
Hybrid Reasoning on a Bipolar Argumentation
Framework

Tatsuki Kawasaki, Sosuke Moriguchi, and Kazuko Takahashi

Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
dxk96093@kwansei.ac.jp, chiguri@acm.org, ktaka@kwansei.ac.jp

Abstract. We develop a method of reasoning using an incrementally
constructed bipolar argumentation framework (BAF) aiming to apply
computational argumentation to legal reasoning. A BAF that explains
the judgment of a certain case is constructed based on the user’s knowl-
edge and recognition. More specifically, a set of effective laws are de-
rived as the conclusions from evidential facts recognized by the user, in
a bottom-up manner; conversely, the evidences required to derive a new
conclusion are identified if certain conditions are added, in a top-down
manner. The BAF is incrementally constructed by repeated exercise of
this bidirectional reasoning. The method provides support for those who
are not familiar with the law, so that they can understand the judgment
process and identify strategies that might allow them to win their case.

Keywords: Argumentation, Bidirectional reasoning, Legal reasoning.

1 Introduction

An argumentation framework (AF) is a powerful tool in the context of incon-
sistent knowledge [15, 21]. There are several possible application areas of AFs,
including law [4, 20]. To date, research on applications has focused principally
on AF updating to yield an acceptable set of facts when a new argument is
presented, and strategies to win the argumentation when all of the dialog paths
are known. However, in real legal cases, an AF representing a law in its entirety
is usually incompletely grasped at the initial stage. Thus, it is more realistic to
construct the AF incrementally; recognized facts are added in combination with
AF reasoning.

For example, consider a case in which a person leased her house to another
person, and the lessee then sub-leased a room to his sister; the lessor now wants
to cancel the contract. (This is a simplified version of the case discussed in Satoh
et al. [23].) The lessor decides to prosecute the lessee. The lessor knows that there
was a lease, that they handed over the house to the lessee, and that the room
was handed over by the lessee to the sublessee. However, if the lessor is not
familiar with the law, she does not know what law might be applicable to her
circumstances or what additional facts should be proven to make it effective. In
addition, laws commonly include exceptions; that is, a law is effective if certain
conditions are satisfied provided there is no exception.

For example, if there is no abuse of confidence, then the law of cancellation is
not effective. Therefore, the lessor should check that there is “no abuse of confi-
dence,” as well as regarding facts that prove what must be proven. In addition,
other facts may be needed to prove that there has been no abuse of confidence.
Also, the presence of an exception may render another law effective. For those
lacking a legal background, it can be difficult to grasp the entire structure of
a particular law, which may be extensive and complicated. Thus, s/he often
consults with, or even fully delegates the problem-solving process to, a lawyer.
However, if the argumentation structure of the law was clear, s/he would be
more likely to adequately understand the judgment process, obviating the need
for a lawyer.

In this paper, we develop a bidirectional reasoning method using a bipolar
argumentation framework (BAF) [2] that is applicable to legal reasoning. In a
BAF, a general rule is represented as a support relation, and an exception as an
attack relation. The facts of a case become arguments that are not attacked or
supported by other arguments.

We explore the BAF in both a bottom-up and top-down manner, search for
effective laws based on proven facts, and identify the facts required for applica-
tion to other laws.

Beginning with the user-recognized facts of a specific case, laws that may
be effective are searched for using a bottom-up process. Next, new conclusions
are considered if specific conditions are satisfied. If such conclusions exist, the
required facts are then identified in a top-down manner, so that the conditions
are satisfied. If the existence of such facts can be proven, the facts are added as
evidence, and the next round then begins. The procedure terminates if the user is
satisfied with the conclusions obtained, or if no new conclusions are derived. By
repeating this process, a user can simulate and scrutinize the judgment process
to identify a strategy that may allow them to win the case.

This paper is organized as follows. In Section 2, we present the BAF, and
the semantics thereof. In Section 3, we describe how the law is interpreted and
represented using a BAF. In Section 4, we show the reasoning process of a BAF.
In Section 5, we discuss related works. Finally, in Section 6, we present our
conclusions and describe our planned future work.

2 Bipolar Argumentation Framework

A BAF is an extension of an AF in which the two relations of attack and support
are defined over a set of arguments [2]. We define a support relation between a
power set of arguments and a set of arguments; this differs from the common
support relation of a BAF, so that it corresponds to a legal structure.

