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Abstract

We discuss a methodology for an inductive proof. Induction is a powerful technique used by many
theorem provers, but its effectiveness is highly dependent on the user. It is especially difficult to apply
effectively on a proof for a property over two data types that have different induction schemes. A
natural number and a binary tree are fundamental data types and have different induction schemes.
We propose the introduction of a bit sequence as intermediate data corresponding to these two data
types so that inductive proof may be used. We formalize a method of data conversion between these
two data types using an example of an ideal electronic cash protocol.
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1 Introduction

Theorem proving is a technique for formal methods [15, 12, 2, 18]. There are many applications for the-
orem proving, from pure mathematics to practical hardware verification or security protocols, and many
successful results have been reported. Inductive definitions of functions or data are frequently used in
programming, especially for determining correctness, and are used by most theorem provers. Induction
is a powerful method for proving a property on infinite data that is not used in a model checker [5],
another technique for formal methods. However, most provers are simply environments that help users
generate a proof by themselves, requiring that they navigate an “automatic prover” by providing ap-
propriate lemmas. Investigating the methodology for the effective application of induction is thus very
important.

When an inductive definition is given to a data type or a function, a prover generates an induction
scheme based on it. Subgoals are generated using this scheme when an induction is used in the proof
procedure. However, completing the proof is sometimes difficult when an induction is not used in the
form expected by the user, because the induction scheme is not matched. Most properties proved in
applications are those that hold for a single data type or a single induction scheme can be naturally
applied even if a property holds for multiple data types. However, one sometimes must deal with a
property that holds over data types with different induction schemes.

Consider data conversion from a natural number to a binary tree. In general, the following data types
are inductively defined:

nat_p(0).
nat_p(n) ==> nat_p(Suc(n)).

tree_p(Tip).
tree_p(lt), tree_p(rt) ==> tree_p((node lt rt)).

where lt and rt are the left and right subtrees, respectively, and node is their parent node. Let NAT and
BTREE be a natural number and a binary tree, respectively. NAT has a linear structure, and BTREE has
a branching structure. When induction is applied to NAT, its goal is to show that if some property holds
for n, then it also holds for Suc(n). However, the objective for BTREE is to verify that if some property
holds on lt and rt, then it also holds on (node lt rt). To prove the correctness of a conversion from
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NAT to BTREE, one must verify the property over two data types that have different induction schemes,
resulting in a very difficult proof.

We originally encountered this problem while proving the correctness of an electronic cash (e-cash)
protocol using a theorem prover [23]. Cash for some amount of money is represented in the form of a
binary tree, and a payment function is defined on this tree. If one proves the correctness of this function,
i.e., if one pays m from n, then the remainder is n−m, one must handle the two data types of NAT and
BTREE which have different induction schemes.

Natural number, list, and binary tree are fundamental data types used in many applications. Several
formalizations of the conversion from BTREE to NAT or LIST are provided. They use techiniques such
as sorting the nodes of a tree into some order or embedding a tree structure in a non-flat list. However,
formalizations for the inverse conversion are not provided and proofs for properties over these two data
types have never been made. This conversion is essentially the generation of a branching structure from
a linear structure according to a specific rule. An inductive definition is generally difficult.

The aim of this paper is to provide a methodology for converting from NAT to BTREE for the appro-
priate application of induction in proving a property over these data types. We introduce the bit sequence
BS as an intermediate data representation between NAT and BTREE. We describe our approach using
a proof of divisibility of e-cash using the Isabelle/HOL [15] theorem prover as a case study and discuss
the formalization of data conversion from NAT to BTREE. Divisibility means that a user can spend an
amount of money in several separate transactions by dividing its value without overspending. E-cash is
implemented as a specific binary tree. We define the construction of BTREE from NAT, the calculation
of the amount value of BTREE, and the payment function on BTREE. We prove the correctness of these
functions and that divisibility holds. We also demonstrate the feasibility of our approach by illustrating
how the proof proceeds.

This paper is organized as follows. In Section 2, we present in detail the problems of data conver-
sion and show our solution. In Sections 3 and 4, we show a formalization and an inductive proof with
Isabelle/HOL using the divisibility of e-cash as a case study. In Section 5, we present a discussion, and
in Section 6, we present our conclusion.

