
PROBABILISTIC MODEL CHECKING OF AN AUTOMATIC
IDENTIFICATION SYSTEM

Takashi TOYOSHIMA
Graduate School of Science&Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, Hyogo, 669-1337, JAPAN

email: bwn21358@kwansei.ac.jp

Kazuko TAKAHASHI
School of Science&Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, Hyogo, 669-1337, JAPAN

email: ktaka@kwansei.ac.jp

ABSTRACT
This paper shows the analysis and verification of an Au-
tomatic Identification System (AIS) using a probabilistic
model checker. AIS is a communication system between
ships for safe sailing. Its communications are not interac-
tive, and hence ships may try to send messages at the same
time and be unaware that the messages have not been re-
ceived. If such communication failures occur frequently,
dangerous conditions will result. In actual practice, each
ship is assigned a turn for message transmission, and this
is determined probabilistically. However, neither the limit
of this probability nor the allowable rate of communication
failure is known. We construct several models with dif-
ferent strategies for this system, investigate the probability
that safety is ensured, and verify it.

KEY WORDS
AIS, model checking, PRISM, probability, formal method

1 Introduction

In 2002, the Marine Safety Association of the International
Marine Organization declared that every ship should be fit-
ted with the Automatic Identification System (AIS) with
data communication to ensure safety at sea. AIS is a ship-
to-ship communication system for ensuring nautical safety
[1]. It allows ships to communicate with other ships and
land-based facilities, periodically and automatically send-
ing and receiving information such as ship identification,
chart position, velocity, and so on. Use of AIS enables the
early detection of ships at night or in the shade of an island,
which is difficult to accomplish with radar alone. However,
the introduction of AIS is such a recent occurrence that its
effectiveness and possible drawbacks have not been ade-
quately analysed.

Because AIS communications are not interactive, si-
multaneous transmission of messages may occur. In such a
case, both messages are lost, and the senders are unaware
of this. To avoid this there is a reservation system, but there
is no verification of this system. In fact, ”double-booking”
does happen, but it has not been given serious consider-
ation. One reason for this is that it occurs infrequently
in practice, because the range of available times to send
a message is large compared to the number of ships. An-

other reason is that even if double-booking does occur, the
problem can be eliminated over the long run by changing
the ships’ transmission times. Thus, the problem seems to
be solved by introducing randomness rather than using a
complicated protocol. However, the probability and allow-
able rate of double-booking are unknown, and strict formal
analysis has not been done so far.

In this paper, we introduce a formal method of using
a probabilistic model checking tool to verify this system.
Formal methods are mathematically- or logically-based
techniques for the specification, development and verifica-
tion of software and hardware systems with its designer’s
intentions. They have been actively investigated as tools
for system verification, and good results have been ob-
tained. Model checking is one such formal method [2, 5]. It
utilises a state transition graph to describe the behaviourof
a system and verifies whether the given specifications are
satisfied by checking all possibilities. A number of tools
for model checking have been developed and are in wide
use including industrial applications [3, 4, 5]. These earlier
model checkers can handle the nondeterministic behaviour
of a system but not probabilistic behaviour. However, many
practical applications include probability in both their be-
haviour and their specifications: for example, “power off
occurs with probability 0.05” or “the reliability of packet
sending should be more than 99 percent.” This has led to
the development of model checkers that include probability
[8, 9, 11, 15, 16]. PRISM is one such probabilistic model
checker [11].

In this paper, we apply PRISM to the verification of
AIS. We focus on its reservation system and construct sev-
eral models. These models use different strategies for reser-
vation. We implement each, perform a probabilistic analy-
sis using PRISM, and compare the probabilities of the dif-
ferent strategies. We then investigate the probability that
safety is ensured, and verify it. The result of experiment
shows that we can propose a new protocol, not so compli-
cated, which improves an actual one. The experiment is
performed in small size of models, since this is a prelimi-
nary attempt to assure the effectiveness of these models.

