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Abstract. The ultimate goal of this study is to provide intuitive design support
for 3D objects. As a first attempt, we propose a method for estimating impressions
of common 3D objects with various characteristics. Although many studies have
been conducted to estimate objects’ aesthetics, not enough research has been con-
ducted to estimate the various impressions of objects necessary for design support.
The data set of human impressions of 3D objects is constructed based on psycho-
logical methods. To account for the variability in people’s ratings, the distribution
of ratings is represented by a histogram. By learning the distribution of impres-
sion ratings, with the estimation model, we can realize an impression estimation
model with high estimation accuracy. In the accuracy validation experiment, the
proposed method’s estimated results (estimated impression distribution) showed
a moderate to high positive correlation with the distribution of human impres-
sions. In addition, we confirmed that the proposed method has greater estimation
accuracy than previous studies and that it captures the tendency for variation in
people’s impression evaluations (the global tendency of impression distribution).
Furthermore, visual confirmation of the relationship between the estimation results
of the constructed impression estimation model and 3D objects suggests that the
proposed method is capable of identifying the main physical features associated
with impression words, confirming the proposed method’s validity.

Keywords: DNN · Impression estimation model ·Multi-viewpoint images ·
Kansei · Aesthetic concepts

1 Introduction

Since the fourth industrial revolution, the rapid development of 3D printer technology
and the spread of 3D model databases have created an environment for outputting a
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variety of 3D modeling objects. These changes in the environment provide a wide range
of users with opportunities for personal manufacturing activities. However, there are
challenges in the spread of personal manufacturing activities because many users do not
have specialized knowledge or skills in manufacturing. Even if users have latent needs
for design, it is not easy to reflect them in the form of an object. To provide a wide range
of users with opportunities for manufacturing activities in the future, it is necessary to
support users so that they can engage inmanufacturing intuitively and easily. As one such
support, a design support system that searches for and recommends 3D objects based on
words that express sensory impressions (e.g., “gay,” “hard-looking,” etc.) is considered
effective because impressionwords are intuitive and sensory to the user and easily express
the user’s latent needs. To realize these design support systems, it is necessary to map
the relationship between 3D objects’ physical features and the impressions the objects
evoke. Recently, many studies have been conducted on estimating objects’ aesthetics,
but these studies have dealt with preferences and feelings toward objects, and not enough
research has been conducted on estimating the impressions of objects.

The ultimate goal of this study is to provide intuitive design support for 3D objects,
and as a first attempt, we propose a method for estimating the impression of a 3D object.
Here, the impression of a 3D object is only based on shape and does not take into account
other factors, such as texture or color. For estimation, we use a multi-view convolutional
neural network (MVCNN), which takes as input a set of images rendered from multiple
viewpoints of a 3D object. The data set of people’s impressions of 3D objects is created
based on psychological methods. To account for the variation in people’s ratings, the
distribution of ratings is represented by a histogram. By learning the distribution of
ratings, the impression estimation model can achieve an estimation model that has a
high correlation with the human impression ratings. Finally, we confirm this study’s
effectiveness by conducting experiments to verify the proposed method’s accuracy.

2 Previous Research

Examples of research utilizing impressions of objects include retrieval technologies
that use words expressing impressions (hereafter referred to as “impression words”)
as queries [1–4]. All of these techniques are realized using the relationship between
the object’s physical characteristics and the impressions it evokes. Research on such
impression estimation has been conducted mainly on two-dimensional images, but there
are some reported cases of its application with 3D objects [5, 6]. However, these studies
used geometrically simple 3D objects, and no systematic results have been reported on
the impression evaluation of general 3D objects with various features.

On the other hand, research has been actively conducted to model human sensibil-
ities toward objects, such as preferences, aesthetic scores, and aesthetic values, using
deep-learning techniques [7–9]. However, in many fields, such as psychology, design,
and Kansei engineering, it is assumed that a clear distinction is made between the eval-
uator’s emotional response to an object, such as aesthetics, and the properties of the
object itself [10]. For example, aesthetic evaluations such as “beautiful” and “prefer-
ence” are mediated by more emotional reactions in the processing of information about
the object’s specific properties, such as “gay” and “hard-looking.” These properties of
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objects are called aesthetic concepts [11–13]. In an intuitive design support system, the
grasp of aesthetic concepts is indispensable for design creation using the object’s prop-
erties as a query. Only in a few studies have researchers used deep-learning techniques to
model aesthetic concepts. In this study, we define an aesthetic concept as an impression
and propose a method for estimating the impression of a 3D object by modeling the
relationship between its physical features and the impression of it using deep-learning
techniques.