2 Data Conversion Formalization

We first clarify the problem of proving a property over data types that have different induction schemes.
Let f be a function to convert NAT to BTREE and g be a function to convert BTREE to NAT.
Assume that these functions are defined inductively in the following form:

f: NAT ==> BTREE
f(Suc(n)) <- c1(f(n)).
f(0) <- Tip.

g: BTREE ==> NAT
g((node lt rt)) <- d1(g(lt), g(rt)).
g(Tip) <- 0.

where c1 and d1 are some functions.
Consider proving a relationship between f and g,

g( f (n)) = n.

The following subgoal is generated as an induction step:
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∀n.( g( f (n)) = n =⇒ g( f (Suc(n))) = Suc(n) ).

The structural induction on NAT is used here, which shows

∀n.P(n)

by proving
∀n.( P(n) =⇒ P(Suc(n)) )

where P is a property.
Generally, the proof proceeds by rewriting g( f (Suc(n))) in succession as follows:

g( f (Suc(n))) = g(c1( f (n)))
= c2(g( f (n)))
= Suc(g( f (n)))
= Suc(n).

where c2 is some function. Induction hypothesis is used between the third and fourth lines.
For this proof to succeed, we must define functions c1 and c2 appropriately, but this is impossible.

For one thing, there is no appropriate form of c1 in fact, because f (Suc(n)) cannot be defined using f (n)
inductively for an arbitrary n uniformly. Intuitively, the forms of trees f (n) and f (Suc(n)) are largely
different, and the differences depend on the values of n. For example, compare the operation of adding
a leaf to an incomplete binary tree which has three leaf nodes, and the operation of adding a leaf to
a complete binary tree which has four leaf nodes (Figure 1). These operations cannot be represented
uniformly. In addition, there is no appropriate form of c2, because the region of f is BTREE, and
c1( f (n)) should provide two arguments to g, although it actually provides only one. Even if these
functions could be defined, the proof would not succeed because NAT has a linear data structure whereas
BTREE has a branching data structure, and their induction schemes are not matched.

Figure 1: Operation on adding an node to a binary tree

We therefore provide another definition to f so that the result can provide two arguments to g, and
use a different type of induction. We divide a natural number n into n1 and n2, which correspond to the
left and right trees, respectively, of the data after the conversion. Then, the proof proceeds by rewriting
g( f (Suc(n))) as follows:

g( f (n)) = g( f (n1+n2))
= g(node f (n1) f (n2))
= g( f (n1))+g( f (n2))
= n1+n2

To succeed in rewiting the first line to the second line, we must define an appropriate function f satisfying
the above requirement, and in rewiting the second line to the third line, we must define g satisfying the
following property:

∀lt.∀rt.g(node lt rt) = g(lt)+g(rt).
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To succeed in rewiting the third line to the fourth line, the complete induction for NAT is used here,
which shows

∀n.P(n)

by proving
∀n.( ∀m.m < n; P(m) =⇒ Pn) )

where P is a property.
The definition of g is easier because it is the conversion from the data type not in the total order to

that in the total order. However, the definition of f in the inverse direction is very difficult. We introduce
some intermediate data representation between NAT and BTREE to solve this problem.

There may be various BTREE specifications. Here, we choose the specific binary tree used in e-cash,
a complete binary tree whose nodes are labeled (NAT,BOOL). Each node is assigned a value 2n for some
n, and the value of a node is equal to the sum of the values of its child nodes. Here n is the first argument
of the label. Another argument is a boolean value that indicates whether the node is alive, and only live
nodes can be used. There is also the constraint that if a node is not alive, then neither are any of its
antecedents or descendants. We introduce a bit sequence BS as an intermediate data representation.

