
Data Conversion Method between a Natural

Number and a Binary Tree for an Inductive

Proof and Its Application

Kazuko Takahashi1, Shizuo Yoshimaru1∗

and Mizuki Goto1

1 School of Science and Technology, Kwansei Gakuin University
ktaka@kwansei.ac.jp

2 School of Science and Technology, Kwansei Gakuin University
shizuo.yoshimaru@gmail.com

3 School of Science and Technology, Kwansei Gakuin University
bub85144@kwansei.ac.jp

Abstract

This paper presents modeling of a binary tree that represents a natural number and
gives an inductive proof for its properties using theorem provers. We define a function for
converting data from a natural number into a binary tree and give an inductive proof for
its well-definedness. We formalize this method, develop a computational model based on
it, and apply it to an electronic cash protocol. We also define the payment function on
the binary tree and go on to prove the divisibility of electronic cash using the theorem
provers Isabelle/HOL and Coq, respectively. Furthermore, we discuss the effectiveness of
this method.

1 Introduction

Theorem proving is an important technique to provide a certified system or to ensure bug-
free programming. Several theorem provers, which may be called proof assistants, have been
developed, including ACL2 [11], PVS [19], Isabelle/HOL [16], Coq [4], Agda [17], and so on.
These tools help users to develop formal proofs, either interactively or semi-automatically,
typically using induction as the proof strategy. There are numerous applications for such
provers. There are relatively few practical applications of these tools in most fields compared
to their use in pure mathematics, although there are some outstanding results in microprocessor
design [10], C compilers [14], operating system kernels [12], security protocols [1], and secure
card systems [3, 13]. To use these provers successfully, it is necessary to construct a suitable
model and then select an appropriate proof strategy. In practical applications it may be difficult
to form a natural inductive model, and so it may be necessary to build a data structure, which
can be difficult for these provers to handle.

We have previously attempted to prove the divisibility of an electronic cash protocol [21]. In
this experience, we have encountered difficulties in proving the properties regarding the function
that converts a natural number to a binary tree. The binary tree is a complete binary tree,
where a Boolean value is attached to each node, and the value of which is defined as a sum of
the value of the left and right subtrees. The problem can be reduced to the fact that there exists
a function that cannot be defined in a primitive recursive form on an inductively defined data
structure. Because a natural number has a linear structure with only one successor, whereas a

∗Currently, Nochu Information System Co.,LTD.

L. Kovacs, T. Kutsia (eds.), SCSS 2013 (EPiC Series, vol. 123), pp. 93–107 93

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

binary tree has a branching structure with two successors at each branching point, the induction
schemes are different, which complicates the proof.

To solve this problem, we introduced a bit sequence as an intermediate data structure, and
defined the function from a natural number to a binary tree as a composition of two recursive
functions via a bit sequence. Specifically, the first function describes the mapping from a
natural number to an intermediate bit sequence and the second function is the mapping from
the bit sequence to the binary tree. We formalized this model and associated proof method, and
applied it to the divisibility of an electronic cash protocol using Isabelle/HOL. However, this
previous work had several drawbacks. First, the model was complicated, because of an intricate
labeling for the nodes of a tree; a simpler and more natural model for this specific binary tree
has subsequently been identified. Second, the proof was incomplete, as one of the lemmas that
relates the bit sequence to the binary tree was left as an axiom. Third, the effectiveness of the
method was not discussed; we did not know whether this method could be applied similarly
with theorem provers other than Isabelle/HOL, or whether a large number of modifications
would be required. In this paper, we provide a simplified model, give complete proofs of the
divisibility using the theorem provers Isabelle/HOL and Coq, and discuss the effectiveness of
the method.

The rest of this paper is organized as follows. In Section 2, we describe in detail the problems
of data conversion and our solution. In Sections 3 and 4, we present a formalization and an
inductive proof of the divisibility of an electronic cash protocol. In Section 5, we provide a
discussion, and in Section 6, we present our conclusions.

2 Data Conversion Formalization

2.1 Problem

First, we illustrate the problem of converting between a natural number and a binary tree,
which are data structures with different induction schemes.