Definition 1 (bipolar argumentation framework). A BAF is defined as a
triple ⟨AR,ATT ,SUP⟩, where AR is a finite set of arguments, ATT ⊆ AR×AR
and SUP ⊆ (2AR \ {∅})× AR. If (B,A) ∈ ATT, then B attacks A; if (A, A) ∈
SUP, then A supports A.

A BAF can be regarded as a directed graph where the nodes and edges
correspond to the arguments and the relations, respectively. Below, we represent
a BAF graphically; a simple solid arrow indicates a support relation, and a
straight arrow with a cutting edge indicates an attack relation. The dashed
rectangle shows a set of arguments supporting a certain argument; it is sometimes
omitted if the supporting set is a singleton.

Example 1. Figure 1 is a graphical representation of a BAF
⟨{a, b, c, d, e}, {(b, a), (e, d)}, {({c, d}, a)}⟩.

Fig. 1. Example of BAF.

Definition 2 (leaf). An argument that is neither attacked nor supported by
any other argument in a BAF is said to be a leaf of the BAF.

For a BAF ⟨AR,ATT ,SUP⟩, let → be a binary relation over AR as follows:

→= ATT ∪ {(A,B)|∃A ⊆ AR, A ∈ A ∧ (A, B) ∈ SUP}.

Definition 3 (acyclic). A BAF ⟨AR,ATT ,SUP⟩ is said to be acyclic if there
is no A ∈ AR such that (A,A) ∈→+, where →+ is a transitive closure of →.

We define semantics for the BAF based on labeling [9]. Usually, labeling is
a function from a set of arguments to {in, out , undec}, but undec is unneces-
sary here because we consider only acyclic BAFs. An argument labeled in is
considered an acceptable argument.

Definition 4 (labeling). For a BAF ⟨AR,ATT ,SUP⟩, a labeling L is a func-
tion from AR to {in, out}.

Labeling of a set of arguments proceeds as follows: L(A) = in if L(A) = in
for all A ∈ A; and L(A) = out otherwise.

Definition 5 (complete labeling). For a BAF baf = ⟨AR,ATT ,SUP⟩, la-
beling L is complete iff the following conditions are satisfied: for any argument
A ∈ AR, (i) L(A) = in if A is a leaf or (∀B ∈ AR; (B,A) ∈ ATT ⇒ L(B) =
out) ∧ (∃A ∈ 2AR; (A, A) ∈ SUP ∧ L(A) = in), (ii) L(A) = out otherwise.

If an argument is both attacked and supported, the attack is taken to be
stronger than the support. For any acyclic BAF, there is exactly one complete
labeling.

3 Description of Legal Knowledge in a BAF

In this paper, we consider an application of the Japanese civil code.
We assume that the BAFs are acyclic and that each law features both general

rules and exceptions. A law is effective if the conditions of the general rule are
satisfied unless an exception holds. We construct a BAF in which each condition
in a rule is represented by an argument; the general rules can be represented
by support relations, and the exceptions by attack relations. Therefore, our in-
terpretations of attack and support relations differ from those used in the other
BAFs. First, a support relation is defined as a binary relation of a power set and
a set of arguments, since if one of the conditions is not met, the law is ineffec-
tive. Second, an argument lacking support is labeled out , even if it is attacked
by an argument labeled out , since a law is not defined only by its exceptions
and any argument other than a leaf should have an argument that supports it.
The correspondence between the “acceptance” criterion of our BAF and that of
a logic program is shown in [17].

We assume that the entire set of laws can be represented by a BAF termed
a universal BAF, denoted as follows:

ubaf = ⟨UAR,UATT ,USUP⟩.

It is almost impossible for a person who is not an expert to understand all
of the laws. Therefore, we construct a specific BAF for each incident; relevant
evidential facts are disclosed, and applicable laws identified using the universal
BAF.

Definition 6 (existence/absence argument). For an argument A, an argu-
ment showing the existence of an evidential fact for A is termed an existence
argument and is denoted by ex(A); and an argument showing the absence of an
evidential fact for A is termed an absence argument and is denoted by ab(A).
These arguments are abbreviated as ex/ab arguments, respectively.

