
36 T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework

Transformation from PROLEG to a
Bipolar Argumentation Framework

Tatsuki KAWASAKI aand Sosuke MORIGUCHI aand Kazuko TAKAHASHI a,1

a Kwansei Gakuin University, Japan

Abstract. We describe a transformation from the legally descriptive lan-

guage PROLEG to a bipolar argumentation framework (BAF). PRO-

LEG is a language consisting of general rules and exceptions and em-
ploys the negation-as-failure inference rule. In the transformation, each

atom is transformed into an argument and the relationships of each

atom are transformed into attack or support relationships in BAF. We
formalize the transformation rules, and present the semantics of the

transformed BAF so that the meaning of legal reasoning is preserved.

We prove that the answer set of the PROLEG program coincides with
the set of accepted arguments in BAF.

Keywords. bipolar argumentation framework, legal reasoning, PROLEG,
normal logic programming, semantics

1. Introduction

Computational argumentation is useful when engaging in conflict resolution, aid-
ing the attainment of agreement, and it finds many application fields [15]. One
promising application is legal reasoning. In legal reasoning, computational sup-
port is very helpful both when making a judgment and also when analyzing or
explaining the process involved [2].

Over the last few decades, legal reasoning using logic programming has been
intensively investigated, but is burdensome for lawyers who lack familiarity with
logic programming; they are unable to write legal knowledge appropriately or to
understand the reasoning involved. One solution to this problem is the develop-
ment of a descriptive language that encompasses the language of pure logic pro-
gramming; lawyers readily understand descriptive language that represents legal
knowledge. The PROLEG language was developed to this end [16]. PROLEG was
originally developed to describe the Japanese “presupposed ultimate facts” theory
(called Yoken-jijistu-ron in Japanese) of the Japanese civil code, and currently
it is challenging to describe a penal code. PROLEG is an extension of Prolog,
and features a negation-as-failure inference rule. PROLEG contains two types of
sentences, general rules, and exceptions. The expressive power of PROLEG is the
same as that of a normal logic program (NLP) with an answer set [17].

1Corresponding Author: Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337

Japan; E-mail:ktaka@kwansei.ac.jp

T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework 37

The following is a PROLEG program representing the penal code that de-
fines the “crime of murder.”2 The first clause indicates the general rule and the
second clause an exception. The text states that if the object is a human (not a
dead body) and there exists both the action of murder and also the intention to
murder, then the crime of murder has been committed unless a legitimate defense
is available.

crime_of_murder <= human, action_of_murder, intention_to_murder.

exception(crime_of_murder,legitimate_defense).

If a case in which the atoms human, action of murder and intention to murder
are proved to be true, and legitimate defense is not proved to be true, then
crime of murder is proved to be true, and is applied to the case. On the other
hand, if legitimate defense is proved to be true, then crime of murder is not proved
to be true, and it is not applied to the case. This corresponds to the well-known
negation-as-failure inference rule. A judge should explain the process of judgment
to persuade those concerned with the justice. In such a legal situation, what is
required is not only the outcome of judicial reasoning but also an explanation of
the reasoning process or the cause-and-effect relationships of arguments used in
reasoning. For example, people may wish to know why the crime of murder was
not applicable; this may be because of a lack of evidence of intention to murder,
or as the result of the fact that a legitimate defense is proved to be true. More-
over, if it is possible to identify a reason, a lawyer should consider what s/he
should do to make the crime of murder apply. For example, s/he will look for
evidence of intention to murder if the lack causes to prevent the application of
a crime of murder. However, this is not easy to understand by reference to the
PROLEG program. Sentence delivered after judgment is regarded as a kind of ar-
gumentation. Since our final goal was to provide a tool that supports lawyers, we
must create a representation allowing lawyers to easily grasp both the structure
of an argument and the reason for judgment. Argumentation framework (AF)
proposed by Dung [9] is a useful method to understand an argumentation process
and reasons for a judgment. However, it does not explicitly show a specific argu-
ment that supports another argument. This motivated us to transform PROLEG
into a bipolar argumentation framework (BAF) with a structure reflecting real
arguments that consist of pros and cons. BAF is an extension of AF [1].