Let NAT and BTREE be a natural number and a binary tree, respectively. NAT is induc-
tively defined with one successor. BTREE is inductively defined in such a form that there are
two successors, i.e.,

nat_p(0).

nat_p(n) => nat_p(Suc(n)).

tree_p(Tip).

tree_p(lt) & tree_p(rt) => tree_p(Node(_,lt,rt)).

where Suc denotes the successor function; Node is a constructor for a tree; ’ ’ denotes an
anonymous variable that corresponds to a parent node; lt and rt are the left and right subtrees,
respectively; and Tip is a leaf node. The symbols & and => denote conjunction and implication,
respectively.

Consider data conversion between NAT and BTREE. Let f be a function that maps from
NAT to BTREE and g be a function that maps from BTREE to NAT. We assume that these
functions are defined inductively in the following form,

f: NAT --> BTREE

f(Suc(n)) = c1(f(n)).

f(0) = Tip.

94

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

g: BTREE --> NAT

g(Node(_,lt,rt)) = c2(g(lt), g(rt)).

g(Tip) = 0.

where c1 is a function from BTREE to BTREE, and c2 is a function from NAT× NAT to NAT.
Consider proving the following relationship between f and g,

g(f(n)) = n.

We use the following induction scheme IS on NAT to prove it.

∀n.((∀n′.n′ < n =⇒ g(f(n′)) = n′) =⇒ g(f(n)) = n) [IS]

The proof proceeds by rewriting g(f(n)) in succession as follows:

g(f(n)) = g(f(c2(n1, n2)))
= g(Node(, f(n1), f(n2)))
= c2(g(f(n1)), g(f(n2)))
= c2(n1, n2)

where c2(n1, n2) = n for a certain n1, n2 < n.
The induction scheme IS is used to proceed from the third line to the fourth line. To succeed

in this proof, there are two problems to be solved. The first is the progression from the first line
to the second line: we have to prove the equality f(c2(n1, n2)) = Node(, f(n1), f(n2)). This
problem is how to divide a natural number into two parts suitably. The second, and arguably
more challenging problem, is that we cannot find c1 that defines f in a recursive form naturally.
Consider the function f , which maps a natural number to a binary tree. The forms of the data
structures f(n) and f(Suc(n)) are considerably different, and the differences depend on the
values of n. For example, compare the operation of adding a leaf node labeled “True” to the
binary tree shown in Figure 1. In this figure, (a) shows the operation of adding a node to the
binary tree that has two leaf nodes labeled “True,” and (b) shows the operation of adding a
node to the binary tree that has three leaf nodes labeled “True.” These operations cannot be
represented uniformly, therefore f(n) cannot be uniformly defined for all n. Furthermore, even
if f is defined, the proof over the properties on f is not straightforward.

(a)

T F F F

T T

(b)

T T T TT T T F

T

T T T

T T

T T

T

T

Figure 1: Operation on adding a “True” node to a binary tree

On the other hand, the definition of g is simpler because it is a conversion from a data type
that is not totally-ordered to one that is totally-ordered.

2.2 Solution

To solve the problem shown above, we introduce the bit sequence BS as an intermediate data
structure between NAT and BTREE.

95

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

2.2.1 Conversion from BS to BTREE

First, we describe the conversion from BS to BTREE. We choose a specific binary tree used in
an electronic cash protocol. This tree is a complete binary tree and a Boolean value is attached
to each node, the value of which is defined as a sum of the values of its left and right subtrees.

Let b0b1 . . . bn be a sequence of Boolean values that corresponds to a natural number k.
Then k = b′0 · 2n + b′1 · 2n−1 + . . . + b′n · 20 where b′i = 1/0 for bi = True/False (1 ≤ i ≤ n),
respectively. We encode b′0 ·2n as the left tree and the remainder as the right tree. The function
from BS to BTREE is defined as follows:

bs_to_btree() = (Tip,false)

bs_to_btree(b#bs) = (if b

then Node(true, create_btree(true,length(bs)), bs_to_btree(bs))

else Node(true, bs_to_btree(bs), create_btree(false,length(bs)))