Definition 7 (consistent ex/ab arguments set). For a set of ex/ab argu-
ments S, if there does not exist an argument A that satisfies both ex(A) ∈ S and
ab(A) ∈ S, then S is said to be consistent.

Example 2. Figure 2 shows a BAF for the house lease case shown in Section 1,
together with the relevant ex/ab arguments.

In this Figure, ex(a1), ex(a2), and ex(a4) are existence arguments for agree-
ment of lease contract, handover to lessee, and handover to sublessee, respec-
tively; ab(b1) is an absence argument for fact of non abuse of confidence; and
no evidence is currently shown for the other leaves.

4 Reasoning Using the BAF

4.1 Outline

We employ a running example throughout this section.

Fig. 2. Example of a BAF for a house-lease case.

Example 3. We assume the existence of the universal BAF ubaf =
⟨UAR,UATT ,USUP⟩ shown in Figure 3.

Fig. 3. Example of a universal BAF ubaf .

Let Ex be a set of ex/ab arguments that is currently recognized by a user.
For either ex(A) or ab(A) of Ex , A ∈ UAR, and A is a leaf in ubaf .

Initially, a user recognizes a set of facts related to a certain incident. The
reasoning proceeds by repeating two methods in turn. The first is used is to derive
conclusions from the facts in a bottom-up manner, and the other is employed
to find the evidence needed to draw a new conclusion if certain other conditions
are met, this exercise proceeds in a top-down manner.

4.2 Bottom-up reasoning

In bottom-up reasoning, arguments are derived by following the support relations
from an ex/ab argument. The algorithm is shown in Algorithm 1.

Algorithm 1 BUP: find conclusions

Let Ex be a set of ex/ab arguments and AR = {A|ex(A) ∈ Ex} ∪ {A|ab(A) ∈ Ex}.
Find a pair of a set of arguments A ⊆ AR and an argument A ∈ UAR \ AR such
that (A, A) ∈ USUP .
while there exists such a pair (A, A) do

Set AR = AR ∪ {A}.
end while
Set SUP = USUP ∩ (2AR ×AR) ∪ {({ex(A)}, A)|ex(A) ∈ Ex}.
Set ATT = UATT ∩ (AR ×AR) ∪ {(ab(A), A)|ab(A) ∈ Ex}. Set AR = AR ∪ Ex .
Apply the complete labeling L to baf = ⟨AR,ATT ,SUP⟩.
Concl(Ex) = {A | L(A) = in ∧ ¬∃(A, B) ∈ SUP ;A ∈ A ⊆ AR}.
return Concl(Ex).

The resulting set of conclusions is the set of arguments that are acceptable,
and no more conclusions can be drawn from the currently known facts.

Example 4. (Cont’d) Let Ex be {ex(a1), ex(b1), ex(c1), ex(d1)}, and ubaf be a
BAF in Figure 3. Then, the BAF can be constructed using the process shown in
Figure 4(a) and (b); finally, baf 1 is obtained, and Concl(Ex) = {a, e} is derived
as the set of conclusions. The complete labeling of the BAF baf 1 is shown in
Figure 4(c).

(a) (b) (c)

Fig. 4. The bottom-up reasoning used to construct baf 1.

4.3 Top-down reasoning

On the other hand, we can seek additional facts that must be proven if a new
conclusion is to be derived. Here, we search for a new conclusion and a set of
supports, and identify the facts required to derive the arguments of the set.

Definition 8 (differential support pair, differential supporting set of
arguments, differentially supported argument). For a BAF baf =
⟨AR,ATT ,SUP⟩, if (A ∩ AR) ̸= ∅ ∧ (A ∩ AR) ̸= A ∧ (A, A) ∈ USUP, then
(A \AR, A) is said to be a differential support pair on baf . In addition, A \AR
and A are said to be a differential supporting set of arguments on baf , and a
differentially supported argument on baf , respectively.

Intuitively, differential support pair means that A cannot be derived using
the current BAF due to the lack of required conditions, but it can be derived if
all of the arguments in A \AR are accepted. In general, there may exist several
differential support pairs on any BAF.

Example 5. (Cont’d) For baf 1, we find differential support pair ({f, g}, l), be-
cause {e, f, g} ∩AR = {e} ̸= ∅ and ({e, f, g}, l) ∈ USUP (Figure 5).