An AF is defined as a pair 〈AR,ATT 〉 where AR is a set of arguments and
ATT a binary relationship over AR, called an attack. Dung defined several se-
mantics and showed that their relationships were the same as those of a normal
logic program (NLP) [9]. He defined a transformation from NLP to AF, and
showed that a stable model (an answer set) is equivalent to a stable extension of
the transformed AF. He also considered the relationships between an NLP and an
AF in terms of other semantics. In the transformation, each clause is transformed
into a single argument, which consists of a claim and a support: for each clause,
the head goal is transformed into a claim and the body goals into supports.

An NLP is a finite set of clauses in the following form:

2Note that the examples shown here are simplified versions of an actual penal code; the

conditions per se are simplified and the legal terminology is not precise.

38 T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework

L : - L1, . . . , Lm,not Lm+1, . . . ,not Lm+n.

where L,L1, . . . , Lm+n are atoms and not is a negation-as-failure operator [10].
For each atom h, the complement of h is denoted by h∗. Then, Dung showed that
a logic program P was transformed into the AF AF (P) = 〈AR,ATT 〉 as follows:

AR = {(K, k) | K is a support for k with respect to P}
∪ {({¬k},¬k)|k is a ground atom}.

ATT = {((K,H), (K ′, h′)) | h∗ ∈ K ′}.

In this transformation, for each clause, the body goals are unified into a single
argument, and the goal h∗ is not explicitly indicated in the transformed AF.
Therefore, we cannot identify a specific goal that is attacked.

A BAF is an extension of an AF in which two types of relationships (attack
and support) are defined over a set of arguments [1]. We can transform a PRO-
LEG program into a BAF in a similar manner, but this does not suit our purpose
that the causes and effects of individual arguments are clearly represented.

Here, we use a transformation that differs from that of Dung. We create an
argument not for each clause but, rather, for each goal, and define attack or
support relationships between the arguments.

In this paper, we develop a transformation from PROLEG to BAF and show
that it is correct. More specifically, we give a semantics for the BAF obtained as
a result of the transformation, and prove that a PROLEG answer set coincides
with the set of accepted BAF arguments.

This paper is organized as follows. After explaining PROLEG in Section 2, we
describe the BAF that we treat here and give its semantics in Section 3. Then, we
develop the transformation rule from PROLEG to BAF in Section 4, and prove
its correctness in Section 5. We compare our approach with those of others in
Section 6. Finally, we offer concluding remarks and mention our future work in
Section 7.

2. Legal Description Language: PROLEG

The PROLEG program P is defined as a pair 〈R, E〉, a finite set of rules, and a
finite set of exceptions. Each rule is a Horn clause of the form H ⇐ B1, . . . Bn,
where H,B1, . . . , Bn are atoms (n may be 0, and we call such a rule a fact rule
or simply a fact). Each exception is in the form exception(H,E).

For each rule R or exception E, we use the functions head and body s.t.
head(R) = H and body(R) = {B1, . . . , Bn} if R = H ⇐ B1, . . . , Bn; head(E) = H
and body(E) = {B} if E = exception(H,B).

The semantics of the PROLEG program P are defined as an answer set (a
set of ground atoms). M is the answer set of P iff M is the minimum model of
PM where PM is the set of Horn clauses defined as {H ⇐ B1, . . . Bn ∈ R | ∀E ∈
E , if head(E) = H then body(E) 6⊆M}.

First, we define the relevant atoms for each atom. The relevant atoms of A
are defined as rP (A) =

⋃
R∈R∧head(R)=A body(R) ∪

⋃
E∈E∧head(E)=A body(E).

