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Abstract

This paper proposes a qualitative treatment of a
two-dimensional figure with height information.
We give a symbolic representation to a terrain, a
topographic surface of a landscape, and we can get
its abstract feature by reasoning on the representa-
tion. A target terrain viewed from above is modeled
as a closed rectangle divided into multiple regions.
For each pair of adjacent regions, we represent their
connection patterns with regard to height. We can
derive the relative grade of a slope and/or its direc-
tion, as well as the existence of a height gap be-
tween regions. We can apply this method for the
route finding in a given terrain, considering gradi-
ents and gaps. We illustrate an application to an
actual landscape.

1 Introduction
Qualitative Spatial Reasoning (QSR) is a method that treats
figures or images qualitatively, by extracting the information
necessary for a user’s purpose [18; 4; 13]. Various formal-
izations have been proposed to date including RCC [15], 9-
intersection model [7], PLCA [20], and so on. It is useful
in identifying the feature of a terrain or understanding con-
struction of spatial data at an abstract level. One of natural
qualitative representations for a terrain is given using the re-
lationship of attributed regions. Regions such as fields, lakes,
buildings or such an area that is affected by a pollution are
defined and their relative spatial relationships are expressed
using mereological relations, relative size, relative directions,
and so on. Assertions such as “The field is tangentially con-
nected to the lake” or “The residential area is in the north of
the polluted area” can be handled in these frameworks. How-
ever, the answer to the queries regarding height such as “Is
there an ascending slope in a specific route?” or “From which
area is damaged when a flood occurs?” cannot be derived.

Consider the object shown in Figure 1(a). It is viewed
from above and can be represented qualitatively, for example,
“Two areas are connected by one line.” If we consider the
heights of the areas, multiple possible cases are considered.
Some of them are shown in Figure 1(b)∼(f). They are the
shapes of the object viewed from the point VP in Figure 1(a).

We cannot distinguish between these shapes without height
information.
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Figure 1: Figures in different heights

Most of works on QSR handle only figures on a two-
dimensional (2D) plane. But if we reason about a terrain fea-
ture, we have to add some information on relative height to
this figure.

One method for handling height information is adding rela-
tive height to each region in a 2D plane. But this is not enough
since we cannot express the fact that a region is inclined or
that there is a height gap between adjacent regions. Another
method is adding relative height to several points. However,
the representation would be complicated. For a point in a re-
gion, it is hard to determine which point should be selected.
For a vertex, it is hard to determine which set of target ver-
tices to be compared since most of vertices are contained in
multiple regions.

In this paper, we focus on the connection of regions as a yet
another method. We propose a method such that for each pair
of adjacent regions, we represent their connection patterns
with regard to height. It can provide information specific to
height such as the relative grade of a slope and/or its direction.

We show the outline of the method.
We assume that the target terrain is within a finite range.

First, we project the target terrain onto a 2D plane, and di-
vide it into multiple regions by extracting objects such as
fields, lakes, buildings and so on. Make a qualitative rep-
resentation for this 2D figure using PLCA expression [19;
20]. PLCA uses points(P), lines(L), circuits(C) and areas(A)
as primitive objects and represents a figure symbolically by
the membership relations and connections of these primitive
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objects.
Next, we add height information on this expression. Each

line is shared by a pair of areas. We express direction of a
slope of these areas with respect to the line, that is, ascend-
ing, descending, horizontal, or the characteristics of the con-
nection. For example, in Figure 1(c), a is ascending and b
is descending with respect to line l. There are two kinds of
the connection patterns of the areas, the one by a line (e.g.,
Figure 1(b)(c)(d)) and the other by a vertical area (e.g., Fig-
ure 1(e)(f)). As for the latter, the line observable from above
is unique, actually it is a superposition of two lines. These
patterns can be distinguished by the representation and in ad-
dition, the relative grade of slopes can be derived in some
cases.

On this symbolic representation, we can reason about the
feature of a path from one area to another, that is, to derive
the number of ascending and descending and that of climbing
gaps. In this paper, we represent a terrain around our uni-
versity and present the result of finding the route considering
gradients and gaps.