)

where # is an operator combining the head and tail of the list; Tip indicates a leaf node; the
function create btree(bool, nat) creates a binary tree of height nat in which all nodes are labeled
with bool; and length(list) denotes the length of list 1. Intuitively, when scanning the data
from the head of BS, descending by one bit corresponds to descending one subtree in BTREE.
The induction scheme for the bit sequence is that if some property holds on a bit sequence bs,
it also holds on b#bs. If b = True (i.e., k ≥ 2n), then all nodes in the left subtree are labeled
True; this is referred to as a full tree. However, if b = False (i.e., k < 2n), then none of the
nodes in the right tree are labeled True; this is referred to as an empty tree. Thus, the data
types BS and BTREE are matched in their induction schemes.

Let a bit sequence be represented as a list, the elements of which are either True or False.
Figure 2 shows the conversion of the bit sequence [True, False, T rue] into a binary tree. In
this figure, the black trees are full trees, the white trees are empty trees, and the dotted trees
are the others.

T

T T T

FTFTT

[True,False,True] [False,True] [True]

Figure 2: The mapping between a bit sequence and a binary tree

Because the binary tree corresponding to [True, False, T rue] is not an empty tree, the root
node is labeled True. Because the first bit in the sequence is True, the left tree is a full tree.
The tree to the right of it is the tree corresponding to the remaining bit sequence [False, True]
after the first bit has been extracted. Now consider the coding of [False, True]; because the

1We can define a mirror tree in which left and right subtrees are exchanged.

96

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

first bit of the sequence is False, the right tree must be an empty tree, and the left tree is
the tree corresponding to the remaining bit sequence. Then we consider the coding of [True];
because the first bit of the bit sequence is True, the left tree is a full tree, and the right tree is
the binary tree corresponding to the remaining bit sequence. Finally, we obtain a Tip for [].

T

T

T

T F

T

T

T T T T T F F F

Figure 3: The binary tree for [True, False, T rue]

The binary tree obtained from [True, False, T rue] is thus as follows (Figure 3):

(True,

(True, (True,True,True), (True,True,True)),

(True, (True,True,False), (False,False,False))

)

The function bs to btree can give an inductive definition that provides for the division of n
into n1 and n2, corresponding to the left and right subtrees, respectively, in the proof process
for IS in the previous subsection.

2.2.2 Conversion from NAT to BS

Next, we give a definition for the conversion from NAT to BS. We show two different models:
one using a general function and one using a primitive recursive function.

First, we define the general function naive nat to bs. This is defined in an iterative form
and determines the value of a a bit sequence from the least-significant bit as follows:

naive_nat_to_bs(0) = [False]

naive_nat_to_bs(1) = [True]

naive_nat_to_bs(n) = (naive_nat_to_bs(div(n,2))) @ ([mod(n,2) = 1])

where @ is the concatenation operator for lists, div(n, 2) and mod(n, 2) return the result of
division of n by 2 and its remainder, respectively.

Second, we define the primitive recursive function nat to bs. This is defined in a tail-
recursive form and determines the value of a bit sequence from the most-significant bit. The
definition is more complex than that of the iterative form.

nat_to_bs(0) = [false]

nat_to_bs(Suc(n)) = calc(lg(Suc(n)),Suc(n))

calc(0,m) = [true]

calc(Suc(n),m) = (if 2^n <= m) then True#(calc(n,m-2^(Suc(n))))

else False#(calc(n,m))

lg(n) = (if n<=1 then 0

else Suc(lg (div(n,2))))

97

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

where lg is a key function that returns the place number of the bit sequence corresponding to
a given argument, i.e., the natural number m that satisfies m ≤ log n < m + 1. The following
table shows the relationship of a natural number nat, a bit sequence bs, and the value of lg.
Note that when n increases by 1, the location in the bit sequence, which is equal to the height
of the tree, increases logarithmically.

nat bs lg

1 1 0
2 10 1
3 11 1
4 100 2
5 101 2
6 110 2
7 111 2
8 1000 3
9 1001 3

...

2.2.3 Conversion from NAT to BTREE

Finally, nat to btree is defined as the composition of the two functions naive nat to bs and
bs to btree or the composition of nat to bs and bs to btree. nat to bs and bs to btree are prim-
itive recursive functions, whereas naive nat to bs is a recursive function.