T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework 39

The level function lP for program P , from a atom to an integer, is defined as
follows:

lP (A) =

{
1 (rP (A) = ∅)
maxB∈rP (A)lP (B) + 1 (otherwise)

When lP is uniquely defined, P is said to be acyclic. Here, we focus on only
acyclic PROLEG programs. Since lP is unique, we state that atom A has a level
n when lP (A) = n.

3. Bipolar Argumentation Framework

Here, we deal with acyclic BAFs and give the semantics.
BAF is an extension of AF in which the two relationships of attack and

support are defined over a set of arguments [1]. Different from usual BAF based on
this definition, we define a support relationship between a power set of arguments
and a set of arguments.

Definition 1. BAF baf is defined as a triple 〈AR,ATT ,SUP〉 where AR is a
finite set of arguments, ATT ⊆ AR ×AR and SUP ⊆ (2AR\∅)×AR. We define
att(B,A) if (B,A) ∈ ATT , and sup(A, A) if (A, A) ∈ SUP

Definition 2. The relevant set of arguments A is defined as relA =
{B | att(B,A)} ∪ {B | B ∈ A ∧ sup(A, A)}.

Definition 3. For baf = 〈AR,ATT ,SUP〉, the height function h of baf , from AR
to a non-negative number, is defined as follows:

• h(A) = 0 if relA = ∅.
• h(A) = maxB∈relA(h(B)) + 1 otherwise.

Definition 4. We say that baf is acyclic when the height function is definable.

Figure 1 is a graphic representation of a BAF
〈{a, b, c, d, e}{(b, a), (e, d)}{({c, d}, a)}〉. In this BAF, rela = {b, c, d} and
h(b) = h(c) = h(e) = 0, h(d) = 1, h(a) = 2.

Figure 1. Example of BAF.

We give a semantics for BAF based on labeling [5]. Usually, labeling is a
function from a set of arguments to {in, out , undec}, but undec is unnecessary

40 T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework

here, because the BAF is acyclic. An argument labeled with in is considered to
be an accepted argument. Labeling of a set of arguments is defined as follows.

Definition 5. For baf = 〈AR,ATT ,SUP〉, labeling L is a function from AR to
{in, out}. L(A) = in if ∀A ∈ A,L(A) = in for all A ∈ A; L(A) = out, otherwise.

Complete labeling is determined so that legal judgment can be reflected.
We put the label in to the argument that is not attacked nor supported by
any argument. When an argument is attacked and also supported, an attack is
considered to be stronger than a support. We put the label out to the argument
that is attacked by an argument with a label out and at the same time supported
by an argument with a label out .

Definition 6. For baf = 〈AR,ATT ,SUP〉, labeling L is complete iff the following
conditions are satisfied for any argument A ∈ AR.

• L(A) = in if (∀B ∈ AR,¬att(B,A)) ∧ (∀A ⊆ AR,¬sup(A, A)).
• L(A) = in if (∀B ∈ AR, att(B,A) ⇒ L(B) = out) ∧ (∃A ⊆

AR, sup(A, A) ∧ L(A) = in).
• L(A) = out, otherwise.

Figure 2 illustrates examples of the complete labelings to four BAFs, respec-
tively. In the figure, the straight arrow indicates an attack relation and the wavy
arrow indicates a support relation.

Figure 2. Examples of BAFs with complete labelings.

Theorem 1. For any acyclic BAF, there is one and only one complete labeling.

Proof. We now prove the uniqueness of this labeling. Assume that two complete
labelings L1 and L2 exist. The proof is by induction on the height n of arguments.

If n = 0, the relevant set of A is an empty set. This means that A is neither
attacked nor supported, thus L1(A) = L2(A) = in from the definition of complete
labeling.