Estimating impressions from 3D objects can be described as a recognition problem
based on classification and regression, in which the objective variable is the impression
evaluation value and the explanatory variable is the physical-feature value of the 3D
object. Although research on 3D-object recognition was initially focused on the design
of 3D features [14], recently, end-to-end learning and recognition methods using deep
neural networks (DNNs) have become mainstream. Recognition methods based on this
DNN can be roughly classified as RGBD-based [15, 16], Point Cloud-based [17, 18],
Voxel-based [19, 20], and multi-view-based [21, 22]. Currently, multi-view-based meth-
ods are considered more accurate than others in large-scale 3D-object recognition [23].
Studies of aesthetic estimation of 3D objects using MVCNN [21], a multi-view-based
method [9], have been reported. However, there have been no reports on impression
estimation of 3D objects. Therefore, we propose constructing an impression estimation
model for 3D objects.

In addition, for the selection of impression words to be used in the construction of the
impression estimation model, it is necessary to select impressions that are necessary and
sufficient for intuitive design support. We have conducted impression evaluation exper-
iments using various abstract shapes based on psychological methods and clarified the
structure of impression evaluation that can be common to various 3D shapes [10, 24]. In
this study, too, the quantification of impressions of 3D objects is based on psychological
methods and takes into account the structure of people’s evaluations of 3D objects. This
effort yields valid impression evaluation data. Furthermore, by using a multi-view-based
DNN, this data set is trained in an end-to-end manner to achieve impression estimation
of various 3D objects. The estimation model is constructed using 3D-model data sets
of multiple object categories with human impression evaluation data, and we will deter-
mine whether theMVCNN, which has shown high-quality performance in the 3D-object
recognition task, is also effective in the 3D-object impression estimation task.

3 Modeling the Relationships Between Visual Impressions
and Physical Characteristics

In this study, we propose an impression estimation method for 3D objects using a
multi-view convolutional neural network (MVCNN) [21]. Figure 1 shows the proposed
method’s basic design. First, we conduct impression evaluation experiments on 3D
objects to quantify the impressions 3D objects evokes. We use the resulting impres-
sion distribution as a supervisory signal for the model. The distribution of impressions
includes the variability of evaluations caused by differences in individuals’ sensory eval-
uation tendencies. Next, we create amulti-view image of a 3D object rendered frommul-
tiple viewpoints and used it as an input signal for the model. Finally, we use a MVCNN
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to model the relationship between the aforementioned input signal and the supervisory
signal to achieve impression estimation of the 3D object. The above basic design enables
us to verify the task of impression estimation of 3D objects using MVCNN.

Fig. 1. Overview of impression estimation of 3D objects

4 Building an Impression Estimation Model

4.1 Data Set

In this section, we show how to create the dataset needed to build the impression
estimation model.

Collection and Selection of 3DModel Data. We collected and selected 3Dmodel data.
To ensure the diversity and comprehensiveness of shape expressions, we collected 3D
models from ShapeNet [23], ModelNet40 [25], and CG DATA BANK [26], which are
large-scale databases of 3D models. As a result, we collected 3D model data from the
Car (632 models), Vase (575 models), and Chair categories (985 models).