The paper is organised as follows. In section 2 we
describe AIS. In section 3 we describe probabilistic model
checking. In section 4 we present the models for the AIS
reservation system. In section 5 we analyse the system and

reserve
this slot

reserve
a vacant slot

reserve
a vacant slot

time

ship A ship B ship C

Figure 1. AIS Communication: normal

verify its safety. In section 6 we show the discussion. Fi-
nally, in section 7 we present our conclusions.

2 Automatic Identification System

The AIS communication system uses the Self Organized
Time Division Multiple Access (SOTDMA) method. This
method defines each minute as one frame and each frame
is divided into 2250 slots. Each ship broadcasts a message
in some slot of every frame. If more than one ship trans-
mits a message in the same slot, data collision occurs and
the messages are lost. To avoid such collisions, each ship
reserves its own slot in the next frame.

Every ship has its own table in which the reservations
for the current frame and the next frame are written. When
its turn comes in the current frame, the ship sends a mes-
sage whilst reserving a slot in the next frame. When a ship
receives a message from another ship, it writes the informa-
tion in its own table and selects its next slot from amongst
the unoccupied ones. Basically the same slot is selected
before “the slot timeout,” a time limit imposed in advance.
After the slot time out, the nearest available slot is selected.

The entire ocean is divided into several smaller areas
with a base station and a different frequency is assigned for
each area. Only ships in the same area communicate. When
a ship moves from one area to another, it resets the current
table. Because the number of ships in an area changes fre-
quently, ships cannot determine their slots in advance, but
they do so frame by frame.

Figure 1 presents an example of the communication
procedure. To begin, shipA reserves its slot. It writes
the reservation in its own table and transmits its message.
When the other ships receive the message, they write it in
their respective tables. Then shipB reserves a vacant slot
in its own table. It writes the reservation in its table and
transmits its message. When the other ships receive the
message, they write it in their respective tables. ShipC
then proceeds similarly.

Communication in AIS is not interactive. It is accom-
plished by broadcasting. One ship cannot hear another’s
message whilst sending its own. This mechanism is differ-
ent from most multi-agent systems and network protocols,
which either have a common table or know the status of

time

ship A ship B ship C

C selects before
B’s broadcasting

Figure 2. AIS Communication: burst

a partner by receiving an acknowledgment. In AIS, each
ship has its own reservation table, and there is a time lag
between sending and receiving a message. This may re-
sult in more than one ship attempting to transmit informa-
tion at the same time. More serious, a ship has no aware-
ness of its own failed transmissions. The other ships are
aware that a message collision has occurred but do not
know which ships caused the collision. These situations
are calledbursts; if they continue, conditions will become
very dangerous because ships will not know the positions
of other ships.

Figure 2 presents an example of a burst. In this case,
shipC selects a vacant slot before receiving shipB’s mes-
sage. As a result,B andC reserve the same slot. Their
tables are different, but both of them believe their reserva-
tions have succeeded, and they attempt to transmit infor-
mation at the same time. This causes the burst.

3 A Probabilistic Model Checker

3.1 Model Specifications

PRISM is a probabilistic model checking tool developed
at the University of Birmingham [11]. It is designed to
handle unreliable or unpredictable phenomena which oc-
cur frequently in the real world. It is based on a Markov
chain that is a sequence of trials in which the probability of
any event depends only on the current state and not on pre-
vious states. PRISM supports three types of probabilistic
models: discrete Markov chains (DTMCs), Markov deci-
sion processes, and continuous-time Markov chains. In a
DTMC, time is modelled in discrete time steps, and the
transition probabilities are also discrete. Such processes
are suitable for analysing systems with simple probabilis-
tic behaviour and no concurrency. Markov decision pro-
cesses extend DTMCs by permitting a combination of non-
determinism and probability and are well suited to mod-
elling multiple probabilistic processes occurring in paral-
lel or cases in which some system parameters or environ-
mental behaviours are unknown. Continuous-time Markov
chains do not support nondeterminism but model time in a
continuous fashion. Here, we use DTMC.