When n > 0, we proceed by induction; assume that for any argument A′ of
height less than n, L1(A′) = L2(A′) holds. Then, we prove that for any argument
A of height n, L1(A) = L2(A) holds. From the definition of the height of an
argument, there should be an argument B that fulfills att(B,A), or a non-empty
set of arguments A that fulfills sup(A, A). Since the heights of B and A are both
less than n, L1(B) = L2(B) and L1(A′) = L2(A′) hold for each A′ ∈ A (from the
induction hypothesis). If L1(B) = out and L1(A′) = in for some A, then A′ ∈ A,
and L1(A) = in; and, in the same manner, L2(A) = in. Otherwise, L1(A) = out
and L2(A) = out . Therefore, L1(A) = L2(A).

T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework 41

Hence, for any argument A, L1(A) = L2(A); thus, L1 = L2. Since we can
thus perform complete labeling, such labeling must be unique.

4. Transformation

4.1. Transformation rule

We here transform a PROLEG program into a BAF. Atoms, rules, and exceptions
in P are transformed into arguments, supports, and attacks, respectively.

We add two types of arguments to the BAF that do not occur as explicit
atoms in PROLEG. One is an argument reflecting the absence of any inference
rules in PROLEG. In PROLEG, an atom H that does not appear in the head
of any rule or exception is not in the answer set. On the other hand, arguments
that are neither supported nor attacked are labeled in. To fill the gap, we add the
argument absence(H) that attacks H. We call this argument an absence argument.

We also add arguments showing the existence of fact rules. For a fact rule
(i.e., a rule in the form H ⇐), there is no arguments that support H in BAF;
whereas any support is a binary relationship. Therefore, we add an argument
existence(H) that supports H. We call this argument an existence argument.

Definition 7. Transformation from the PROLEG program 〈R, E〉 to BAF
(AR,ATT ,SUP) is defined as follows.

• Atom =
⋃

R∈R(head(R) ∪ body(R)) ∪
⋃

E∈E(head(E) ∪ body(E))
• Rule = {(body(R), head(R)) | R ∈ R ∧ body(R) 6= ∅}
• Exc = {(B,H) | exception(H,B) ∈ E}
• Existence = {H | H ⇐∈ R}
• ExistenceSupport = {({existence(H)}, H) | H ∈ Existence}
• Absence = Atom\({head(R) | R ∈ R} ∪ {head(E) | E ∈ E})
• AbsenceAttack = {(absence(B), B) | B ∈ Absence}
• AR = Atom ∪ {existence(H) | H ∈ Existence} ∪ {absence(B) | B ∈

Absence}
• ATT = Exc ∪AbsenceAttack
• SUP = Rule ∪ ExistenceSupport

Clearly, we can process the transformation with a linear order of set opera-
tions of the size of P .

4.2. Examples

Example 1.
Consider the following PROLEG program (Prog1):

p <= q1,q2.

exception(q1,r).

q2<=.

r<=.

42 T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework

It is transformed into the following BAF:
〈 {p, q1, q2, r, ex(q2), ex(r)}, {(r, q1)},
{({q1, q2}, p), ({ex(q2)}, q2), ({ex(r)}, r)} 〉.

Arguments q1 and q2 together support the argument p. The existence ar-
guments ex(q2) and ex(r) are created to support q2 and r, respectively. Fig-
ure 3 shows a graphical representation of the BAF, with the complete label-
ing. Since L(q1) = out and L(q2) = in, the label of the combined argument
L({q1, q2}) = out . Since p is supported by {q1, q2}, L(p) = out .

Figure 3. BAF for Prog1.

Example 2.
We now discuss a PROLEG program dealing with murder case.
The first part describes the penal code relevant to murder. The first set of

rules and exceptions state that if the object is a human (not a dead body) and
there exists both the action of murder and also the intention to murder, then
the crime of murder has been committed unless a legitimate defense is available.
The second set of rules and exceptions state that if the accused is infringed, and
takes emergency, necessary, and appropriate action to defend himself/herself, then
this is a legitimate defense, unless there is no aggressive intention to harm the
deceased. The remaining part deals with the facts in evidence.