Rendering a 3D Model Data for Multi-viewpoints Images and Stimulus Presenta-
tion Video. We used the 3D model to create experimental stimuli. There are two types
of experimental stimuli: multi-view images used as input signal for the estimation model
and images for impression evaluation experiments. We used the experimental images to
present to the subjects when they evaluated the impressions the 3D model evokes. The
common pre-processing for creating both experimental stimuli is shown below. First,
we obtained each 3D model’s size, and we standardized their sizes among the mod-
els by scale conversion based on the values. Next, we used the local reference frame
(LRF) to unify the 3D models’ postures. We describe the rendering method below. We
used Phong’s reflection model for rendering. We rendered the multi-view image from
each vertex of the dodecahedron in the direction of the center of gravity of the 3D
model encapsulated in the dodecahedron. In this way, we created a set of 20 multi-view
images. To render the experimental images, we set the camera position at 18° vertical
to the ground to capture the 3D model rotating in the horizontal direction.
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Assigning Impression Evaluation Values. To quantify the impressions of 3D objects,
we conducted impression evaluation experiments using the semantic differential method
(SD) based on the findings of previous studies [24]. We used three adjective pairs, “soft-
hard,” “gay-sober,” and “stable-stable,” as evaluation words. We selected these adjective
pairs based on the findings of a previous study [24] that the three factors (evaluation,
activity, and potency) [27] that frequently appear in SD studies also constitute the main
criteria for impressions of 3D shapes. In the evaluation of impressions, we presented the
images for the aforementioned impression evaluation experiment, and we evaluated the
impressions from various directions comprehensively. As a result of the experiment, we
obtained 7 levels (−3 to+3) of impression evaluation values for the three adjective pairs.
Next, we numerically assigned the seven ratings (−3 to +3) to class labels from 1 to 7,
and we used the discrete probability distributions as the impression distributions in the
3Dmodel. Because the number of raters differed among the samples, we normalized the
impression distribution by the number of raters in each sample. We used the normalized
impression distribution as the supervisory signal for the estimationmodel. Table 1 shows
the specification of the created data set.

In this study, we conducted the impression evaluation experiment by crowdsourcing,
so the evaluation data was cleaned from the content and response time of the subjects.
We describe the cleaning procedure below. (1) We designated experimental participants
who could not successfully complete the evaluation due to malfunction of the response
system or network conditions as unevaluated respondents and eliminated all of their
evaluation data. (2) We checked experimental participants who answered 0 (middle of
the 7-point scale: neither) to one or more models, and considered insincere respondents,
and all of their evaluation data were eliminated. (3) We checked the distribution of the
insincere respondents’ response time, and we designated the experimental participants
who finished their responses in 156 s or less, whichwas themost frequent value, as short-
time respondents and eliminated all of their evaluation data. As a result, of the 6101 total
respondents, 388 were unevaluated respondents, 628 were dishonest respondents, and
307 were short-time respondents, so the final number of valid respondents was 4778.

Table 1. Data set specifications

3D object category Car Vase Chair

Number of sample 632         575 985

Database ShapeNet, ModelNet40, CG DATA BANK

Number of evaluations per model 20-40 people

Experiment participants Men and women (ages 20-60)

Presentation format of the 3D 

model

Model rotation video

Evaluated word 3 adjective pairs 

Rating scale 7-step SD
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Table 2. Detail of DNN architecture

Layer Input size Output size Kernel Stride

CNN1 conv1 227 × 227 × 3 55 × 55 × 96 11 × 11 4

maxpool1 55 × 55 × 96 27 × 27 × 96 3 × 3 2

conv2 27 × 27 × 96 27 × 27 × 256 5 × 5 1

maxpool2 27 × 27 × 256 13 × 13 × 256 3 × 3 2

conv3 13 × 13 × 256 13 × 13 × 384 3 × 3 1

conv4 13 × 13 × 384 13 × 13 × 384 3 × 3 1

conv5 13 × 13 × 384 13 × 13 × 256 3 × 3 1

maxpool3 13 × 13 × 256 6 × 6 × 2526 3 × 3 2

View pooling 20 × 9216 9216 – –

CNN2 fc1 9216 4608 – –

fc2 4608 4608 – –

fc3 4608 7 – –

4.2 Training

In this study, we used a 3D model database (632 car categories, 575 vase categories,
and 985 chair categories) with the impression distribution shown in Sect. 4.1 for model
training and evaluation. We constructed the model using a total of nine combinations of
object categories and adjective pairs. For cross-validation, we divided the data set into
train, validation, and test (8:1:1) and adopted a 9-fold cross-validation.

Next, we describe the structure of the DNNs we used in the model (Table 2). The
structure of the CNN1 layer is based on AlexNet. The CNN1 layer shares the weights in
theCNN to be optimizedwith each viewpoint. The view-pooling layer smooths the image
features of each viewpoint output from the CNN1 layer into one dimension, combines
them in the row direction, and extracts the values of the viewpoint with the largest value
one column at a time. In other words, the view-pooling layer is responsible for selecting
the viewpoints that are effective for impression estimation. The activation function for
the output layer is the softmax function. We used Adam as the optimization algorithm
for training. To avoid the gradient vanishing problem that is a concern in DNNs, we used
rectified linear units as the activation function. The loss function is the cross-entropy
error. We set the learning rate to 0.001, the number of epochs to 300 for the Car and
Vase category and 200 for the Chair category.

