Domain adversarial neural networks regression to design transferable impression estimation model for clothing patterns J N Htoi Sann Ja, Kensuke Tobitani, Noriko Nagata Kwansei Gakuin University

8 4

6 7

9

Introduction

- To reduce the loss of natural resources and realize a sustainable society
 - Understanding users' needs and preferences
 - Understanding users' emotional values
 - > Impressions evoked by a design \rightarrow quantification \rightarrow a design based on the user's emotional values

• Problem

- Need to quantify visual impressions every time the target field (domain) changes
- Extremely high experimental cost

2. Construction of Impression Estimation Models

 Problems with different domains and tasks between source and target

- Purpose
 - Construct a model to predict impressions from clothing patterns, a domain with insufficient labeled data, using transfer learning that transfers information between domains

Proposed Method

Preliminary Experiment

- Source
 - Domain: MNIST
 - Task: Classification from 0 to 9
- Target
 - Domain: MNIST-M
 - Task: Classification from 0 to 9
 (Labels appear at different frequencies)

1. Data Preprocessing

Source

- Domain: 3098 images of floral patterns
- Task: Estimation of 4 impression words ("cute," "bright," "cheerful," "cool")

• Target

- Domain: 2878 images of general patterns different marginal probability distribution (the number of images of floral and general patterns)
- Task: Estimation of 4 impression words ("cute," "bright," "cheerful," "cool") different conditional probability distribution (frequency of label appearance)

Target Accuracy				
Method	Previous research (Ganin et al.)	GitHub (C. Melina)	Kaggle (H. Arai)	This Study
Source Only	0.5225	0.4801	0.5400	
DANN	0.7666	0.7189	0.9200	0.899

Conclusion

- Creating Train and Test data
 - Create train data and test data with reliable variation to improve learning accuracy.
 - Clustered the data into groups by using CNN Style features
 - Randomly extract train data and test data from each group

- Proposed impression estimation model for clothing patterns
 - Proposed a transfer learning method, DANN model, that considers various domains
- Preliminary experiment using MNIST data
 - After validating the proposed method, we can assume that DANN is a suitable method
- Future Study
 - Construction of DANN regression model for clothing patterns