% rules regarding crime_of_murder

crime_of_murder <= human, act_of_murder, intention_to_murder.

exception(crime_of_murder,legitimate_defense).

legitimate_defense <=

infringement, emergency, necessity, appropriateness,

defense_intention.

exception(legitimate_defense,aggressive_intention_to_harm).

% facts

human <=.

act_of_murder <=.

intention_to_murder <=.

infringement <=.

emergency <=.

necessity <=.

appropriateness <=.

T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework 43

defense_intention <=.

For each proposition, a general rule defining that proposition together with
the exceptions are transformed into the BAF using the transformation rule. If
there exists a fact, then a corresponding existence argument supporting the propo-
sition is created. If an atom does not appear in the head of any rule or exception,
then a corresponding absence argument attacking the proposition is created in
the transformed BAF.

We show the graphical representation of the transformed BAF in Figure 4.

Figure 4. Graphical representation for a transformed BAF of the murder case.

In this case, the argumentation process is explained as follows. Since the
label of the absence argument ab(aggressive intention to harm) is in, that of the
aggressive argument aggressive intention to harm is out (there is no aggressive
intention to harm). Therefore, the label of the argument legitimate defense is
in (it is a legitimate defense). The argument crime of murder has one attacking
argument, the label of which is in, and one supporting set of arguments, the label
of which is in. Hence, the label of the argument crime of murder is out (the crime
of murder is not applied).

5. Correctness of Transformation

Lemma 1. For PROLEG program P and its transformation baf , each atom H in
P retains its level in terms of height, that is, l(H) = m in P iff h(H) = m in
baf .

Proof. The proof proceeds by induction on the level m of atom H. Note that the
levels of atoms commence at 1 whereas the heights of arguments commence at
0, and that every argument of which height is 0 is an existence argument or an
absence argument.

44 T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework

Theorem 2. For PROLEG program P , let M be an answer set of P . Assume that
L is the complete labeling of transformed BAF baf from P . Then, for each atom
H in P , H ∈M iff L(H) = in.

Proof. The proof proceeds by induction on the level m of atom H.
When m = 1, H is either derived only by fact rules or no rules. If H is

derived by fact rules, H ∈ M . Since these rules are transformed into supports
with existence arguments (and no attacks to H exist), L(H) = in. If H is not
derived by any rules, H 6∈M . In this case, H is not supported by any arguments
but attacked by its absence argument; thus L(H) = out . Therefore, H ∈ M iff
L(H) = in.

For m ≥ 2, assume that for any k < m, the following proposition holds: for
any atom H ′ of level k, H ′ ∈ M iff L(H ′) = in. Since the level of H is greater
than 1, H is derived by rules and/or exceptions of P .

First, we prove that if H ∈ M then L(H) = in. Since M is the minimum
model, there exists a rule H ⇐ B1, . . . , Bn such that, for each i, Bi ∈ M , and
there are no exceptions exception(H,B) such that B ∈ M . In baf , the rule is
transformed into sup({B1, . . . , Bn}, H). The levels of B and B1, . . . , Bn are less
than m, and from the induction hypothesis, for each i, L(Bi) = in. Also, for any
exceptions exception(H,B), the level of B is less than m, and L(B) 6= in since
B 6∈M (from the cotraposition of the hypothesis). Therefore, L(H) = in.

Next, we prove that if L(H) = in, then H ∈M . Since H is derived by some
rule and/or exception, H is supported and/or attacked by some argument. This
means that if L(H) = in, then, for any argument B satisfying att(B,H), L(B) 6=
in. These attacks are generated from the exceptions exception(H,B), and from
the induction hypothesis, B 6∈ M . Also, there is a support sup({B1, . . . , Bn}, H)
such that L(Bi) = in for each i. Such a support is generated from the rule
H ⇐ B1, . . . , Bn. Since the levels of B1, . . . , Bn are less than m, Bi ∈ M from
the induction hypothesis. Since M is the minimum model (and no exceptions are
satisfied), H ∈M .