5 Results and Discussions

To verify the proposed method’s effectiveness, we conducted a validation experiment
using several comparison methods, 3D ShapeNets [19], a Voxel-based method, and
single-view CNN (SVCNN), which inputs a single-view image to the proposed method.
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We used correlation coefficients and mean squared errors as evaluation measures of esti-
mation accuracy. We calculated the correlation coefficient by converting the distribution
of human impressions and the estimation results (estimated impression distribution) into
expected values.We calculated themean squared error from the sum of the errors of each
class in the human impression distribution and the estimated impression distribution.

Table 3. Average of Correlation coefficient (LCC) and Mean squared error (MSE)

Car

Method Input Format soft -hard gay-sober stable -unstable

Index - LCC MSE LCC MSE LCC MSE

3D ShapeNets voxel -0.10 0.06 0.07 0.09 0.01 0.07

SVCNN single-image 0.54 0.05 0.72 0.05 0.21 0.05

MVCNN multi-image 0.60 0.05 0.78 0.05 0.31 0.05

Vase

Method Input Format soft -hard gay-sober stable -unstable

Index - LCC MSE LCC MSE LCC MSE

3D ShapeNets voxel 0.01 0.08 0.07 0.09 -0.06 0.14

SVCNN single-image 0.32 0.05 0.48 0.05 0.65 0.06

MVCNN multi-image 0.46 0.04 0.54 0.04 0.74 0.05

Chair

Method Input Format soft -hard gay-sober stable -unstable

Index - LCC MSE LCC MSE LCC MSE

3D ShapeNets voxel 0.10 0.08 -0.28 0.11 0.16 0.09

SVCNN single-image 0.58 0.05 0.59 0.05 0.62 0.05

MVCNN multi-image 0.60 0.05 0.60 0.05 0.62 0.05

5.1 Overall Performance

Table 3 shows the average of the correlation coefficients and mean squared errors
obtained in each verification. Table 3 shows that the proposed method showed a strong
positive correlation in two of the nine conditions and a moderate positive correlation in
six conditions. We thus confirmed the proposed method’s practical effectiveness.

Next, we confirm the superiority of the proposed method over the comparison meth-
ods. The estimation accuracy of the proposed method is much better than that of 3D
ShapeNets. In the comparison between the proposed method and SVCNN, we con-
firmed that the accuracy of the proposed method is higher than that of SVCNN, although
the improvement is not as high as that of 3D ShapeNets. In particular, the correlation
coefficients of the proposed method improved by about 0.1, compared to SVCNN in
the “soft-hard” condition of the Vase category. In the next section, we will discuss the
comparison of methods and object categories.



350 K. Sakashita et al.

5.2 Comparison of the Proposed Method with Each Comparison Method

To compare the methods’ accuracy, we conducted a multiple comparison test using the
Dunnett method with the proposed method (MVCNN) as the control group and each
compared method as the treatment group. The alternative hypothesis is µc > µi (µc:
mean value of the correlation coefficient or mean square error of the control group, µi:
mean value of the correlation coefficient or mean square error of the treatment group).

First, we compare MVCNN to 3D ShapeNets. The results of the significance test
between the proposed method (MVCNN) and 3D ShapeNets showed that both indices
were significantly different (p<0.05) in 9out of 9 conditions.This result canbe attributed
to the fact thatMVCNN’s input signal has a higher resolution than that of 3D ShapeNets.
On the other hand, 3D ShapeNets is a method that shows a high recognition rate of
about 77% in the 3D object recognition task [19]. When we applied this method to the
impression estimation task, the estimation accuracy decreased significantly. This result
suggests that the impression estimation task requires a higher-resolution representation
of the object shape than the 3D object recognition task.

Next, we compare the MVCNN and the SVCNN. The results of the significance test
between the proposedmethod (MVCNN) and SVCNNdiffered in the evaluation indices.
The correlation coefficient showed a significant difference (p< 0.05) in five conditions.
In contrast, the mean squared error was not significantly different in all nine conditions.
These results can be attributed to the different nature of the two evaluation indices. In this
study, we calculated the correlation coefficient from the expected value of the separation
probability distribution. Because the expected value is weighted by the probability of
belonging to each class in the impression distribution, it is more suitable for evaluating
the global trend of the distribution than the mean square error. The fact that the proposed
method showed significant differences only in the correlation coefficient indicates that
the proposed method captures the global tendency of the impression distribution, i.e.,
the tendency of the variation of people’s impression evaluation, better than SVCNN. In
otherwords, we suggest that the proposedmethod captures the tendency of the variability
of human impression evaluation better by using the shape information from multiple
viewpoints rather than from a single viewpoint.