First we explain the conversion from BS to BTREE. Let b0b1 . . .bn be a bit sequence corresponding
to a natural number k. Then k = b0 ·2n +b1 ·2n−1 + . . .+bn ·20 where bi = 0 or 1(1≤ i≤ n). We encode
b0 ·2n as a left tree and the remainder as a right tree. The function is defined as

bs-to-btree() <- Tip
bs-to-btree(b#bs) <- (if b

then (length(b#bs),False), full-tree(length(bs)), bs-to-btree(bs)))
else (length(b#bs),False), bs-to-btree(bs), empty-tree(length(bs)))
)

where # is an operator combining the head and the tail of a list.
Intuitively, scanning the data from the head of BS, going one bit lower corresponds to going one

subtree lower in BTREE. The induction scheme for a bit sequence is that if some property holds on a bit
sequence bs, it also holds on b#bs. If b0 = 1 (i.e., k ≥ 2n), then all nodes in the left subtree are alive; this
is referred to as a f ull-tree. However, if b0 = 0 (i.e., k < 2n), then none of the nodes in the right tree are
alive; this is referred to as an empty-tree, and the node passed is also a non-alive node. Thus, the data
types BS and BTREE are naturally matched in their inductive schemes.

Let a bit sequence be represented as a form of a list whose element is True or False. Figure 2 shows
the conversion of a bit sequence [True,False,True] to a binary tree. In this figure, a black tree indicates
a full-tree, a white tree indicates an empty-tree, and a dotted tree indicates the others. First, because
the binary tree corresponding to [True,False,True] is not a full-tree, the root node is labeled f alse.
Next, because the first bit of the bit sequence is True, the left tree is a full-tree, and the right tree is the
tree corresponding to the remaining bit sequence [False,True] after the first bit is extracted. Next we
consider the coding of [False,True]. Because the first bit of the bit sequence is False, the right tree is an
empty-tree, and the left tree is the tree corresponding to the remaining bit sequence. We then consider
the coding of [True]. Because the first bit of the bit sequence is True, the left tree is a full-tree, and the
right tree is the binary tree corresponding to the remaining bit sequence. Finally, we obtain an empty-tree
for [ ].

The BTREE obtained from BS [True,False,True] is thus as follows:

( (3,False),
full-tree(2),
( (2,False),
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(2,T) (2,F)

(3,F)

T F T

(2,F)

F  T

(1,F) (1,F)

(1,F)

T

(0,F)(0,T)

(0,F)

end

Figure 2: Correspondence between a bit sequence and a binary tree

( (1,False), full-tree(0), empty-tree(0) ),
empty-tree(1)

)

The function bs-to-btree can provide a natural inductive definition that provides for the division of n
into n1 and n2, corresponding to the left and right subtrees, respectively.

Next, we must provide a definition to the function that converts NAT to BS. When one converts a
natural number to a bit sequence, he or she generally successively divides it by 2. The function naiive-
nat-to-bs corresponding to this conversion is defined as a composite of the functions n-to-b and rev,
where n-to-b is a function that determines the value of a bit sequence from a lower place and rev is a
function that reverses the order of a sequence.

naiive-nat-to-bs(n) <- rev(n-to-b(n))

n-to-b(0) <- [0]
n-to-b(1) <- [0]
n-to-b(n) <- (n mod 2)#n-to-b(n div 2)

rev([]) <- [].
rev(x#xs) <- rev(xs)@[x].

where @ is an operator of concatenation of lists.
The size of the bit sequence in this definition is not determined until an empty bit is encountered.

However, the function bs-to-btree, which uses the result of naiive-nat-to-bit as an input, scans an input
starting at the head of a list. This causes difficulty in proving the correctness of the conversion. To solve
this problem, we introduce function nat-to-bs defined in tail-recursive form as equivalent to naiive-nat-
to-bs. It determines the size of a bit sequence in advance and the value of a bit sequence from an upper
place.

nat-to-bs(0) <- [0]
nat-to-bs(Suc(n)) <- calc(lg(Suc(n),Suc(n))

calc(0,m) <- [1]
calc(Suc(n)),m) <- (if 2^n <= m) then True#(calc(n,m-2^(Suc(n))))

else False#(calc(n,m))
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lg(n) <- (if n=<1 then 0
else Suc(lg (n div 2)))

The lg is a key function that returns a place number of the bit sequence corresponding to an argument,
i.e., the natural number m that satisfies m ≤ log n < m+1.