Thus, for any level m, H ∈M iff L(H) = in.

6. Discussion

Although transformation from NLP to AF is well known, no works can be found
on that from NLP to BAF, to the best of authors’ knowledge. The significant
issue on the transformation is to give a semantics to the obtained BAF so that
the meaning of legal reasoning is preserved. Here, we discuss existing works on
the semantics of BAF.

Cayrol et al. investigated the semantics of BAF, defining several types of
indirect attacks by combining an attack with supports. They also defined several
types of extensions [6,7]. Then, they introduced the concept of “coalition” (a set
of arguments) and defined a meta-AF using such a coalition [7]. The idea was to
reduce a BAF to an AF by deleting the support relationships between arguments
in the same coalition. Since this meta-AF can be regarded as a normal AF, a
semantics can be defined. An argument in BAF is accepted if it is included in an
accepted coalition of the meta-AF.

T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework 45

This method is problematic when it is applied to the BAF obtained by our
transformation from PROLEG. Consider the following PROLEG program:

[PROLEG program: PPROLEG]

p <= q1.

p <= q2.

exception(q1,r).

q2<=.

r<=.

The BAF obtained by our transformation is as follows:
〈 {p, q1, q2, r, ex(q1), ex(r)}, {(r, q1)},
{({q1, q2}, p), ({ex(q2)}, q2), ({ex(r)}, r)} 〉,

which is shown in Figure 5. We obtain L(p) = L(q2) = L(r) = in,L(q1) = out .
Therefore, p is accepted.

Figure 5. BAF for PPROLEG obtained by our transformation.

Assume that this BAF is given. We construct coalition AF based on the
definition in [7]. We now have two coalitions C1 and C2. C1 is a coalition of r and
ex(r) and C2 is a coalition of p, q1, q2 and ex(q2). Then, we obtain the meta-AF,
AF = 〈{C1, C2}, {(C1, C2)}〉. Since L(C1) = in,L(C2) = out in this meta-AF
but C2 is not accepted. Therefore, p is not accepted (Figure 6).

Figure 6. Coalition AF based on Cayrol’s method.

46 T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework

According to [17], an NLP translated from PPROLEG is as follows:

[Translated NLP from PPROLEG: PNLP]

p <= q1.

p <= q2.

q1 <= not r.

q2<=.

r<=.

Since the answer set of this program is {p, q2, r}, p should be accepted in the
corresponding BAF.

Using the semantics of coalition framework, all arguments in the coalition
C2 are considered to be attacked. A coalition is formed by unifying arguments,
without considering the meaning of the original PROLEG program. Thus, we
may have an accepted argument that is counterintuitive. On the other hand, in
our method, p is accepted (Figure 5). Therefore, our method is more appropriate
on dealing with legal knowledge.

In a coalition framework, an argument corresponds to a set of goals. Other
frameworks in which support relation is handled have similar structures [11,13].
In these works, each support relationship is embedded in a single argument and
only an attack relationship is defined between arguments. It is preferable, in a
legal scenario, that the causes and effects of individual arguments are clear.

Oren and Norman developed an evidential argumentation by introducing a
special argument, corresponding to an environment, into BAF [12]. This concept
is similar to the existence argument of our method. The difference is that the
cited authors introduced a single argument from which both attack and support
relationships arise. In contrast, we create an existence or an absence argument for
each fact. The structure of the evidential argumentation is more compact than
ours, but the individual evidence for each fact is unclear.