Fig. 5. A differential support pair on baf 1: ({f, g}, l).

For a BAF baf = ⟨AR,ATT ,SUP⟩ and an argument A ∈ AR, we detect a set
of facts that satisfies L(A) = in. For an argument A, we check the conditions for
labeling of the arguments that attack A and the sets of arguments that support
A. This is achieved by repeatedly applying the following two algorithms: PC (A)
and NC (A), which are shown in Algorithm 2 and Algorithm 3, respectively. Note
that there is no argument that both lacks support and is attacked.

Then, discovery of the required facts proceeds using the algorithm shown in
Algorithm 4.

As a result, a set of ex/ab arguments is generated. An existence argument
ex(A) shows that the fact is required if L(A) = in is to hold, whereas an absence
argument ab(A) shows that the evidence is an obstacle to prove L(A) = in.

Example 6. (Cont’d) For a differential supporting set of arguments {f, g}, we
find Sol({f, g}) = PC(f) ∪ PC(g).
(i) PC(f) = {ex(f)}.
(ii) PC(g) = PC(h) = PC(h1) ∪ NC(j) (Figure 6). As for PC(h1), we obtain
{ex(h1)}. As forNC(j), we have two alternatives:NC(j1) and PC(k) (Figure 7).

Algorithm 2 PC (A): find required arguments for L(A) = in.

Let A be an argument in UAR.
if A is a leaf of ubaf then

Sol(A) = {ex(A)}.
else

Choose an arbitrary set of arguments A that satisfies (A, A) ∈ USUP .
Sol(A) =

∪
(B,A)∈UATT NC (B) ∪

∪
Ai∈A PC (Ai).

end if
return Sol(A).

Algorithm 3 NC (A): find required arguments for L(A) = out .

Let A be an argument in UAR.
if A is a leaf of ubaf then

Sol(A) = {ab(A)}.
else

Choose an arbitrary argument B that satisfies (B,A) ∈ UATT .
Let A1, . . . ,An be all sets of arguments such that (Ai, A) ∈ USUP(i = 1, . . . , n).
Choose an arbitrary argument Ai ∈ Ai (i = 1, . . . , n).
Either Sol(A) = PC (B)

or Sol(A) =
∪

i=1,...,n NC (Ai).
end if
return Sol(A).

Assume that we choose the condition NC(j1). Then, we find {ab(j1)} as
Sol(j1) (Figure 8). Finally, we obtain a set of required facts {ex(f), ex(h1),
ab(j1)} (Figure 9).

4.4 Hybrid reasoning

The algorithm used for hybrid reasoning is Algorithm 5.
As a result, the required facts are identified, and conclusions are derived from

these facts.

Example 7. (Cont’d) For a set of required facts {ex(f), ex(h1), ab(j1)}, assume
that a user has confirmed the existence of f and h1, and the absence of j1. Then,
we construct a new BAF baf 2 in a bottom-up manner from this set. Part of the
labeling of baf 2 is shown in Figure 10. Finally, we obtain a new conclusion set
Concl = {a, i, l}.

Algorithm 4 TDN: find required facts

Let baf = ⟨AR,ATT ,SUP⟩ be a BAF and A a differential supporting set of argu-
ments on baf .
Sol(A) =

∪
A∈A PC (A).

return Sol(A).

Fig. 6. Top-down reasoning: Both
NC(j) and PC(h1) are required.

Fig. 7. Top-down reasoning: Ei-
ther NC(j1) or PC(k) is required.

Fig. 8. Top-down reasoning: The situation when choosing NC(j1).

The hybrid algorithm is nondeterministic at several steps and there are mul-
tiple possible solutions.

Example 8. (Cont’d) Assume that we choose the condition PC(k) in Figure 7.
Then, we find {ex(k1)} as Sol(k1), and the set of required facts is {ex(f), ex(h1),
ex(k1)}. In this case, we construct the different BAF baf ′2 shown in Figure 11
after a second round of bottom-up reasoning. Strictly speaking, an argument j
and the attack relations (k, j) and (j, h) do not appear in baf ′2 because a new
argument is created by tracing only a support relation in BUP. However, it
is reasonable to show the attack relation traced in the TDN, considering that
the BAF is constructed based on the user’s current knowledge. Note that these
attacks do not affect the label L(h) = in.