The following table shows the relationship of a natural number nat, a bit sequence bs, and the value
of lg. Note that when n increases by 1, the place number of the bit sequence, which equals the height of
the tree, increases logarithmically.

nat bs lg
1 1 0
2 10 1
3 11 1
4 100 2
5 101 2
6 110 2
7 111 2
8 1000 3
9 1001 3

...

Using this conversion, we can prove the following properties inductively:

• The result of f satisfies the property required for BTREE.

• The composite of f and g is the identity function.

• The result of the function defined on BTREE is converted to the result of the corresponding func-
tion defined on NAT.

In the next two sections, we show the formalization of an e-cash protocol and prove its divisibility in
Isabelle/HOL as an application of the formalization shown in this section.

3 Formalization of Electronic Money

3.1 Isabelle/HOL

Isabelle/HOL is a theorem-proving environment that is part of the HOL system [15]. Data types and
functions are defined in recursive form, and the proof starts in the reverse direction. In other words,
the prover first tries to verify the goal shown by the user; if it cannot be proved directly, the prover
generates subgoals using tactics such as resolution and assumption. The prover repeats this process for
each subgoal, and if all the subgoals are proved to be true, the verification terminates.

The program code shown in this section is that of Isabelle/HOL.
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3.2 Ideal Electronic Money

An e-cash protocol is a combination of cryptography techniques such as zero-knowledge proof and public
key encryption [7, 8, 11]. Okamoto identified the following six properties that should be satisfied by
ideal e-cash protocols with no common specification or formalized properties: independence, security,
untraceability, offline operation, transferability, and divisibility [17]. These properties have become the
standard for ideal e-cash protocols [10, 13, 22, 24]. We consider an ideal e-cash protocol proposed by
Okamoto. In this protocol, a coin of some monetary value is encoded as a kind of binary tree, and a
payment function is defined on it. This binary tree approach makes e-cash efficient and unlinkable and is
used in many divisible e-cash schemes [9, 10, 14, 16, 17]. The correctness of this approach is generally
determined on the basis of cryptography, and there has been no previous work based on theorem proving.
We formalize this protocol and prove its divisibility on a data level, i.e., a user can spend a coin in several
separate transactions by dividing its value without overspending if and only if a payment function satisfies
the payment rules.

3.3 Money and Payment Rules

Each node of the tree represents a certain denomination. The root node is assigned the monetary value
of the coin, and the values of all other nodes are defined as half the value of their parent nodes.

When we spend some amount from the coin, we search for a node(s) whose value(s) equals the pay-
ment value, and we cancel the node(s). At the same time, all of the ancestors and all of the descendants
are canceled. Overspending is prevented if and only if these rules are satisfied.

[rules of payment]

1. When a node is canceled, all of its ancestor and descendant nodes are also canceled.

2. Each node can be canceled only once.

3.4 Data Conversion between NAT and BTREE

We define functions cash to create money for some natural number and money-amount to calculate the
amount of money. The former is the conversion from NAT to BTREE, and the latter is its inverse.

3.4.1 Data Conversion from NAT to BTREE

If a natural number k is in the form of 2n for some natural number n, then we say that k is a full value.
Then money is defined as a complete binary tree whose node is labeled by the pair nat and bool. A

node labeled with (n, true) means that the value of the node is 2n and it can be used, whereas (n, f alse)
means that the value of the node is 2n and it has been canceled. The former is called a true node, and the
latter is called a false node.

Figure 3 is a coin corresponding to five cents.

types money = (nat ∗ bool) tree

Now, money whose nodes are all true is referred to as full money, and if all its nodes are f alse, it is
referred to as empty money.

primrec
full-money :: nat ⇒ money

where
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Tip Tip

(3,F)

(1,T) (1,T) (1,F) (1,F)

(2,T) (2,F)

Tip Tip Tip Tip Tip Tip Tip Tip Tip Tip Tip TipTip Tip

(0,T) (0,T) (0,T) (0,T) (0,T) (0,T) (0,F) (0,F)

Figure 3: A coin corresponding to five cents (Cash 5)

full-money 0 = Node (0, True) Tip Tip |
full-money (Suc n) = Node (Suc n, True) (full-money n) (full-money n)

primrec
empty-money :: nat ⇒ money

where
empty-money 0 = Node (0, False) Tip Tip |
empty-money (Suc n) = Node (Suc n, False) (empty-money n) (empty-money n)