The behaviour of multiple processes can be written as
a parallel composition of reactive modules. Each module
is defined by a set of finite-ranging variables, and its be-

1/2

1/2

1

1
S1

S2

S3

Figure 3. Example of the behaviour of probabilistic system

dtmc
module sample
q: bool init true;
r: bool init false;
[](r=false)->

1/2:(q’=true)&(r’=true) + 1/2:(q’= false)&(r’=true);
[](r=true) -> true;

endmodule

Figure 4. PRISM code for the system in Figure 3

haviour is described by a set of probabilistic guarded com-
mands.

For example, consider the transition system illustrated
in Figure 3. There are three states:S1, S2, andS3. ¬q∧¬r
holds onS1, ¬q ∧ r holds onS2, andq ∧ r holds onS3.
Transitions fromS1 to S2 and toS3 occur with the same
probability. The PRISM code for this system is shown in
Figure 4.

3.2 Property Specification

The properties of a model are specified in terms of Proba-
bilistic Computational Tree Logic (PCTL) for DTMC.

PCTL is an extension of CTL [2] so that probabilis-
tic events can be handled. An interpretation structure for
PCTL is a quadrupleK = 〈S, s0, T , L〉 whereS is a fi-
nite set of states,s0 ∈ S is an initial state,T is a transi-
tion probability functionT : S × S → [0, 1], and for all
s ∈ S,

∑
s′∈S T (s, s′) = 1, andL is a labelling func-

tion, L : S → 2A that assigns an atomic proposition to
each state.A pathσ from a states0 is an infinite sequence
of statess0 → s1 → . . . → sn → For each path
σ = s0, s1, . . . , the probability that a formula holds onσ is
computed byΠi=0(T (si, si+1)). PCTL formulas are inter-
preted over DTMCs, and the state transition is considered
to be a step.

Pure PCTL allows onlyU (until) as a temporal oper-
ator, but the current version of PRISM permits several ex-
tensions. We explain the syntax of PCTL in PRISM.

Letα be a propositional formula,p a probability (i.e.,
a number in the interval [0,1]),β ∈ {<,≤, >,≥}, andλ a
time step (i.e., a natural number or∞). Formulas in PRISM
are divided into two classes,state formulas(denoted byφ)
andpath formulas(denoted byψ), in a manner analogous
to CTL.

φ ::= α|¬φ|φ1 ∨ φ2|φ1 ∧ φ2|φ1 ⇒ φ2|Pβp[ψ]

ψ ::= Xφ|φ1U
≤λφ2|G

≤λφ|F≤λφ

Four temporal operators represent path properties:X
(next),U (until), G (globally), andF (eventually). Their
intuitive meanings are as follows:

• Xφ : φ holds in the next state.

• φ1U
≤λφ2: If φ2 holds withinλ steps from the current

state, thenφ1 is preserved until that state.

• G≤λφ: φ holds in all states withinλ steps from the
current state.

• F≤λφ: φ holds in some state withinλ steps from the
current state.

A probabilistic event is denoted byPβp[ψ], which
means that the path formulaψ occurs with probabilityβp.
For example,P≤0.25[G

≤10φ] means that “φ remains true
within 10 steps from a states with probability 0.25 or less.”
Herea statesmeans any state that appears within 10 steps,
unless a particular state is specified. Accordingly, this re-
ally means that “for every states, φ remains true within
10 steps froms with probability 0.25 or less.” In contrast,
φ′ ⇒ Pβp[ψ] means that “for every state in whichφ′ holds,
ψ occurs from this state with probabilityβp”. It is also per-
missible to write this in the form′′name′′ ⇒ Pβp[ψ] by
giving the name “name” to the state that satisfiesφ′.

Consider the following two properties of the state
transition system shown in Figure 3.

1. P≥0.5[G
≤2q]

q holds on the subsequent two states with probability
0.5 or more.

2. P≤0.5[G
≤2q]

q holds on the subsequent two states with probability
0.5 or less.

If we verify these properties, PRISM returns FALSE
for both cases. This is correct, although it is counterintu-
itive. If stateS1 is regarded as an initial state, then[G≤2q]
holds with probability 0. If stateS2 is regarded as an initial
state, then[G≤2q] holds with probability 1. It follows that
neither property holds for every state.