The definition of nat to bs is more suitable to an induction scheme than that of
naive nat to bs, because induction is typically applied from the head to the tail.

In the next two sections, we apply this formalization to the electronic cash protocol defined
in [18] and prove its divisibility.

3 Modeling of an Electronic Cash Protocol

3.1 Ideal Electronic Cash

An electronic cash (e-cash) protocol is, in general, a combination of cryptography techniques,
such as zero-knowledge proof and public key encryption. We consider the ideal e-cash protocol
proposed by Okamoto [18]. In this protocol, a coin of some monetary value is encoded as
a binary tree, and a payment function is defined over it. This binary tree approach makes
e-cash efficient and unlinkable, and is used in many divisible e-cash schemes [7, 8, 15, 18].
We formalize this protocol and prove its divisibility on a data level, i.e., a user can spend a
coin in several separate transactions by dividing its value without overspending if and only if
a payment function satisfies the payment rules. This is one of the properties that an ideal
e-cash protocol should satisfy. We define the data structure of money and define two primitive
recursive functions of money amount and pay on money. The definitions are shown using Coq
code in this section.

3.2 Definition of money

A coin is represented as a binary tree called money. Each node of the tree represents a certain
denomination. The root node is assigned the monetary value of the money, and the values of

98

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

all other nodes are defined as half the value of their parent nodes.
Money is defined as an inductive function. It is a binary tree, where nodes are labeled with

Boolean values. The label True means that a node is usable, while False means that it is not.
For a given Boolean value b and a natural number n, we can create money in which all of the
nodes have the label b.

Inductive money : Type :=

| Tip : bool -> money

| Node : bool -> money -> money -> money.

Fixpoint create_money(b : bool)(n : nat) : money :=

match n with

| 0 => Tip b

| S n’ => Node b (create_money b n’) (create_money b n’)

end.

3.3 Creation of money from a natural number

cash is a function that creates money corresponding to a given natural number that is defined as
a composition of bs to money and naive nat to bs (or nat to bs). bs to money can be defined
in a manner similar to that of bs to btree.

Definition cash(n : nat) : money := bs_to_money (naive_nat_to_bs n).

Note that cash is the money that satisfies a specific condition, whereas type money al-
lows any complete binary tree whose nodes are labeled as Boolean values. For example,
Node(false, T ip(true), T ip(true)) is an element of money but not a result of a function cash.

3.4 Calculation of the amount of money

The function money amount computes the amount of money that can be used. If the root
node is labeled True, the amount of the tree is the sum of that of the left tree and the right
tree; otherwise, the amount is 0.

Fixpoint money_amount(m : money) : nat :=

match m with

| Tip true => 1

| Tip false => 0

| Node true l r => money_amount l + money_amount r

| Node false _ _ => 0

end.

3.5 Payment

Payment rules are set in [18] as follows: when we spend some amount from the coin, we search
for a node (or combination of nodes) whose value is equal to the payment value, and then cancel
these nodes; at the same time, all of the ancestors and all of the descendants are also canceled.
Overspending is prevented if and only if these rules are satisfied.

The function pay corresponds to payment according to the payment rules. When we pay n
from money, where n is less than or equal to the amount of money, then we pay all of n from
the left tree, and the right tree remains as it is if the amount of the left tree is more than n.

99

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

Otherwise, we exhaust the left tree in the payment and pay the remainder from the right tree.
For example, money amount(pay(cash(13), 4) = 9.

In the following code, eq nat dec and lt dec are functions on NAT that denote ’=’ and ’<’,
respectively. change false is a function that changes the label of a node to False.

Fixpoint pay(m : money)(n : nat) : money :=

match m with

| Tip true => Tip (if eq_nat_dec n 0 then true else false)

| Node true l r =>

if lt_dec (money_amount l) n

then Node true (change_false l) (pay r (n - money_amount l))

else Node true (pay l n) r

| _ => m

end.

4 Proof of Properties

We prove three properties on the divisibility of the e-cash protocol. On proving these properties
inductively, we apply the method proposed in Section 2.