The money that satisfies the following conditions is called valid money:

1. It is a complete binary tree.

2. For each false node, all of its ancestor nodes and all of its descendant nodes are false nodes.

In the original definition of the binary tree approach, a binary tree of money may be incomplete and
the values for both children of a node may not be equivalent, as far as it obeys the condition that the value
of each node is the sum of its children nodes. Moreover, a set of nodes used for payment is arbitrary as
far as it obeys the rules of payment. For simplicity, in this paper we use a complete binary tree, i.e., one
for which the size of the left and right subtrees is the same and whose node is assigned a value of 2i for
i = 0,1, . . .. In addition, when we construct a tree for a given value, a label for each node is given in a
depth-first manner, and when we pay an amount of money, we use nodes from top to bottom and from
letf to right sequentially. These rules guarantee the uniqueness of the structure of money for each coin.

The function cash is defined using a bit sequence so that a suitable induction scheme may be applied.
It creates money from a given natural number. If the number is a full value, full money is created.
Otherwise, money is created using bs-to-money and nat-to-bs. bs-to-money is almost the same as bs-to-
btree shown in Section 2.

primrec
cash :: nat ⇒ money

where
cash-base: cash 0 = Tip |
cash-step: cash (Suc n) = (if (Suc n) = 2 ˆ lg (Suc n)

8



Formalization of data conversion Takahashi and Yoshimaru

then full-money (lg (Suc n))
else bs-to-money (nat-to-bs (Suc n)))

For example, cash 5 = (Node (3,False) ( f ull-money 2) (Node (2,False)
(Node (1,False) ( f ull-money 0) (empty-money 0)) (empty-money 1)))

3.4.2 Data Conversion from BTREE to NAT

The function money-amount computes the amount of money that can be used. If a given natural number
is a full value, money is full money. Otherwise, if the root node of money is a false node, the amount of
the left tree is 2n−1, and the amount of the right tree is n−2n−1.

primrec
money-amount :: money ⇒ nat

where
money-amount Tip = 0 |
money-amount (Node x l r) = (if usable x

then 2 ˆ amount x
else money-amount l + money-amount r)

For example, money-amount(cash 5) = 5
Moreover, we add the following axiom on bit sequences that relates the bit sequence to the corre-

sponding money, which can be proved.

axioms
money-amount-for-bit-seq: bit-seq n = b#bs

=⇒ money-amount (bs-to-money bs) = money-amount (bs-to-money (bit-seq (n − 2 ˆ lg n)))

3.5 Functions on BTREE

First, we define the function corresponding to the property that money should satisfy.
Generally, money is an arbitrary binary tree whose nodes are labeled with the pair nat and bool. The

data that are valid as money should satisfy two conditions: they form a complete binary tree, and all
ancestor nodes and all descendant nodes of a false node are false nodes.

primrec
is-complete-bt :: money ⇒ bool

where
is-complete-bt Tip = True |
is-complete-bt (Node x l r) = (if amount x = 0

then l = Tip ∧ r = Tip
else if l = Tip ∨ r = Tip

then False
else (amount x = Suc (money-capacity l)) ∧ (money-capacity l = money-capacity r) ∧ is-complete-bt l ∧

is-complete-bt r)

primrec
satify-payment-rule :: money ⇒ bool

where
satisfy-payment-rule Tip = True |
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satisfy-payment-rule (Node x l r) = (if l = Tip ∨ r = Tip
then True
else if usable x

then is-full-money l ∧ is-full-money r
else ¬ (is-full-money l ∧ is-full-money r) ∧ (satisfy-payment-rule l ∧ satisfy-payment-rule r)

definition
is-valid-money :: money ⇒ bool

where
is-valid-money c ≡ is-complete-bt c∧ satisfy-payment-rule c

declare check-money-def [simp]

Next, we define the payment function on BTREE.
The function pay corresponds to payment according to the payment rules. When we pay n from

money, where n is less than or equal to the amount of money, then we pay all of n from the right tree,
and the left tree remains as it is if the amount of the right tree is more than n. Otherwise, we exhaust the
right tree in the payment and pay the remainder from the left tree.