4.5 Correctness

We now prove the validity of hybrid reasoning.
In the proof, we use the height of an argument in ubaf , as defined in [17].

Definition 9. For the acyclic universal BAF ubaf , the height of an argument
A is defined as follows:

– If A is a leaf, then the height of A is 0.
– If there are some arguments B such that (B,A) ∈→, then the height of A is

h+ 1, where h is the maximum height of this B.

Fig. 9. Top-down reasoning: Ex = {ex(f), ex(h1), ab(j1)}.

Algorithm 5 HR: hybrid reasoning

Let Ex be a set of ex/ab arguments in an initial state.
For Ex , obtain Concl(Ex) and a new baf by BUP.
while a user does not attain a goal that satisfies him/her, and TDN returns a
consistent solution with Ex do

For a baf and an arbitrary A on baf , obtain Sol(A) by TDN.
for each ex(A) or ab(A) in Sol(A) do

Ask the user to confirm that existence or absence.
if there exists a fact for A then

Set Ex = Ex ∪ {ex(A)}.
else

Set Ex = Ex ∪ {ab(A)}.
end if
Get Concl(Ex) and a new baf by BUP.

end for
end while

It is easy to show that the heights of arguments are definable when ubaf is
acyclic.

Here, we prove two specifications, one for a BUP, and the other for a TDN.
For a BUP, the built BAF includes arguments pertaining to the evidential facts
that the user recognizes. Notably, the acceptability of such arguments is the
same as that of the universal BAF.

Theorem 1. Assume that ubaf is acyclic. Let baf be built by BUP from Ex.
When UEx is defined as {ex(A)|ex(A) ∈ Ex} ∪ {ab(A)|A is a leaf of ubaf ∧
ex(A) ̸∈ Ex}, and LU is a complete labeling for ⟨UAR ∪ UEx ,UATT∪
{(ab(A), A)|ab(A) ∈ UEx},USUP ∪ {({ex(A)}, A)|ex(A) ∈ UEx}⟩, for any ar-
gument A ∈ UAR, A ∈ AR ∧ L(A) = LU (A), or A ̸∈ AR ∧ LU (A) = out.

Proof. We prove this by induction on the height of A. When A is a leaf, if
ex(A) ∈ Ex (i.e., ex(A) ∈ UEx), then A ∈ AR and L(A) = LU (A) = in. If
ex(A) ̸∈ Ex (i.e., ab(A) ∈ UEx), then LU (A) = out . In this case, if ab(A) ∈ Ex

Fig. 10. The BAF obtained after the second round of bottom-up reasoning: baf 2.

Fig. 11. The BAF obtained after the second round of bottom-up reasoning: baf ′2.

then A ∈ AR but L(A) = out , and, otherwise A ̸∈ AR. Both cases satisfy the
proposition.

Assume that A is not a leaf. If LU (A) = in, then there are some supports
(A, A) ∈ USUP such that LU (A) = in, and any attacks (B,A) ∈ UATT ,
LU (B) = out . From the induction hypothesis, for any C ∈ A, C ∈ AR, and
L(C) = in; and for any attackers B of A, L(B) = out or B ̸∈ AR. The definition
of BUP immediately shows that A ∈ AR, and therefore L(A) = in = LU (A).

Assume that LU (A) = out . If A ̸∈ AR, the proposition is satisfied. Otherwise,
A ∈ AR, and from the definition of BUP, there are some supports (A, A) such
thatA ⊆ AR, so A is not a leaf of baf . From LU (A) = out , there are some attacks
(B,A) ∈ UATT such that LU (B) = in, or for any supports (A, A) ∈ USUP ,
LU (A) = out (i.e., there exists C ∈ A such that LU (C) = out). From the
induction hypothesis, there are some attacks (B,A) ∈ UATT such that L(B) =
in, or for any supports (A, A) ∈ USUP , there exists C ∈ A such that C ̸∈ AR or

L(C) = out . For the former case, (B,A) ∈ ATT , and therefore L(A) = out . For
the latter case, for any (A, A) ∈ SUP , L(A) = out , and therefore L(A) = out .

From the above, A ∈ AR ∧ L(A) = LU (A), or A ̸∈ AR ∧ LU (A) = out . ⊓⊔

For a TDN, the facts found by PC (A) make the argument A acceptable.