In this section, we only show the outline of the proof, focusing on how induction is applied.
The complete Coq proof is shown in the Appendix.

First, the distribution property over money amount holds.

money amount(Node(, left, right)) =
money amount(left) + money amount(right) · · · (1)

This can readily be proved. We rewrite the left side of the given equation.

4.1 Well-definedness of cash

The monetary value of money created by cash from a natural number is equal to that value.
This property is represented as follows,

∀ n. (money amount (cash(n)) = n)

and is proved using the properties of the bit sequence. Below, we show a case in which the first
bit b of the sequence is True. When it is False, the proof proceeds in the same manner.

money amount(cash(n))
= money amount(bs to money(b#bs)) · · · (2)
= money amount(Node(true,

bs to money(bs), create money(true, length(bs)) · · · (3)
= money amount(bs to money(bs))+

money amount(create money(true, (length(bs)))) · · · (4)

Formula (2) is obtained by unfolding cash, where nat to bs(n) = b#bs, formula (3) is
obtained by unfolding bs to money, and formula (4) is obtained by the distribution property
of money amount (1).

The first term of formula (4) is transformed as follows.

100

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

money amount(bs to money(bs))
= money amount(bs to money(nat to bs(n− 2lg n))) · · · (5)
= money amount(cash(n− 2lgn)) · · · (6)

Formula (5) is obtained using case split tactics on n, property of lg and several other tactics.
Formula (6) is obtained by unfolding cash.

The second term of formula (4) is transformed as follows:

money-amount(create money(true, length(bs)))
= money amount(cash(2lgn)) . . . (7)

Here we use the following induction scheme of NAT.

if ∀ k; k < n, money amount(cash(k)) = k,
then money mount(cash(n)) = n holds.

We can prove 2lg n ≤ n and n− 2lg n < n. If 2lg n < n, we apply this type of induction to
both formulas (6) and (7), and so formula (4) is finally transformed into the following form:

money amount(cash(2lg n)) + money amount(cash(n− 2lg n))
= 2lg n + (n− 2lg n)
= n

In case 2lg n = n, the proof is simpler without using induction.

4.2 Well-definedness of pay

The amount remaining after payment is the difference between the original value and the
payment value. This property is represented as follows 2:

∀ n.∀ m. (money amount(pay(cash(n),m)) = n−m)

This is derived from the following lemma:

∀ c.∀ n. (money-amount(pay(c, n)) = money-amount(c)− n

which is proved as follows. When we pay n from c, if n does not exceed the amount of c, we
pay m1 from the left subtree as far as possible, and pay the remainder m2 from the right tree.
m1 and m2 are determined as follows: if n < money amount(left), then m1 = n and m2 = 0;
otherwise, m1 = money amount(left) and m2 = n − money amount(left). This is proved
using induction. Below, we show an inductive case, because the proof is simple for the base
case.

money amount(pay(c,m1 + m2))
= money amount(pay(Node(, left, right),m1 + m2)) · · · (8)
= money amount(pay(left,m1)) + money amount(pay(right,m2)) · · · (9)
= money amount(left)−m1 + money amount(right) − m2 · · · (10)
= (money amount(left) + money amount(right)) − (m1 + m2)
= money amount(Node(, left, right)) − (m1 + m2) · · · (11)
= money amount(c) − (m1 + m2)

2Note that n−m = 0 when m > n.

101

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

Formula (8) is obtained by expanding c. Formula (9) is obtained by the distribution property
of money amount and the property of payment on money. Formula (10) is obtained by applying
induction to money. Formula (11) is obtained from the distribution property of money amount.

4.3 Divisibility

Given that ms is a list of values, each of which corresponds to a transaction, if a user pays
from the head of this list in succession, then the remainder is the correct value. This property
is represented as follows:

∀n.∀ms.(n ≥ listsum(ms)

=⇒ money amount (foldl(pay(cash(n),ms))) = n − listsum(ms))

Here, foldl and listsum are the functions handling a list. Let ms be a list [m1, . . . ,mk].
foldl(pay(c,ms)) is rewritten in the following form:

(pay(. . . (pay(c,m1), . . . mk)

and listsum(ms) is rewritten in the following form:

m1 + . . . + mk

This theorem can be proved using the result of the proofs for the above two properties of
well-definedness.