This paper is organized as follows. In section 2, we de-
scribe our target terrain and present a description language.
In section 3, we show the reasoning on this representation. In
section 4, we show an application. In section 5, we compare
our work to related works. Finally, in section 6, we present
our conclusions.

2 Description Language
2.1 Target terrains
A target terrain viewed from above is modeled as a closed
rectangle divided into a finite number of polygons in the fol-
lowing manner: (i) Each polygon corresponds to a plane with
a specific height, or a slope in a specific direction with a spe-
cific degree of inclination. (ii) Each edge of a polygon is
shared at most two other polygons.

Throughout the paper, figures use the rectangle as a poly-
gon to simplify an explanation, but the method is available
for any shape.

We also put the following constraints to our target terrain.
• Each edge should be either horizontal, monotonically in-

creasing, or monotonically decreasing in height; that is,
it does not have inflection points in its inner part.

• Each area is even; that is, it does not have protuberances
or caves in its inner part.

• No area is overhanging.
• Slopes in different directions never cross at their con-

nected lines (Figure 2(a)).
• At least one pair of the opposite edges of an area are both

horizontal (Figure 2(b)).

2.2 PLCA expression for a figure in 2D
We proposed PLCA expression [20], the symbolic expression
for the projection on a 2D plane.

PLCA comprises four kinds of objects: points, lines, cir-
cuits and areas.

A point is defined as a primitive p.

(a) (b)

Figure 2: Not-allowed terrains

A line is defined as an object that connects two different
points. l = (p, p′). We denote p, p′ ∈ l. A line has an
inherent orientation. When l = (p, p′), l+ and l− mean (p, p′)
and (p′, p), respectively. l∗ denotes either l+ or l−.

A circuit is defined as a sequence of lines. c =
[l∗0, . . . , l

∗
n−1] where l∗i = (pi, pi+1) (0 ≤ i ≤ n−1), ln = l0,

1 ≤ n. We denote l∗i ∈ c (0 ≤ i ≤ n− 1).
An area is defined as a set of circuits. a = {c0, . . . , cn−1}.

We denote ci ∈ a (0 ≤ i ≤ n− 1).
In addition, we assume that there exists a circuit in the out-

ermost side of the figure that is called outermost.
Then a figure in 2D plane is expressed as a quadruple

(P,L,C,A), where P,L,C,A are sets of points, lines, cir-
cuits including outermost and areas together with their rela-
tionships.

A PLCA expression e = {P,L,C,A} corresponding to
Figure 3 is shown below.

e.points = {p0, p1, p2, p3, p4, p5} l0.points = [p0, p0]
e.lines = {l0, l1, l2, l3, l4, l5, l6} l1.points = [p1, p2]
e.circuits = {c0, c1} l2.points = [p2, p3]
e.areas = {a0, a1} l3.points = [p3, p4]
a0.circuits = {c0} l4.points = [p4, p5]
a1.circuits = {c1} l5.points = [p5, p0]
c0.lines = [l−0 , l

−
5 , l

−
4 , l

−
6 ] l6.points = [p1, p4]

c1.lines = [l−1 , l
+
6 , l

−
3 , l

−
2 ]

outermost.lines = [l+0 , l
+
1 , l

+
2 , l

+
3 , l

+
4 , l

+
5 ]
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Figure 3: Example of PLCA

Intuitively, PLCA expression can be considered as a
doubly-connected edge without coordinates which is used
in computational geometry [14]. In doubly-connected edge,
there exists only one figure corresponding to a symbolic ex-
pression, whereas we can draw infinite number of figures cor-
responding to a PLCA expression, since it determines no size
nor coordinates.
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For any line l, there exists circuits c, c′ and areas a, b such
that l+ ∈ c, c ∈ a and l− ∈ c′, c′ ∈ b. A pair of areas a and
b are said to be adjacent areas and l is said to be a c-line of
a and b. The lines l+ and l−, denoted by la and lb, are said
to be a’s c-line and b’s c-line, respectively, to make it clear
which area a line belongs to. For example, in Figure 3, l6 is
a c-line of a0 and a1, l+6 and l−6 are denoted by la1 and la0 ,
respectively.