PRISM also computes the probability thatψ holds,
denoted byP =?[ψ]. It does this by examining all paths
starting from every state. For example,P =?[F≤10[φ]]
means that “for every states, compute the probability thatφ
holds within 10 steps froms.” The probability is computed
independently for every state, and all results are stored in
a log file. The user can inspect the log file, but only one
case is displayed on the console. For example, consider the
following property of the state transition system shown in
Figure 3:

P =?[G≤2q]
This expression means “compute the probability that

q continues to hold in the subsequent two states.” If, for

example, the value 0.5 is displayed as a result, it represents
the probability whenS1 is regarded as an initial state.

If P =?[ψ {φ′}] is entered, PRISM examines all
paths starting from every state in whichφ′ holds. It is also
permissible to write this in the formP =?[ψ {”name′′}]
by giving the name“name” to the state that satisfiesφ′.

3.3 Tools

PRISM provides several GUI tools, including a graphic
representation of the simulation analysis. In principle, it
is impossible to generate a counterexample when verifica-
tion fails, because all paths are considered in computing a
probability, and a single path cannot be chosen. Hence, one
is obliged to determine the reason for failure by inspecting
the log file. In a sense, this is a drawback of PRISM as a
model checker, because it does not identify the part to be
corrected. Instead, it affords a view-specific trace of model
execution, which is very useful for debugging.

4 System Modelling

We construct several models for a reservation system de-
scribed in section 2. To avoid state explosion during the
execution, we simplify the model in two respects. First, we
ignore information other than slot reservation information.
Second, we construct a synchronous model, whereas the
actual system behaves asynchronously. In the actual sys-
tem, each ship refers to its own table and determines the
next slot asynchronously, prior to message transmission.
The table is updated incrementally. In our model, each ship
refers to its own table in the current frame and determines
the next slot synchronously.

We construct a modelreal which simulates the be-
haviour of the actual reservation system most closely. “The
slot timeout” is set to six.

real: Set pt = 0.8 − 0.16t (t = 0, 1, 2, . . .) and pt =
pt′ if t = t′(mod 6). The same slot is selected with
probabilitypt and the adjacent slots are selected both
with probability(1 − pt)/2 at each stept.

Note that if the number of slots is large, the probabil-
ity of a burst is low, but it is never equal to 0.

We also constructstrategic modelsthat execute the
following functions:

• avoiding slots that are already reserved by other ships,

• performing cyclic reservation,

• adding the probabilistic factor.

A slot is referred to by its position. If there arek slots,
the first slot is on the right, and thek-th slot is on the left.
(k+1)-th slot is identified with the first slot. The(i+ j)-th
and(i − j)-th slots are said to ben-neighbours of thei-th
slot when1 ≤ j ≤ n(< k).

In our strategic models, each ship compares the num-
bers of occupied slots withinn-neighbours on either side
of the slot which is occupied by itself in the current frame
(calleda current slot). The adjacent slot on the less con-
gested side is selected with probabilityp, and the current
slot and the adjacent slot on the other side are selected both
with probability(1− p)/2. If the number of occupied slots
is the same on both sides, one of these three slots is selected
at random.

We construct four strategic models based on different
strategies:

prob1: probabilistic 1-neighbour model (n = 1, p = 0.8)

det1: deterministic 1-neighbour model (n = 1, p = 1)

prob2: probabilistic 2-neighbour model(n = 2, p = 0.8)

det2: deterministic 2-neighbour model (n = 2, p = 1)

We perform the analysis and verification for each
model using PRISM, and investigate their effectiveness.

5 Analysis and Verification

We first compute and analyse probabilities for several spec-
ifications, and then verify the specifications with proba-
bilities. In the process of computation and analysis, the
probability of the occurrence of an event for a particu-
lar state is calculated and analysed independently, whereas
in the process of verification, the corresponding probabil-
ity for all states is used. The version of PRISM used is
PRISM3.3beta.