5 Discussion

Modeling the e-cash protocol and proving the properties described in the previous sections were
performed using the theorem provers Isabelle/HOL and Coq, respectively. First, we compare
these two provers.

Both of them are interactive theorem-proving environments based on inductive theorem
proving. The data types and functions are defined in recursive form, and the proof proceeds by
connecting suitable tactics.

Isabelle/HOL has a more powerful engine for automatic proof than Coq. A proof may suc-
ceed simply by using the ‘auto’ command without connecting multiple lemmas in Isabelle/HOL,
whereas a user must specify tactics manually in Coq. However, the proof procedure in Coq is
easier to understand.

Both provers are based on typed logics and adopt higher-order functions. In Coq, type-
checking is richer and proof-checking is reduced to type checking. It requires the user to prove
the termination of a recursive function. Isabelle/HOL also requires the user to prove the
termination of a recursive function, but has a stronger automatic mechanism, and user does
not need to supply much input.

We developed a model for an e-cash protocol, and set out to prove three properties of the
model using Isabelle/HOL, and subsequently translated the model into Coq. The translation
was basically straightforward. The definition of a primitive recursive function using primrec in
Isabelle/HOL was translated to Fixpoint in Coq; the definition of a recursive function using
fun was translated to Function; the definition of a non-recursive function using definition
was translated to Definition. In addition, we must prove the termination of the function
introduced via Function.

102

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

The tactics used in the proofs of two provers were quite different. Generally, more tactics are
required in Coq; however, the proof in Coq provides a useful basis from which to make a proof
in Isabelle/HOL. Actually, we completed the proof of the unproved lemma in Isabelle/HOL by
referring to the proof in Coq. From this experience, it is expected that similar modeling with
other provers is possible and that the existing proofs will be useful as a basis for forming proofs
in those other provers. All definitions and proofs in Isabelle/HOL and Coq are shown in [22].

In the field of protocol verification, there are a number of works on the verification of
security protocols using Isabelle/HOL (e.g.,[2]). However, they mainly proved security or safety
of protocols. To the best of our knowledge, there exists no research on a proof that focuses on
the divisibility of electronic cash protocols using a theorem-proving approach.

Bijection between the set of natural numbers and rooted trees has been discussed in several
works [5, 6, 9]. In these works, prime decomposition of the natural numbers was used to
construct the corresponding rooted tree. They used an incomplete tree, in which each prime
number forms an individual branch. It appears to be impossible to define this bijection in an
inductive manner. Attempts to provide the mechanical proof were not made, and the correctness
of the methods has not been proved using theorem provers. On the other hand, we propose a
method for automated theorem proving using a complete binary tree.

The data conversion method described here is applicable to conversion from an inductively
defined data structure with one successor to one with n successors by introducing a list in
which each element takes n values as an intermediate data structure instead of a bit sequence.
Following this transformation, the proof can proceed in a similar manner to the one shown in
this paper, although the number of lemmas would increase. Moreover, it can be extended to
data conversion from data structures with m successors to data structures with n successors by
composing two data-conversion functions, i.e., one from an inductively defined data structure
with m successors to that with one successor, and then a second function from an inductively
defined data structure with one successor to one with n successors.

6 Conclusion

We have described a function for converting data from a natural number to a binary tree,
and have given an inductive proof for its well-definedness. We have described a method of
introducing a bit sequence as an intermediate data structure to provide a model for inductively
defined data structures with different induction schemes. We formalized this method, developed
a computational model based on it, and applied it to an electronic cash protocol. We succeeded
in proving the properties of divisibility of the protocol using the theorem provers Isabelle/HOL
and Coq, and discussed the effectiveness of the method.

In future, we would like to investigate other functions and/or properties on such a binary
tree that is handled here, and develop methods of their inductive proof.

References

[1] Arsac, W., Bella, G., Chantry, X. and Compagna, L. : Multi-Attacker Protocol Validation, J. of
Automated Reasoning 46(3-4):353-388 (2011).