Theorem 2. Assume that ubaf is acyclic and that A is an argument in UAR.
If Ex ∪ PC (A) is consistent and baf is built by BUP from Ex ∪ PC (A), then
A ∈ AR, and the complete labeling L satisfies L(A) = in. If Ex ∪ NC (A) is
consistent and baf is built by BUP from Ex ∪NC (A), then A ̸∈ AR, or A ∈ AR
and the complete labeling L satisfies L(A) = out.

Proof. We prove this by induction on the height of A. For the former case, assume
that Ex ∪ PC (A) is consistent. When A is a leaf (thus of height 0), PC (A) =
{ex(A)} (i.e., baf includes A and ex(A)), and therefore, L(A) = in. Other-
wise, for some A satisfying (A, A) ∈ USUP , PC (A) =

∪
(B,A)∈UATT NC (B) ∪∪

C∈A PC (C). For each B such that (B,A) ∈ ATT , NC (B) ⊆ PC (A), and
Ex ∪ NC (B) is thus consistent. As the height of B is less than that of A, from
the induction hypothesis, B ̸∈ AR or B ∈ AR but L(B) = out . In a similar
fashion, for each C ∈ A, C ∈ AR and L(C) = in, and therefore L(A) = in.
From the definitions of BUP and complete labeling, A ∈ AR and L(A) = in.

The proof for the case of NC (A) is the same. ⊓⊔

5 Related Works

Support relations play important roles in our approach. Such relations can be
interpreted in several ways [12]. Cayrol et al. defined several types of indirect
attacks by combining attacks with supports, and defined several types of exten-
sions in BAF [10]. Boella et al. revised the semantics by introducing different
meta-arguments and meta-supports [6]. Noueioua et al. developed a BAF that
considered a support relation to be a “necessity” relation [18]. C̆yras et al. consid-
ered that several semantics of a BAF could be captured using assumption-based
argumentation [13]. Brewka et al. developed an abstract dialectical framework
(ADF) as a generalization of Dung’s AF [7, 8]; a BAF was represented using an
ADF. These works focus on acceptance of arguments. Here, we define a support
relation and develop semantics that can represent a law.

Several authors have studied changes in AFs when arguments are added or
deleted [14]. Cayrol et al. investigated changes in acceptable arguments when an
argument was added to a current AF [11]. Baumann et al. developed a strategy
for AF diagnosis and repair, and explored the computational complexity thereof
[3]. Most research has focused on semantics, and changes in acceptable sets when
arguments are added/deleted. The computational complexity associated with
AF updating via argument addition/deletion is a significant issue [1]. Here, we
propose the reasoning based on an incrementally constructed BAF, potentially
broadening the applications of such frameworks. Complexity is not of concern;
we do not need to consider all possibilities since solutions can be derived from

a given universal BAF. However, it is possible to use efficient computational
methods when executing our algorithm.

Our reasoning mechanism may be considered a form of hypothetical rea-
soning, or an abduction, which is a method used to search for the set of facts
necessary to derive an observed conclusion [19]. In assumption-based argumen-
tation, abduction is used to explain a conclusion supported by an argument [5].
Combinations of abduction and argumentation have been discussed in several
works. Kakas et al. developed a method to determine the conditions that support
arguments [16]. Sakama studied an abduction in argumentation framework [22]
and proposed a method to search for the conditions explaining the justification
state. This may include removal of an argument if it is not justified. Also, a
computational method was developed by transforming an AF into a logic pro-
gram. In our approach, we do not remove arguments; instead, we add absence
arguments, which is equivalent to argument removal. It is reasonable to confirm
the existence or absence of evidential facts when aiming to establish whether a
certain law applies. The difference between the cited works and our method is
that, in the previous works, observations are given and the facts that can explain
those arguments are searched. In our case, potential conclusions justified by the
observed facts are not specified; instead, bidirectional reasoning is performed re-
peatedly to assemble a knowledge set in an incremental manner. In addition, the
purpose of our research is to support simulations. A minimal set of facts does not
necessarily yield the best solution, unlike the cases of conventional hypothetical
reasoning and common abduction.

