視認性評価実験を行った。得られた結果に対して、回帰分析および分散分析を行ったところ、視認時間に関しては有効な影響があることが明らかになった。点滅時間と点滅時間に関する感性指標と対象とした実験において、点滅時間66msと付近をピークとした視認性の高い領域が存在することが明らかになった。すなわち、点滅時間帯の感性指標に対して強く関与しているという新しい知見が得られたことを示している。

今後、タイプでの警光灯の視認性が高めて重要なという報告があるため、視認性の影響を考慮した実験方法において、視認性測定実験を行う必要があると考えられる。また、警光灯は緊急車両だけでなく工場などにも使用されている。近年、このような生産現場での高齢化が進んでいるため、本視認性評価実験においても、加齢による視覚特性の変化の影響を模倣する必要がある。特に、若年層と老年層における視認性の違いについて、比較・検証を行う必要があると考えられる。

実験方法

本研究を行うにあたり、警光灯点滅パターンの設計をはじめ、実験全般にわたりデータベースを立ち上げまして株式会社バリア

イトラクティブセンター藤原昌之氏、石崎明司氏、菅原喜氏、松村光治氏、内村貴之氏に厚くお礼申し上げます。

本研究は、文部科学省私立大学機能研究基盤形成支援事業（平成21年度～平成26年度の助成を受けたことを付記する）

参考文献

1164精密工学会誌Vol.79,No.11,2013

10月13日14時07分 v5.50