[2] Bella, G., Massacci, B. and Paulson, L. : Verifying the SET Purchase Protocols, J. of Automated
Reasoning 36:5 37 (2006)

[3] Bella, G. : Inductive Verification of Smart Card Protocols, J. of Computer Security 11(1):87-132
(2003).

103

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

[4] Bertot, Y. and Castŕan, P. : Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions, Springer Verlag (1998).

[5] Beyer, T. and Hedetniemi, S. M. : Constant Time Generation of Rooted Trees, SIAM J. Comput.,
9(4):706-712 (1980).

[6] Cappello, P. : A New Bijection between Natural Numbers and Rooted Trees, 4th SIAM Conference
on Discrete Mathematics (1988).

[7] Chan, A., Frankel, Y. and Tsiounins, Y. : Easy Come - Easy Go Divisible Cash, EUROCRYPT98,
pp. 561-575 (1998).

[8] Canard, S. and Gouget, A. : Divisible E-Cash Systems Can Be Truly Anonymous, EURO-
CRYPT2007, pp.482-497 (2007).

[9] Göbel, F. : On a 1-1-Correspondence between Rooted Trees and Natural Numbers, J. of Combina-
torial Theory, Series B(29):141-143 (1980).

[10] Hardin, D. S. (ed): Design and Verification of Microprocessor Systems for High-Assurance Appli-
cations, Springer Verlag (2010).

[11] Kaufmann,M., Monolios, P. and Moore, J. S. : Computer-Aided Reasoning: An Approach, Kluwer
Academic Publishers (2000).

[12] Klein, G. et al. : seL4: Formal Verification of an Operating-System Kernel, Commun. ACM 53(6):
107-115 (2010).

[13] Kurita, T. and Nakatsugawa, Y. : The Application of VDM to the Industrial Development of
Firmware for a Smart Card IC Chip, Int. J. of Software and Informatics 3(2-3):343-355 (2009).

[14] Leroy, X. Formal Verification of a Realistic Compiler, Communications of the ACM, 52(7):107-115
(2009).

[15] Nakanishi, T. and Sugiyama, Y. : An Efficiently Improvement on an Unlinkable Divisible Electronic
Cash System, IEICE Trans. on Fundamentals, E85-A(19):2326-2335 (2002).

[16] Nipkow, T., Paulson, L. and Wenzel, M. : Isabelle/HOL A Proof Assistant for Higher-Order Logic,
Springer Verlag (2002).

[17] Norell, U. : Dependently Typed Programming in Agda, Advanced Functional Programming 2008:
pp.230-266 (2008).

[18] Okamoto, T. : An Efficient Divisible Electronic Cash Scheme, The proceedings of Crypto’95,
pp.438-451 (1995).

[19] Owre,S., Rushby,J.M. and Shankar,N. : PVS: A Prototype Verification System, The proceedings
of CADE-11, pp.748-752 (1992).

[20] Sprenger, C., Zurich, E. T. H., Basin, D., et al. : Cryptographically Sound Theorem Proving 19th
IEEE Computer Security Foundations Workshop (2006).

[21] Takahashi, K. and Yoshimaru, S. : Formalization of Data Conversion for Inductive Proof Tunisia-
Japan Workshop on Symbolic Computation in Software Science (SCSS 2009), pp.135-150 (2009).

[22] http://ist.ksc.kwansei.ac.jp/~ktaka/EMONEY

104

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

Appendix. Proof for E-cash protocol in Coq (tail-recursive
version)

Require Import Omega List Arith Div2 Bool Recdef Wf_nat.

Theorem well_definedness_of_pay :

forall(m : money)(n : nat),

n <= money_amount m

-> money_amount(pay m n) = money_amount m - n.

Proof.

intros m.

induction m; intros n LNM; destruct b; simpl in *; try reflexivity.

destruct (eq_nat_dec n 0).

rewrite e; reflexivity.

assert(n = 1) by omega.

rewrite H; reflexivity.

destruct (lt_dec (money_amount m1) n); simpl.

rewrite IHm2; try omega.

replace (money_amount (change_false m1)) with 0; try omega.

destruct m1; simpl; reflexivity.

rewrite IHm1; omega.