6 Conclusion

In this paper, we developed a hybrid method featuring both bottom-up and
top-down reasoning using an incrementally constructed BAF. The method can
be applied to find a relevant law based on proven facts, and suggests facts that
might make another law applicable. The proposed method can support those
who are not familiar with a law through a simulation process, allowing a better
understanding of the law to be achieved, in addition to identifying potential
strategies for winning the case.

We are currently exploring reasoning processes that use three-valued repre-
sentation, of which undecided is one possible representation. In future, we plan
to implement visualization of our method.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Num-
ber JP17H06103.

References

1. Alfano, G., Greco, S. and Parisi, F.: A meta-argumentation approach for the effi-
cient computation of stable and preferred extensions in dynamic bipolar argumen-
tation frameworks. Intelligenza Artificiale, 12(2), 193–211 (2018).

2. Amgoud, L., Cayrol, C., Lagasquie-Schiex, M. C. and Livet, P.: On bipolarity in
argumentation frameworks. International Journal of Intelligent Systems, 23(10),
1062–1093 (2008).

3. Baumann, R. and Ulbricht, M.: If nothing is accepted - Repairing argumentation
frameworks. In Proc. of KR2010, 108–117 (2018).

4. Bench-Capon, T., Prakken H. and Sartor, G.: Argumentation in legal reasoning.
Argumentation in Artificial Intelligence, 363–382 (2009).

5. Bondarenko, A., Dung, P. M., Kowalski, R. and Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93,
63–101 (1997).

6. Boella, G., Gabbay, D. M., Torre, L. van der and Villata, S.: Support in abstract
argumentation In Proc. of COMMA2010, 40–51 (2010).

7. Brewka, G. and Woltran, S.: Abstract dialectical frameworks. In Proc. of KR2010,
102-111 (2010).

8. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P. and Woltran, S.: Abstract
dialectical frameworks revisited. In Proc. of IJCAI2013, 803–809 (2013).

9. Caminada, M.: On the issue of reinstatement in argumentation. In Proc. of
JELIA2006, 111–123 (2006).

10. Cayrol, C. and Lagasquie-Schiex, M.: On the acceptability of arguments in bipolar
argumentation frameworks. In Proc. of ECSQARU2005, 378–389 (2005).

11. Cayrol, C., de Saint-Cyr, F. D. and Lagasquie-Schiex, M.: Change in abstract
argumentation frameworks: Adding an argument. Journal of Artificial Intelligence
Research, 28, 49–84 (2010).

12. Cohen, A., Gottifredi, S., Garcia, A. and Simari, G.: A survey of different ap-
proaches to support in argumentation systems. The Knowledge Engineering Re-
view, 29(5), 513–550 (2013).

13. C̆yras, K., Schulz, C. and Toni, F.: Capturing bipolar argumentation in non-flat
assumption-based argumentation. In Proc. of PRIMA2017, 386–402 (2017).

14. Doutre, S. and Jean-Guyb, M.: Constraints and changes: A survey of abstract
argumentation dynamics. Argument an Computation, 9(3), 223–248 (2018).

15. Dung, P. M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77, 321–357 (1995).

16. Kakas, A. C. and Moraitis, P. Argumentative agent deliberation, roles and context.
Electronic Notes in Theoretical Computer Science, 70, 39–53 (2002).

17. Kawasaki, T., Moriguchi, S. and Takahashi, K.: Transformation from PROLEG to
a bipolar argumentation framework. In Proc. of SAFA2018, 36–47 (2018).

18. Nouioua, F. and Risch, V.: Argumentation framework with necessities. In Proc. of
SUM2011, 163–176 (2011).

19. Poole, D.: Logical framework for default reasoning. Artificial Intelligence,36, 27–47
(1988).

20. Prakken, H. and Sartor, G: Law and logic: A review from an argumentation per-
spective. Artificial Intelligence, 36, 214–245 (2015).

21. Rahwan, I. and Simari, G.(eds.): Argumentation in Artificial Intelligence, Springer
(2009).

22. Sakama, C: Abduction in argumentation frameworks. Journal of Applied Non-
Classical Logics, 28, 218–239 (2018).

23. Satoh, K. et al.: PROLEG: An Implementation of the Presupposed Ultimate Fact
Theory of Japanese Civil Code by PROLOG Technology. In JSAI-isAI 2010: New
Frontiers in Artificial Intelligence, 153–164 (2010).