primrec
pay :: money ⇒ nat ⇒ money

where
pay Tip n = Tip |
pay (Node x l r) n = (if n = 0

then Node x l r
else if (usable x ∧ 2 ˆ amount x < n)

then empty-money (amount x)
else if (money-amount r < n)

then Node (amount x, False) (pay l (n − money-amount r)) (empty-money (money-capacity r))
else Node (amount x, False) l (pay r n))

For example, money-amount(pay (cash 13) 9) = 4

In the above definition, (usable x) means that the node x is a true node, (amount x) indicates the
labeled number of the node x, and (money-capacity r) indicates the labeled number of the root node of
tree r.

4 Proof

4.1 Basic Concept

We prove four important properties that hold over two data types NAT and BTREE.

1. validity
∀n.is-valid-money(cash n)

∀c.∀ms. is-valid-money( f oldl pay c ms)

2. the relationship of cash and money-amount
∀ n. (money-amount (cash n) = n)

3. well-definedness of pay
∀ n.∀ m. (money-amount (pay (cash n) m) = n−m)

10



Formalization of data conversion Takahashi and Yoshimaru

4. divisibility
∀n.∀ms.( n ≥ listsum ms =⇒ money amount ( f oldl pay (cash n) ms) = n − listsum ms )

Here, f oldl and listsum are the functions handling a list that are defined in the Isabelle/HOL library.
Let ms be a list [m1, . . . ,mk]. ( f oldl pay c ms) is rewritten in the following form:

(pay . . . (pay c m1) . . . mk)

and (listsum ms) is rewritten in the following form:

(m1 + . . . + mk)

We show only the outline of the proof. The main proof code in Isabelle/HOL is shown in Appendix.
The proof includes about 60 lemmas in total.

4.2 Validity

The first specification indicates that the entity generated by cash is a valid money. The second specifi-
cation indicates that the remainder of any transaction is a valid money. Both specifications can be easily
proved.

4.3 Relationship of cash and money-amount

The specification indicates that the amount of money created by cash from a natural number is equal
to that value. This property is proved using the properties of a bit sequence. The proof is conducted
depending on the form of natural number n.

(o) distribution property of money-amount
The function money-amount satisfies the following property of distribution over money.

money-amount(Node x le f t right) =
money-amount(le f t)+money-amount(right). · · ·(1)

It can be proved easily.

(i) n is a full value

money-amount(cash 2n)
= money-amount( f ull-money (lg 2n))) · · ·(2)
= money-amount( f ull-money n) · · ·(3)
= money-amount(Node (n,True) ( f ull-money n−1) ( f ull-money n−1)) · · ·(4)
= 2n . . .(5)

Formula (2) is obtained by unfolding cash, and formula (3) is obtained by the property of lg. Formula
(4) is obtained by unfolding f ull-money, and formula (5) is obtained by unfolding money-amount.

(ii) n is not a full value
In this case, the root node of money for (cash n) is a false node, and the left tree is full money.
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money-amount(cash n)
= money-amount(bs-to-money (b#bs)) · · ·(6)
= money-amount(Node ((length b#bs) False)

( f ull-money (length bs)) (bs-to-money bs)) · · ·(7)
= money-amount( f ull-money (length bs)) +

money-amount(bs-to-money bs) · · ·(8)

Formula (6) is obtained by unfolding cash, where nat-to-bs n = b#bs. Formula (7) is obtained by
unfolding bs-to-money, and formula (8) is obtained by the distribution property of money-amount (1).

In this case, because nat-to-bs n = b#bs f or n > 0 holds, the following also holds.

cash 2lg n

= f ull-money(lg 2lg n) . . .(9)
= f ull-money(lg n) . . .(10)
= f ull-money(length bs) . . .(11)

Formula (9) is obtained by unfolding cash and from the property of lg. Formula (10) is obtained
from the property of lg, and formula (11) is obtained from the property of bit-sequence.