Qed.

Lemma bit_sequence_distribution :

forall(bs : list bool)(b : bool),

money_amount(bs_to_money(bs ++ (b::nil))) =

2 * money_amount(bs_to_money bs) + (if b then 1 else 0).

Proof.

intros bs b.

induction bs; simpl in *.

destruct b; reflexivity.

assert(forall(bl : bool),money_amount (create_money bl (length

(bs ++ b :: nil))) =

money_amount (create_money bl (length bs)) + money_amount

(create_money bl (length bs))).

intros; clear IHbs; destruct bl; induction bs; simpl; try omega.

destruct a; simpl in *; rewrite IHbs; repeat rewrite plus_0_r;

repeat rewrite plus_assoc; rewrite H; omega.

Qed.

Lemma one_reminder_div2 :

forall(n : nat),

(2 * div2 n) + (if one_reminder n then 1 else 0) = n.

Proof.

intros n.

case_eq (one_reminder n); intros; induction n using lt_wf_ind.

destruct n; try discriminate.

destruct n; try reflexivity.

simpl in H.

simpl.

replace (S (div2 n + S (div2 n + 0) + 1))

with (S (S (2 * div2 n + 1))).

105

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

repeat f_equal.

rewrite H0; try reflexivity; try omega.

apply H.

simpl.

omega.

destruct n; try reflexivity.

destruct n; try discriminate.

simpl in H.

simpl.

replace (S (div2 n + S (div2 n + 0) + 0))

with (S (S (2 * div2 n + 0))).

repeat f_equal.

rewrite H0; try reflexivity; try omega.

apply H.

simpl.

omega.

Qed.

Theorem well_definedness_of_cash :

forall(n : nat),

money_amount (cash n) = n.

Proof.

intros n.

induction n using lt_wf_ind.

destruct n; try (simpl; reflexivity).

destruct n; try (simpl; reflexivity).

unfold cash; rewrite bit_sequence_equation.

case_eq (one_reminder (S (S n))); intros;

rewrite bit_sequence_distribution; unfold cash in H; rewrite H;

try (apply lt_div2; apply lt_0_Sn);

pose (one_reminder_div2 (S (S n)));

rewrite H0 in e; apply e.

Qed.

Definition listsum(ns : list nat) : nat := fold_right plus 0 ns.

Definition payment_amount(m : money)(ns : list nat) : nat :=

money_amount (fold_left pay ns m).

Theorem Divisibility.

forall(n : nat)(ns : list nat),

listsum ns <= n ->

payment_amount (cash n) ns = n - listsum ns.

Proof.

intros n ns LSM.

induction ns using rev_ind; simpl in *.

rewrite <- minus_n_O.

apply well_definedness_of_cash.

unfold payment_amount in *.

unfold listsum in *.

rewrite fold_left_app;

rewrite fold_right_app in *; simpl in *.

rewrite plus_0_r in *.

106

Data Conversion Method between a Natural Number and a Binary Tree . . . Takahashi, Yoshimaru and Goto

assert(fold_right plus 0 ns + x <= n).

generalize n LSM.

clear IHns LSM n.

induction ns; intros; simpl in *.

omega.

assert(fold_right plus x ns <= n - a) by omega.

apply IHns in H; omega.

rewrite well_definedness_of_pay; rewrite IHns; simpl in *; try omega.

replace (fold_right plus x ns) with ((fold_right plus 0 ns) + x).

omega.

clear IHns H LSM.

induction ns; simpl.

reflexivity.

rewrite <- IHns; info omega.

Qed.

107

	Introduction
	Data Conversion Formalization
	Problem
	Solution
	Conversion from BS to BTREE
	Conversion from NAT to BS
	Conversion from NAT to BTREE

	Modeling of an Electronic Cash Protocol
	Ideal Electronic Cash
	Definition of money
	Creation of money from a natural number
	Calculation of the amount of money
	Payment

	Proof of Properties
	Well-definedness of cash
	Well-definedness of pay
	Divisibility

	Discussion
	Conclusion