Originally, a shape of an object is ignored and curved lines
are allowed as a PLCA expression. In this paper, we consider
a subset of PLCA in which only a straight line is used, a cir-
cuit consists of exactly four lines and an area consists of a
single circuit.

2.3 Expression for relative height
We add information on height to the PLCA expression, as-
suming that PLCA expression is already given.

Let F be a target terrain in a 3D space and F0 be its pro-
jection onto a 2D plane. There are two characteristics of an
area: plane and slope. A vertical area in F does not appear
in F0. Thus, some lines and points in F0 are superpositions
of two lines or points, respectively. Superposition means that
the objects are in the same position in F0 but have different
heights in F . Consider a terrain in Figure 4(a) whose pro-
jection onto a 2D plane is Figure 4(b). A line l = (p, p′) in
Figure 4(b) is a superposition of la and lb in Figure 4(a). Point
p in Figure 4(b) is a superposition of pa and pb in Figure 4(a),
and point p′ in Figure 4(b) is a superposition of p′a and p′b in
Figure 4(a) where la = (pa, p

′
a) and lb = (pb, p

′
b).

a

b
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p’
b

p
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p
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a la lb
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l

p

p’
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Figure 4: Superposed points and lines

For a point p, h(p) denotes the height of p. For points p1
and p2, dheight(p1, p2) denotes a difference of h(p1) and
h(p2). For example, the dotted line in Figure 4(a) shows
dheight(pa, pb).

For a line l = (p1, p2), if dheight(p1, p2) = 0, then it is
said that l is horizontal. In this case, h(l) is defined as h(p1).
If l is not horizontal, h(l) is undefined.

Defintion 1 For a pair of adjacent areas, if c-line is a super-
position of two lines, then it is said that the areas are inclin-
ing connected (i-connected); otherwise, it is said that they are
horizontally connected (h-connected).

If areas are h-connected, all c-lines are horizontal. If areas
are i-connected, at least one of them is not horizontal.

h-connected
The h-connection pattern with regard to height is expressed
in the form of αRhβ. α and β are pairs of area with height,
where area is a corresponding area, and height is a relative
height of the area’s c-line. The value of height is either
high, low or hl. high means that it is higher than the line in
the opposite side of area. low means that it is lower than the
line in the opposite side of area. And hl means all the lines
in area are the same height. Rh = {<h,=h} is a binary
relation. It represents a relative height between c-lines of the
connected areas.

Defintion 2 For area x, let lx be an x’s c-line. Then, c(lx),
the qualitative height of lx in x, is defined as follows:

• c(lx) = x low if ∃l′x ∈ x, l′x ̸= lx s.t. h(lx) < h(l′x).

• c(lx) = x high if ∃l′x ∈ x, l′x ̸= lx s.t.h(l′x) < h(lx).

• c(lx) = x hl if ∀l′x ∈ x, h(l′x) = h(lx).

Let la and lb be a’s c-line and b’s c-line, respectively. Rh

is defined as follows.
• c(la) <h c(lb) if h(la) < h(lb).
• c(la) =h c(lb) if h(la) = h(lb).

For example, compare the figures in Figure 5. In case (a),
since c-line of area a is higher than the line in the opposite
side of a, that of b is higher than the line in the opposite side
of b, and their heights are equivalent, the connection pattern
with regard to height is represented as a high =h b high;
in case (b), since c-line of area b is equivalent to the line in
the opposite side of b, a high =h b hl; and in case (c), since
c-line of area a is higher than that of b, b hl <h a high.

(a) (b) (c)

a b a

b

a
b

Figure 5: Difference of expressions (h-connected)

i-connected
First, we define base-point of a c-line.

For a superposed point p, fx(p) denotes a point belonging
to area x.

Defintion 3 Let l = (p1, p2) be a super-
posed c-line of a and b. A point dminp that
satisfies dheight(fa(dminp), fb(dminp)) <
dheight(fa(p

′), fb(p
′)) for all p′ ∈ l, p′ ̸= dminp, is

said to be the base-point of l.