Therefore, the first term of formula (8) is transformed as follows.

money-amount( f ull-money (length bs))
= money-amount(cash 2lgn) . . .(12)

The second term of formula (8) is transformed as follows.

money-amount(bs-to-money bs)
= money-amount(bs-to-money (nat-to-bs (n−2lg n))) · · ·(13)
= money-amount(cash n−2lgn) · · ·(14)

Formula (13) is obtained by the axiom money-amount- f or-bit-seq, where nat-to-bs n = b#bs. For-
mula (14) is obtained by unfolding cash.

Here we use the complete induction on NAT named nat-less-induct.

if ∀ k; k < n, money-amount(cash k) = k,
then money-mount(cash n) = n holds.

Because 2lg n < n and n−2lg n < n, we apply this type of induction to both formulas (12) and (14),
and formula (8) is finally transformed to the following form.

money-amount(cash 2lg n)+money-amount(cash (n−2lg n))
= 2lg n +(n−2lg n)
= n

4.4 Well-definedness of pay

The specification indicates that the amount remaining after payment is the difference between the original
value and the payment value (Figure 4).

This is derived by proving the following lemma.

∀ c.∀ n. (money-amount (pay c n)) = (money-amount c)−n

12
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nat money

n M

n’ M’

payminus

cash

money-amount

Figure 4: Well definedness of pay

The lemma is proved as follows. When we pay n from money c, if n does not exceed the amount of
c, we pay m2 from the right subtree as far as possible and pay the remainder m1 from the left tree. The
m1 and m2 are determined as follows: if n < (money-amount right), then m1 = 0 and m2 = n; otherwise,
m1 = n− (money-amount right) and m2 = (money-amount right).

money-amount(pay c (m1+m2))
= money-amount(pay (Node x le f t right) (m1+m2)) · · ·(15)
= money-amount(pay le f t m1)+money-amount(pay right m2) · · ·(16)
= (money-amount(le f t) − m1)+(money-amount(right) − m2) · · ·(17)
= (money-amount(le f t) + money-amount(right)) − (m1 + m2)
= money-amount(Node x le f t right) − (m1+m2)
= money-amount(c) − (m1+m2)

Formula (15) is obtained by expanding c. Formulas (16) and (18) are obtained by the distribution
property of money-amount (1). Formula (17) is obtained by applying induction on money.

4.5 Divisibility

Given that ms is a list of values, each of which corresponds to a transaction, this specification indicates
that if a user pays from the head of this list in succession, then the remainder is the correct value. This is
a main theorem and it is easily proved using the properties 1,2 and 3.

5 Discussion

Many studies have been conducted of the proof of security protocols using Isabelle/HOL. Paulson suc-
ceeded in verifying the SET protocols [21], and Bella showed the verification of smart cards [3]. Many
applications for proving complicated security protocols such as Kerberos [4] and TLS [20] were pre-
sented later. In Paulson’s approach, a protocol is modeled as a sequence of events, and the sequences
that may occur are modeled as a set [19]. If one event occurs, one sequence of the events is also added.
Therefore, inductive definition is natural, and inductive proof on this data type can also be applied natu-
rally.

These applications treat the protocol level and there has been little work at the data level. At the
data level, one must treat the property over different data types. And when one treats the property over
NAT and BTREE, which have different induction schemes, one must arrange things so that induction
can lead to a successful proof. We have solved this problem by introducing an intermediate data type.
A bit sequence was used as this intermediate data type because its properties resemble those of the

13
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BTREE used in e-cash. In general, the data type used as intermediate data depends on the specification
of BTREE. In addition, we have proposed an algorithm for converting NAT to BS that determines the
element from the head of a resulting bit sequence.

The most important point is that we have provided a definition for the conversion function in recursive
form so that a natural number can be divided into two parts corresponding to the left and right subtrees.
We recognize the effectiveness of this approach in the proof of the relationship of cash and money-amount
and that of the well-definedness of pay.

6 Conclusion

The method for converting data from NAT to BTREE that we have proposed makes possible an inductive
proof for the properties over data with different induction schemes. For instance, Because many theorem
provers use induction as a proof scheme, and data types such as NAT, LIST, and BTREE are frequently
used, our approach is effective for use in many other applications. We have used a bit sequence as an
intermediate data type to successfully apply induction to a proof and have illustrated this approach using
an e-cash protocol.