5.1 Computation and Analysis

Taking into account the actual ratio of the number of ships
to the number of slots, we set the number of ships equal to
3 and the number of slots equal to 10 and 15. The slots oc-
cupied by three ships are represented by an ordered triple.
Four patterns, (1,2,3), (1,3,5), (1,3,7), and (1,4,7), areused
as the initial state. The objective of the analysis is to in-
spect the probability for each data set and find the strategy
that yields the lowest probability that a burst will occur. We
give the name “bst” to a state in which a burst occurs and
“init” to an initial state.bst sum is a variable denoting the
number of “bst” states.

spec1 P =?[trueU≤20bst sum ≥ 5 {“init′′}]
First, we compute the probability that a burst occurs

more than five times within 20 steps, since burst should be
avoided as much as possible.

The results for 10 slots are shown in Figure 5.
For the four strategic models, the probability does not

exceed 0.09. In contrast, the probability is 0.7 for the real
model (data not shown in the graph). This demonstrates
that the strategic models are much more effective than the
real model. The more sparsely occupied the slots in the ini-
tial state, the better the results. Hence, when the selected

Figure 5. Computed probabilities (spec 1)

slots are congested, a burst is more likely to occur. Deter-
ministic selection produces better results than probabilistic
selection, and the 2-neighbour strategy yields better results
than the 1-neighbour strategy. These observations seem to
imply that slot inspection over a wider range produces bet-
ter results, but this is not always the case. Suppose a 3-
neighbour strategy is adopted. When thei-th slot is the
target slot, and the(i−1)-th, (i+2)-th, and(i+3)-th slots
are all occupied, the(i − 1)-th slot will be selected as the
next slot, resulting in a burst. It follows that a 3-neighbour
strategy is too wide for this situation, and a suitable number
of neighbours should be determined in accordance with the
number of slots.

If the number of slots is chosen to be 15, the proba-
bility is lower for all models than when the number of slots
is 10.

spec2 P =?[G≤2“bst′′ {′′bst′′}]
Second, we compute the probability of two subse-

quent occurrences of burst, since the system should not re-
main in a state of burst.

In this case, the initial state is chosen randomly, be-
cause the probability does not depend on the initial condi-
tions.

The results for 10 slots are shown in Figure 6.

Figure 6. Computed probabilities (spec 2)

Comparing the determistic selection and probabilistic
selection, the former yieds better results. The result of the
real model is worst. In strategic models, the less congested
side is selected by inspecting the neighborhood when burst
occurs, while the situation of congestion is ignored in the
real model. This result shows the effectiveness of neigh-
borhood inspection. There is little difference between the
1-neighbour strategy and the 2-neighbour strategy.

If the number of slots is chosen to be 15, the proba-
bilities are almost the same as when the number of slots is
10.

spec3 P =?[G≤10bst sum = 0 {′′init′′}]

Third, we compute the probability that a burst never
occurs within 10 steps.

The results for 10 slots are shown in Figure 7.

Figure 7. Computed probabilities (spec 3)

The probability is higher in the strategic models than
that for the real model. Specifically, when the selection
is deterministic, the probability is almost equal to 1. This
means that a burst can be avoided with high probability in
the strategic models. The 2-neighbour strategy yields bet-
ter results than the 1-neighbour strategy, and this is because
the congested part of a frame can be detected early by in-
specting a wider range of slots; hence, burst is more likely
to be avoided.

If the number of slots is chosen to be 15, the proba-
bilities are slightly higher than when the number of slots is
10, because the density of selected slots is lower.

In Table 1, the probabilities for all the strategies are
compared. In this table, ”prob” denotes probabilistic selec-
tion and ”det” denotes deterministic selection. Inequality
symbols indicate which strategy or pattern yields a better
result. The symbol≪ indicates that the strategy on the
right produces much better results than the strategy on the
left, whereas≈ indicates that the results of both strategies
are nearly the same. From this table, the following obser-
vations can be made:

• Deterministic selection is better than probabilistic se-
lection.

spec selection n-neighbour init #slots probability
prob det 1 2 sparce congested10 15 strategic real

1 ≪ ≪ > < 0.0001-0.09 0.70
2 ≪ > − ≈ 0.16-0.15 0.87
3 < < > < 0.45-1.0 0.30

Table 1. Comparison of strategies (analysis)

• When the initial state is sparsely occupied, better re-
sults are obtained.

• When the number of slots is larger, better results are
obtained.