The base-point of l is either p1 or p2, since the line does
not have inflection points in its inner part. The other end of
the line is set to be dmaxp. fx(dminp) and fx(dmaxp) are
denoted by dminpx and dmaxpx, respectively. Note that if
a’s c-line and b’s c-line are in parallel, or coincide with each
other, their base-points are not defined, since for all p ∈ l,
dheight(fa(p), fb(p)) are equivalent.
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The i-connection pattern with regard to height is expressed
in the form of αRiβ. α and β are pairs of area with height,
where area is the corresponding area, and height is a relative
height of the area’s base-point in its c-line. The value of
height is either high, low, hl or all. high means that the
base-point is higher than the other end point in the c-line.
low means that it is lower than the other end point in the c-
line. hl means that the c-line is horizontal. And all means
the c-line does not have a base-point. Ri = {<i,≤i,=i} is
a binary relation. It represents a relative height between the
base-points in the c-lines.

Defintion 4 For an area x, let px be x’s dminpx, and lx be
x’s c-line. Then c(px) is a connection pattern of an area x
with regard to height, and is defined as follows:

• c(px) is x high if h(dmaxpx) < h(dminpx).

• c(px) is x low if h(dminpx) < h(dmaxpx).

• c(px) is x hl if h(dminpx) = h(dmaxpx).

• c(px) is x all otherwise.

Let la and lb be a’s c-line and b’s c-line, respectively. Ri is
defined as follows.

• c(la) <i c(lb) if both h(fa(p1)) < h(fb(p1)) and
h(fa(p2)) < h(fb(p2)) hold.

• c(la) ≤i c(lb) if both h(fa(p1)) < h(fb(p1)) and
h(fa(p2)) = h(fb(p2)) hold, or both h(fa(p1)) =
h(fb(p1)) and h(fa(p2)) < h(fb(p2)) hold.

• c(la) =i c(lb) if dheight(fa(p1), fb(p1)) =
dheight(fa(p2), fb(p2)) holds.

The last one shows the case that a and b are slopes in the
same direction with the same degree of inclination.

In Figure 6, (a) is a 3D figure, (b) and (c) are its shapes
viewed from above and side, respectively. a and b are adja-
cent areas, a’s c-line is la = (fa(p1), fa(p2)). b’s c-line is
lb = (fb(p1), fb(p2)). In this case, dminp = p1, dmaxp =
p2. Since h(fa(p1)) < h(fa(p2)) holds, c(pa) is a low.
Since h(fb(p1)) < h(fb(p2)) holds, c(pb) is b low. And
since h(fb(p1)) < h(fa(p1)) and h(fb(p2)) < h(fa(p2))
hold, their i-connection pattern is b low <i a low.

(a) (b)

a b

p1

p2

l
1f (p )

b 1f (p )

f (p )
al

bl

2a

a

bf (p )2

al

bl
a b

(c)

Figure 6: Expression for i-connected pattern

We show other examples of i-connected patterns of areas a
and b in Figure 7. These figures show the shape of the con-
nected part from the side viewpoint. The i-connected patterns
of a and b are represented as follows: (a) b high <i a high,
(b) b high ≤i a hl, and (c) b all <i a all.

a

b

a

b

a

b

(a) (b) (c)

Figure 7: Examples for i-connected patterns

2.4 Validity of expression
Let H be a set of connection patterns for each pair of adjacent
areas. There are several necessary conditions that H should
fulfill for the existence of the corresponding 3D terrain.

1. For each line, connection patterns with regard to height
is uniquely defined.

2. For an area a appearing in H , a hl does not appear iff
a high or a low appear.

3. Properties of relative height relation, e.g., transitivity of
<h, are not violated.

Consider the following sets of connection patterns. There
exists the 3D figure that satisfies H1 (Figure 8(a)) and H2

(Figure 8(b)), but there is not for H3.
H1 = { a hl =h b high, c hl <h a hl, c hl ≤i b low }
H2 = { a high =h b high, c hl ≤i a low, c hl ≤i b low

}
H3 = { a hl =h b high, c hl ≤i a low, c hl ≤i b low }

c

b

a

(a)

b

a

c

(b)

Figure 8: Terrains for given sets of relations of connection
patterns

3 Reasoning on degree of slope
We show several reasoning on PLCA with height expression.

Gap between adjacent areas
We can determine whether there is a gap between adjacent
areas.