5.3 Comparison of Impression Estimates for Each Object Category

We focus on three object categories. In all object categories, the estimation accuracy of
the proposed method is better than that of SVCNN. However, there are some conditions
where the effect of using MVCNN is stronger and some conditions where it is weaker,
depending on the inherent properties and structures related to the shapes of the object
categories. Specifically, the estimation accuracy of the Car category and the Vase cate-
gory tends to be improved by using MVCNN, while the accuracy of the Chair category
remains unchanged. From these results, we can confirm that the proposed method is
superior to SVCNN, especially in the object category condition where the appearance
and impression of the shape changes depending on the viewpoint. We believe that quan-
tifying the impressions of 3D objects for each viewpoint and learning the distribution
of impressions will be effective in improving the estimation accuracy. Furthermore, the
introduction of an EMD-based loss function can be used to improve the accuracy [8].
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5.4 Relationship Between Estimated Evaluation Value and 3D Models

In this section, we will visually check the relationship between the model’s estimation
results and the 3D object’s shape.We assigned estimated evaluation values to the data for
test and converted them to expected values. For each combination of object category and
evaluation term, we adopted the model with the highest accuracy in the cross-validation
for estimation. For each object category, we sorted the expected values in descending
order and identified the top and bottom 15 samples. Figure 2, 3, and 4 show the results.

From the results in Fig. 2, we can see that the impression estimation model we have
developed is mainly based on the “soft-hard” condition of the Car category in terms of
shapes such as corners, straight lines, curves, and curved surfaces; the “gay-sober” con-
dition in terms of shapes such as overlapping surfaces and edges; the “stable-unstable”
condition was mainly characterized by characteristics such as height and length. Next,
with the results in Fig. 3, we confirmed that the “soft-hard” condition of the Vase cate-
gorywas characterizedmainly by the shapes of corners, straight lines, curves, and curved
surfaces and that the “gay-sober” condition was characterized mainly by the shapes of
overlapping surfaces and edges. Finally, from the results in Fig. 4, we confirmed that

Fig. 2. Top samples of estimation score for each impression word in car. The figure is sorted from
top left to bottom right in the order descending of estimation score for each impression word.
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Fig. 3. Top samples of estimation score for each impression word in vase. The figure is sorted
from top left to bottom right in the order descending of estimation score for each impression word.

the “soft-hard” condition of the Chair category was characterized mainly by the shape
of the corners, straight lines, curves, curved surfaces, etc. and that the “stable-unstable”
condition was characterized mainly by the bottom surface’s shape.

These results suggest that the “soft-hard” conditions are distinguished by the bottom
surface’s shape and the shape of the corners, straight lines, curves, and curved surfaces,
and the “gay-sober” condition is characterized by the shape of the overlapping surfaces
and edges. The fact that these impression evaluation criteria are common among object
categories suggests that the proposed method is capable of identifying the main physi-
cal features associated with the impression words. The interpretation of the relationship
between these physical features and impressionswas also reported in a study on the quan-
tification of the structure of human impression evaluation of 3D objects [28], confirming
our claim’s validity.
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Fig. 4. Top samples of estimation score for each impression word in chair. The figure is sorted
from top left to bottom right in the order descending of estimation score for each impression word.

On the other hand, some conditions made it difficult to interpret the relation-
ship between impressions and shape, such as Chair’s “gay-sober” and Vase’s “stable-
unstable” conditions. For such conditions, it is considered possible to capture the rela-
tionship visually between shape and impression by using visualization techniques such
as Grad-Cam [29], which can explain CNN’s decision criteria.

6 Conclusion

The ultimate goal of this study was to provide intuitive design support for 3D objects,
and as a first attempt, we proposed an impression estimation method for 3D objects. We
used a multi-view convolutional neural network to estimate impressions of various 3D
objects. For training and evaluation of the estimation model, we used 3D model data,
to which we added impression evaluation data. To ensure the validity of the impression
evaluation data, quantification of the impressions evoked by the 3D objects was based
on psychological methods.
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