• The strategic models are more advantageous than the
real model in all cases.

5.2 Verification

To verify that communication succeeds with high probabil-
ity, we break down this requirement into three more spe-
cific ones based on the analysis: (i) A burst seldom occurs.
(ii) A subsequent burst seldom occurs. (iii) A burst seldom
occurs following a burst-free state. The number of ships is
three, and the number of slots is 10.

spec4 P≥X [F≤N ¬′′bst′′]
First, we verify that successful communication has a

probability ofX or more. The specification signifies that
the property holds for every state.

The verification is performed forN = 3 andN = 20
and for various values ofX .

Table 2 displays the results for spec 4. In the table,
the figures in the TRUE column are the minimum values of
X when TRUE is returned, and the figures in the FALSE
column are the maximum values ofX when FALSE is re-
turned. Hence, the probability threshold is between these
values.

model (N=3) (N=20)
TRUE FALSE TRUE

prob1 0.78 0.79 0.99
det1 0.71 0.72 0.99

prob2 0.74 0.75 0.99
det2 0.71 0.72 0.99
real 0.31 0.32 0.99

Table 2. Verification results (spec 4)

WhenN = 3, the probability is more than 0.71 in
the strategic models, which means that there exists a state
in which the property does not hold. Amongst the strate-
gic models, probabilistic selection yields slightly better re-
sults than deterministic selection. The reason for this is ex-
plained as follows. When multiple ships reserve the same

slot in the current state, they all behave in the same way,
i.e., all of them select the same slot on the non-congested
side as the next slot. Hence, another burst occurs. If the
occupancies of the leftn-neighbour and that of the right
n-neighbour are the same, slot selection among the current
one and the adjacent ones is performed at random. This is
the only case in which burst disappears in the determinis-
tic selection. When a burst state or a high-density state is
chosen as the initial state, a factor of randomness should
be added to avoid repetition of the same behaviour. This is
why the probabilistic selection produces better results. The
2-neighbour strategy yields slightly better results than the
1-neighbour strategy.

WhenN = 20, the communication is almost always
successful at least once, and this implies that 20 frames are
adequate to ensure safety when there are three ships and 10
slots.

spec5 ′′bst′′ ⇒ P≤X [G≤N ′′bst′′]
Second, we verify that if a burst occurs, there is a

probability ofX or less that it continues to occur in the
subsequentN frames.

Table 3 displays the results for spec 5. In the table,
the figures in the TRUE column are the maximum values
ofX when TRUE is returned, and the figures in the FALSE
column are the minumim values ofX when FALSE is re-
turned.

model (N=3) (N=20)
TRUE FALSE TRUE

prob1 0.25 0.24 0.01
det1 0.29 0.28 0.01

prob2 0.29 0.28 0.01
det2 0.29 0.28 0.01
real 0.79 0.78 0.01

Table 3. Verification results (spec 5)

WhenN = 3, the probability is less than 0.29 for
the strategic models while it is less than 0.79 for the real
model. Amongst the strategic models, prob1 produces the
best result, although it is not significantly better than those
of the other strategic models. The number ofn-neighbours
has little effect.

WhenN = 20, a subsequent burst almost never oc-
curs in all models; this means that 20 frames are adequate
to ensure safety when there are three ships and 10 slots.

spec6 ¬′′bst′′ ⇒ P≤X [F≤N “bst′′]
Third, we verify that the probability isX or less that

a burst occurs following the state without a burst.
Table 4 shows the result of spec 6. In the table, the

figures in the TRUE column are the maximum values of
X when TRUE is returned, and the figures in the FALSE
column are the minumim values ofX when FALSE is re-
turned.

model (N=3) (N=20)
TRUE FALSE TRUE FALSE

prob1 0.4 0.39 0.75 0.74
det1 0.21 0.2 0.3 0.29

prob2 0.21 0.2 0.45 0.44
det2 0.13 0.12 0.12 0.11
real 0.95 0.94 0.999 0.99

Table 4. Verification results (spec 6)

All of the strategic models produce better results than
the real model. Amongst the strategic models, determin-
istic selection yields better results than probabilistic selec-
tion. The 2-neighbour strategy yields better results than the
1-neighbour strategy. The reasons for these results are the
same as in the case of spec 3.