For any pair of adjacent areas a and b, if they are i-
connected with a pattern a all =i b all, or if they are h-
connected with a pattern a ∗ =h b ∗ where ∗ denotes either
high, low or hl, then there is no gap between a and b. Other-
wise, there is a gap.

For example, in Figure 8(a), there are gaps between areas
a and c, b and c, but not between a and b.

Direction of slopes
When areas are h-connected, we can determine the direction
of slopes for both areas. On the other hand, when areas are
i-connected, we cannot always determine it.
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Let x be h-connected with some area, and let c(lx) be a
qualitative height lx in x. If c(lx) is x high, then x is as-
cending slope towards its c-line. If c(lx) is x low, then x is
descending slope towards its c-line. If c(lx) is x hl, then x is
a plane.

Degree of slopes
When areas are h-connected, we cannot determine the degree
of slopes. When areas are i-connected, we can determine it
when they are inclined in the same direction.

Let a and b be adjacent areas. If the connection pattern with
regard to height is a allRib all, then degrees of inclination
of a and b are the same. Otherwise, if a highRib high, then
a is steeper than b; if b lowRia low, then b is steeper than a.

4 Application
In this section, we show an application of the proposed
method for an actual landscape.

4.1 Expression
Figure 9 shows a map of Kobe Sanda Campus of Kwan-
sei Gakuin University, and Figure 10 is its qualitative model
which is obtained manually. Kobe Sanda Campus is located
on the hill and there are lots of slopes or gaps.

Figure 9: A map of Kobe Sanda Campus

In Figure 10, an arrow indicates the slope in descending
direction, a bold line indicates a gap, and an area placed be-
tween dotted lines indicates stairways.

For stairways, it is possible to consider them as a sequence
of small areas. In this case, we need a refined statement that
requires much memory. Here, we use alternative modeling
in which the entire stairway is considered a slope. We add
an attribute to each area to distinguish a stairway and a real
slope. This method can be used not only for stairways, but
also areas that we may want to avoid passing, such as an area
under construction or a dangerous area.

The followings is a part of elements of the relation of con-
nection patterns.

Figure 10: A model for Figure 9

(1) a0 high =h a1 hl. (2) a0 high ≤i a6 hl.
(3) a1 hl =h a6 hl. (4) a1 hl =h a11 low.
(5) a6 hl ≤i a11 low. (6) a1 hl =h a2 low.
(7) a1 hl <h a7 hl. (8) a2 high =h a3 hl.
(9) a2 high ≤i a7 hl. (10) a3 hl =h a7 hl.

They are consistent in the sense that there exists a terrain
that satisfies these relationships.

Conversely, we can derive the relation (5) from (3) and (4)
if we know that a6 and a11 are i-connected. Similarly, we can
derive that a7 is relatively higher than a1, that is, a1 hl <h

a7 hl holds from (6),(8) and (10), unless (7) is represented
explicitly.

As a result of judging the slopes from this expression,
a0, a2, a4, a9, a10, a11, a14, a18, a19, a21, a22, a23 are judged
as slopes. This result is consistent with the shape of the actual
landscape.

4.2 Route finding
For the PLCA expression with height, we take areas as nodes
and lines as edges in a graph, where connection patterns is
added to each edge, and apply search algorithms on the graph.

We have implemented the search algorithm and applied it
to find a specific route from the entrance of a playground (a0)
to a convenience store (a25) in Figure 10. First, we search
for a route that avoids a gap including a stairway as far as
possible. The system generates 28 routes that may contain
a gap, and 12 of them without a gap. For example, route
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(r2) a0 → a1 → a11 → a17 → a12 → a21 → a24 →
a25 is a route that passes a stairway a21, whereas route (r1)
a0 → a1 → a11 → a17 → a12 → a13 → a14 → a15 →
a18 → a25 is a route that does not contain a gap. It makes a
detour instead of passing a21. (r1) is suitable for a user who
is searching for a gap-free path.

Next, we search for a route that contains the least num-
ber of gradients. Let a, b be adjacent areas. If a high =h

b hl, then transition from a to b is said to be ascending. If
a low =h b hl, then it is said to be descending. Otherwise, it
is said to be flat. A route is a sequence of these elements. We
deduce the number of gradients from the sequence by the al-
gorithm shown below where the variable count indicates the
number of gradients.
[Algorithm for counting the gradients]
Let as be a start area and ad be a destination area. Let
a0, a1, . . . , an be a route from as to ad without a gap. check
is a kind of a flag that shows the current state of ascending
and descending.