Brewka et al. proposed an Abstract Dialectical Framework (ADF) as a gen-
eralization of the AF of Dung [3,4]. In the ADF, each node is associated with
an acceptance condition depending on the parent nodes, and each link has an
individual strength. The NLP can be represented as an associated ADF of which
the nodes are atoms of the NLP. A bipolar ADF is a subclass of ADF in which
each link is either attacked or supported depending on the polarity of its strength.
This represents the BAF, and the BAF transformed from PROLEG may be con-
sidered as an instantiation of an ADF. It is interesting to investigate whether a
semantics of ADF can be straightforwardly applied to the BAF transformed from
PROLEG.

7. Conclusion

We developed a transformation from PROLEG to BAF and proved that it was
correct. The resulting BAF reflects a structure of the reasoning and causality
among ground atoms. We gave a semantics to the BAF that allows legal reasoning,

T. Kawasaki et al. / Transformation from PROLEG to a Bipolar Arg. Framework 47

and proved that the answer set of PROLEG coincides with the set of accepted
arguments in the BAF. We implemented the transformation using Prolog.

Here, we handled a stratified program, because well-defined Japanese civil
and penal codes should be written in a stratified manner. Thus, the BAF ob-
tained via transformation is acyclic and the labeling is unique. In future, we will
transform a non-stratified NLP to a BAF, and discuss on other semantics. Then,
we will compare these semantics with other formalizations including the coalition
framework and ADF.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP17H06103.

References

[1] Amgoud, L., Cayrol, C., Lagasquie-Schiex, M. and Livet, P.: On bipolarity in argumen-
tation frameworks. International Journal of Intelligent Systems, Volume 23,1062-1093

(2008).

[2] Bench-Capon, T., Prakken H. and Sartor, G.: Argumentation in Legal Reasoning. Argu-
mentation in Artificial Intelligence, 363-382 (2009).

[3] Brewka, G. and Waltran, S.: Abstract Dialectical Frameworks. In Proc. of KR2010,102-111
(2010).

[4] Brewka, G. and Waltran, S. et al.: Abstract Dialectical Frameworks Revisited. In Proc of

IJCAI2013, 803-809 (2013).
[5] Caminada, M.: On the Issue of Reinstatement in Argumentation. In Proc. of JELIA2006,

111-123 (2006).

[6] Cayrol, C. and Lagasquie-Schiex, M.: On the acceptability of arguments in bipolar argu-
mentation frameworks. In Proc. of ECSQARU2005, 378-389 (2005).

[7] Cayrol, C. and Lagasquie-Schiex, M.: Coalitions of arguments in bipolar argumentation

frameworks. In Proc. of CMNA2007, 14-20 (2007).
[8] Cayrol, C. and Lagasquie-Schiex, M.: Bipolarity in argumentation graphs: Towards a bet-

ter understanding. International Journal of Approximate Reasoning, Volume 54, 876-899

(2013).
[9] Dung, P. M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence, Volume 77, 321-
357 (1995).

[10] Gelfond, M. and Lifschitz, V.: The stable model semantics for logic programming. In Proc.

of ICLP, 1070-1080 (1988).
[11] Kowalski, R., Dung, P. M. and Toni, F.: Assumption-based argumentation framework.

Argumentation in Artificial Intelligence, 199-218 (2009).

[12] Oren, N., and Norman, T. J.: Semantics for Evidence-Based Argumentation. In Proc. of
COMMA2008, 276-284 (2008).

[13] Prakken, H.: An abstract framework for argumentation with structured arguments. Argu-

ment & Computation, 93-124 (2010).
[14] Prakken, H., Reed, C. and Walton, D.: Dialogues about the burden of proof. In Proc. of

ICAIL2005, 115-124 (2005).

[15] Rahwan,I. and Simari,G.(eds.): Argumentation in Artificial Intelligence, Springer (2009).
[16] Satoh, K. et al.: PROLEG: the Presupposed Ultimate Fact Theory by PROLOG Technol-

ogy. Information Network Law Review, Volume 10, 54-89 (2011).

[17] Satoh, K. et al.: On Generality of PROLEG Knowledge Representation. In Proc. of JU-
RISIN2012, 115-128 (2012).