If deterministic selection is used, the probability is al-
most the same for bothN = 3 andN = 20. This im-
plies that a burst can be avoided if it does not occur at an
early stage, and that the states will be stable afterward. In
contrast, if probabilistic selection is used, the probability
is much higher whenN = 20 than whenN = 3. This
implies that randomness causes a burst to occur.

5.3 Evaluation

We present an evaluation of all experimental results. In
Table 5, the verification strategies are compared. From this
table, the following observations can be made:

• Once a burst has occurred, it is better to select a slot
probabilistically.

• If a burst does not occur, it is better to select a slot
deterministically.

• In general, the 2-neighbour strategy is better than the
1-neighbour strategy.

• Even if bursts occur, most will disappear within 20
frames.

• The strategic models are more advantageous than the
real model in all cases.

WhenN = 3, with prob1, the probability that a burst
occurs is more than 0.78, and the probability of two subse-
quent bursts is less than 0.25. These are the best results for
spec 4 and spec 5, but they differ little from the results of

the other models. However, with det2, the probability that
a burst occurs following a burst-free state is less than 0.13.
This is the best result for spec 6, and it differs greatly from
the results of the other models.

WhenN = 20, the probabilities are 0.99 for spec 4
and 0.01 for spec 5 in all models including the real model.

Overall, det2 offers the best strategy. Although it is
not guaranteed to be effective if the number of slots or the
number of ships is changed, it does suggest that there may
be a better strategy than the one currently in use.

6 Discussion

There have been few studies of the safety of AIS via formal
methods. The primary drawback of this communication
system is that ships cannot be sure whether their messages
have been successfully transmitted. This communication
mechanism resembles that of the network communication
protocol CSMA/CD. In CSMA/CD, there is a certain prob-
ability that a message may be lost, but the sender is not
directly aware of the failure. The failure is known only by
timeout, and several attempts are made to send the mes-
sage. This behaviour has been modelled, and the relation-
ship between message collisions and delay has been anal-
ysed probabilistically with PRISM [6, 10]. The difference
between our works and theirs is that each ship knows the
state of the current reservation of other ships and that state
effects on its next behavior in the strategic models in AIS,
whereas processes communicating by a unique channel do
not know the states of other processes in CSMA/CD. That
is, behaviors of processes directly affect those of other pro-
cesses in AIS, which is almost impossible to compute the
probability in a long term manually.

Several case studies of PRISM have been per-
formed: systems biology, communication protocols, dy-
namic power management and so on [13]. However, in
these works, the emphasis has been on analysis rather than
verification and there has not yet been sufficient discussion
of how probabilistic systems should be handled by a proba-
bilistic model checker. In this paper, we have demonstrated
the use of PRISM first for independently computing a prob-
ability for a single initial state with varied parameters and
then for verifying a specification for all initial states.

Many practical systems have probabilistic factors in
their behaviour. For simple behaviour, one can manually
compute the probability that a specific event occurs. How-
ever, this procedure is annoying and is often beset with
errors, especially when a complicated system or multiple
conditional behaviours are involved. Moreover, the corre-
spondence between an event and a behaviour at each state is
not always clear from manual calculations. A probabilistic
model checker is a powerful tool since it computes proba-
bilities in accordance with behaviour analysis, and it also
guarantees the correctness of the behaviour.

spec N = 3 N = 20
selection n-neighbour model selection n-neighbour model
prob det 1 2 strategic real prob det 1 2 strategic real

4 > > ≫ ≈ ≈ ≈
5 > > ≫ ≈ ≈ ≈
6 ≪ ≪ ≫ ≪ ≈ ≫

Table 5. Comparison of strategies (verification)

7 Conclusion

We have presented an analysis and verification of AIS using
the probabilistic model checker PRISM. It has shown that
the actual AIS protocol can be improved. Our contributions
are twofold: we are first to apply a formal method to AIS
which requires safe behaviour at high probability, and we
have given an effective usage of verification procedure for
probabilistic systems in a probabilistic model checker.