1. Set i = 0, a0 = as, check = none and count = 0.
2. If ai = ad, then terminate.

Otherwise,
if transition from ai to ai+1 is ascending

if check = down,
then increment count

set check = up;
if transition from ai to ai+1 is descending

if check = up,
then increment count

set check = down.
3. Increment i and go back to 2.

As a result, we find that 7 of the 28 routes have three gra-
dients and the others have one. For example, route (r25)
a0 → a1 → a6 → a16 → a19 → a20 → a12 → a13 →
a8 → a7 → a3 → a4 → a5 → a10 → a15 → a18 → a25
is a route that contains one gradients, whereas route (r22)
a0 → a1 → a2 → a3 → a4 → a5 → a10 → a15 → a14 →
a13 → a8 → a7 → a12 → a21 → a24 → a25 contains three.
We conclude that (r25) is better than (r22) as a less burden
route.

5 Discussion
Earlier research on deriving the feature of a terrain is a work
by Frank et. al [8]. They formalized using a predicate cal-
culus the extraction of the geomorphograhic feature from a
set of predicates that expresses the positional relationships
between objects such as edges or points. Guilbert proposed
a method for extracting and analyzing terrain features from
a contour map to give a qualitative description of a land-
scape [10]. They are not qualitative approaches and numeri-
cal data is used to derive the shape of a figure, although the
essential idea is similar to ours. Kulik et al. formalized a
method of deriving a feature of a terrain from its silhouette
obtained by a fixed viewpoint [11]. They define qualitative
representation such as ascending or descending for a line seg-
ment of a silhouette, and show a method for deriving a shape
such as mountain and valley from a sequence of the segments.

They also adopt the relative length of a segment. It is success-
ful for the projection on one-dimension, but two-dimensional
case is not handled. On the other hand, we show the treatment
of two-dimensional case. Donlon et al. proposed a route-
finding system with a concept of ”trafficability” [6]. They
add attributes such as vegetation and slope to terrains in Ge-
ographic Information Systems (GIS) and consider vehicular
movements on that terrain depending on these values. Their
purpose is to analyze trafficability and they do not adopt an
idea of a relative height. On the other hand, our main purpose
is to represent abstract features of a landscape with regard to
height, and route-finding is one of the applications.

Basically, most studies on QSR have focused on 2D data
including the projection of 3D data onto a 2D plane. Few
attempts have been made to handle 3D data [1; 16], but they
did not aim at the derivation of a feature of a terrain. As
for a qualitative navigation, Freksa presented a framework in
a 2D plane [9]. He proposed a method for representing an
orientation using a reference point and a perspective point,
and showed a navigation using their positional relationships.
Qualitative treatment of 3D data that is projected onto a 2D
plane is used as a robot navigation [17; 22], but symbolic
approaches are not taken in these works.

There are lots of works on 3D models for a terrain in the
field of GIS [12; 2; 3]. However, they use coordinates and
take quantitative approach.

We have provided a method for deriving a feature of a ter-
rain from a set of qualitative representation in a symbolic
form.

6 Conclusion
We have presented a qualitative spatial representation based
on connection patterns with relative height and reasoning on
this representation. This method is a symbolic approach to
understand the feature of a terrain. We have also shown the
application of this method to route finding with height infor-
mation of an actual landscape. In this paper, although we
adopt a rectangle as a unit area, the method can be applicable
to any shape of polygon, which involves triangulated irregu-
lar networks (TIN) model or regular square grid as a surface
model.

This work is ongoing and there are lots of issues to be dis-
cussed. Among them, the most important ones that we cur-
rently think are the following three points.

1. To determine the method or rules to extract a terrain fea-
ture in a higher level, such as mountain and valley from
the set of relations of connection patterns.

2. To find the condition that a set of relations of connection
patterns should satisfy so that there exists a correspond-
ing 3D figure.

3. To find a class of terrains that can be handled by this
method, and how far the method can be extended.
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