We are considering the application of our approach to other problems. For example, Blanchette
recently conducted an interesting study that formalized the textbook implementation of the Huffman al-
gorithm in Isabelle/HOL and demonstrated the correctness of the algorithm [6]. The Huffman algorithm
involves coding on binary trees and is used mainly for data compression. It would be interesting to apply
our approach to that application, because our work can be considered a proof related to the coding of a
natural number on a binary tree.
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A The Proof Code in Isabelle/HOL for Divisibility of E-Cash

lemma validity: is-valid-money (cash n)
apply (case-tac n, simp)
apply (simp only:cash-step)
apply (split split-if , simp)
done

lemma validity-for-list: [[is-valid-money c; money-amount c ≥ listsum ms]] =⇒ is-valid-money (foldl pay c ms)
by (simp only:check-money-amount-for-fold-pay)

lemma the-relation-of-cash-and-money-amount: is-valid-money (cash n) =⇒ money-amount (cash n) = n
apply (induct n rule:nat-less-induct)
apply (case-tac n, simp)
apply (case-tac n = 2 ˆ lg n)
apply (simp only:money-amount-for-cash-with-complete-n)
apply (case-tac bit-seq n)
apply (simp only:bs-step-noteq-Nil)
apply (subgoal-tac money-amount (cash n) = money-amount (Node (length (a # list), False) (full-money (length

list)) (bs-to-money list)))
prefer 2
apply (rule develop-cash-in-money-amount, assumption+)
apply (subgoal-tac money-amount (Node (length (a # list), False) (full-money (length list)) (bs-to-money list))
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= n)
apply (simp (no-asm-use))
apply (simp (no-asm))
apply (subgoal-tac money-amount (cash (2 ˆ lg n)) = money-amount (full-money (length list)))
prefer 2
apply (rule develop-cash-for-two-to-lg-in-money-amount, assumption+)
apply (subgoal-tac money-amount (cash (2 ˆ lg n)) + money-amount (bs-to-money list) = n)
apply (simp (no-asm-use))
apply (subgoal-tac money-amount (cash (n − 2 ˆ lg n)) = money-amount (bs-to-money list))
prefer 2
apply (rule develop-cash-for-except-two-to-lg-in-money-amount, assumption+)
apply (subgoal-tac money-amount (cash (2 ˆ lg n)) + money-amount (cash (n − 2 ˆ lg n)) = n)
apply (simp only:hd-calc-bit-seq-True)
apply (subgoal-tac money-amount (cash (2 ˆ lg n)) = 2 ˆ lg n)
prefer 2
apply (rule money-amount-of-left-induct, assumption+)
apply (subgoal-tac 2 ˆ lg n + money-amount (cash (n − 2 ˆ lg n)) = n)
apply (simp only:hd-calc-bit-seq-True)
apply (subgoal-tac money-amount (cash (n − 2 ˆ lg n)) = n − 2 ˆ lg n)
prefer 2
apply (rule money-amount-of-right-induct, assumption+)
apply (subgoal-tac (2 ˆ lg n) + (n − 2 ˆ lg n) = n)
apply (simp only:hd-calc-bit-seq-True)
apply (simp only:associative-for-two-to-lg)
done

lemma well-defineness-of-pay-lemma:
∧

n. [[is-valid-money c; n ≤ money-amount c]] =⇒ money-amount (pay c n)
= (money-amount c )− n

apply (induct c, simp)
apply (case-tac n = 0, simp)
apply (case-tac amount a = 0, simp)
apply (case-tac c1 = Tip ∨ c2 = Tip, simp)
apply (case-tac ¬ usable a, simp)
apply (simp add:money-amount-on-check-full)
done

lemma well-defineness-of-pay: n ≥ m =⇒ money-amount (pay (cash n) m) = n − m
by (simp only:check-money-for-cash

well-defineness-of-pay-lemma
money-amount-of-cash)

theorem divisibility: n ≥ listsum ms =⇒ money-amount (foldl pay (cash n) ms) = n − listsum ms
apply (induct ms rule:rev-induct, simp-all)
apply (simp only:money-amount-of-cash)
apply (simp only:check-money-for-cash succeed-payment money-amount-of-cash

check-money-for-fold-pay)
done
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