PRISM is said to be capable of handling109

states [11]. However, in principle the system constructs
models for all reachable states and explores them, and this
can readily result in state explosion. When asynchronous
behaviour is involved, the problem becomes serious. Re-
cently, state reduction methods in PRISM have been pro-
posed [12, 14]. This reduction calledsymmetry redution
can be used for AIS, since ships in AIS is interchangeable
and the frame has a cyclic structure. It is prosperous that
this enables verification on a factorially smaller model. In
future, we will apply the strategic models up to a realistic
problem size and perform verifiction on the reduced model.

References

[1] Japan Coast Guard:AIS: Universal Ship-Borne Automatic
Identification System(1999).

[2] Bérard,B., M.Bidoit, A.Finkel, F.Laroussibie, A.Petrucci,
Ph.Schnoebelen and P.Mckenzie:Systems and Software
Verification - Model-Checking Techniques and Tools -.
Springer (1999).

[3] Behrmann,G. A.David and K.Larsen: A Tutorial on UP-
PAAL. Formal Methods for the Design of Real-Time Sys-
tems Information, pp.200-236 (2004).

[4] Cimatti,A., E.Clarke, E.Giunchiglia, F.Giunchiglia,
M.Pistore, M.Roveri, R.Sebastiani and A.Tacchella:
NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In Proc. of International Conference on
Computer-Aided Verification (CAV 2002), pp.27-31 (2002).

[5] Clarke,E., O.Grumberg and D.A.Peled:Model checking,
Computer Performance Evaluation: Modeling Techniques
and Tools. The MIT Press (2001).

[6] Duflot,M., L.Fribourg, T.Herault, R.Lassaigne,
F.Magniette, S.Messika, S.Peyronnet and C.Picaronny:
Probabilistic Model Checking of the CSMA/CD Protocol

Using PRISM and APMC.Electronic Notes in Theoretical
Computer Science, Vol. 128, No. 6, pp.195-214 (2005).

[7] Hansson,M. and B.Jonsson: A Logic for Reasoning about
Time and Reliability.Formal Aspects of Computing, Vol. 6,
pp.512-535 (1994).

[8] Herault,T., R.Lassaigne, F.Maniette and S.Peyronnet:Ap-
proximate Probabilistic Model Checking. InProc. of Fifth
International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI04), pp.73-84 (2004).

[9] Hermanns,H., J-P.Katoen, J.Meyer-Kayser and M.Siegel: A
Markov Chain model Checker. In6th International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS00), pp.347-362 (2000).

[10] Kwiatkowska,M., G.Norman and J.Sproston: Probabilis-
tic Model Checking of the IEEE802.11 Wireless Local
Area Network Protocol. InSecond International Workshop
PAPMPROBMIV 2002, pp.169-187 (2002).

[11] Kwiatkowska,M., G.Norman and D.Parker: PRISM: Prob-
abilistic Symbolic Model Checker. InComputer Per-
formance Evaluation: Modeling Techniques and Tools.
pp.113-140 (2002).

[12] Kwiatkowska,M., G.Norman and D.Parker: Probabilis-
tic Model Checking in Practice: Case Studies with
PRISM. ACM SIGMETRICS Performance Evaluation Re-
view, Vol.32, No.4, pp.16-21(2005).

[13] Kwiatkowska,M., G.Norman and D.Parker: Symmetry Re-
duction for Probabilistic Model Checking. In18th Confer-
ence on Computer Aided Verification (CAV06), pp.234-248
(2006).

[14] Kattenbelt,K., M.Kwiatkowska, G.Norman and D.Parker:
Game-Based Predicate Abstraction in PRISM.Proc. of 6th
Workshop on Quantitative Aspects of Programming Lan-
guages (QAPL08), pp.5-21 (2008).

[15] Sen,K., M. Viswanathan and G. Agha: On Statistical Model
Checking of Stochastic Systems. In17th Conference on
Computer Aided Verification (CAV05), pp.266-280 (2005).

[16] Younes,H:: Ymer: A Statistical Model Checker. In17th
International Conference on Computer Aided Verification
(CAV05), pp.429-433 (2005).

