Reasoning by a Bipolar Argumentation
Framework for PROLEG

Tatsuki Kawasaki, Sosuke Moriguchi, and Kazuko Takahashi

School of Science&Technology, Kwansei Gakuin University,
2-1, Gakuen, Sanda, 669-1337, JAPAN
dxk960930@kwansei.ac. jp, chiguri.s@Qacm.org, ktaka@kwansei.ac. jp

Abstract. We develop a system allowing lawyers and law school stu-
dents to analyze court judgments. We describe a transformation from the
logic programming language PROLEG to a bipolar argumentation frame-
work (BAF) and the legal reasoning involved. Legal knowledge written in
a PROLEG program is transformed into a BAF, in which the structure
of argument in a judgment is clear. We describe two types of reason-
ing by the BAF': the entire structure and causality of arguments, and
identification of the evidence required.

Keywords: bipolar argumentation framework, PROLEG, reasoning, se-
mantics

1 Introduction

Recently, information technology and artificial intelligence are now vigorously
applied in various fields, including those that have not yet been fully digitized
or automated. In the context of legal reasoning, although the use of artificial
intelligence has attracted a great deal of attention, higher-level and more prac-
tical support exploiting recent technological developments is required. Deriving
support for a judgment is important. When seeking to support a judgment, it
is essential to develop a system that can be easily used by lawyers who are
not computer scientists; also, the system must be highly reliable and must rea-
son accurately and rapidly. Lawyers must be able to access the system in a
straightforward manner, and the system must both describe the process leading
to judgment and the way in which the law was applied.

In terms of the former consideration, as law is logical, it is reasonable to base
the system on such logic and reason from that perspective. Several legal reasoning
systems have adopted logic programming such as Prolog as their descriptive
languages. However, it is difficult for a lawyer who is not familiar with computer
science to directly write Prolog code. A PROLEG system was developed to solve
this problem [17]. The system was designed to support inferences based on the
Japanese Presupposed Ultimate Facts Theory (termed “Yoken-jijitsu-ron” in
Japanese) of the Japanese civil code, and it is currently applied to the Japanese
penal code. The theory deals with uncertainties that sometimes arise in court,
where a judge must give a decision even if evidence is lacking. The PROLEG

2 T. Kawasaki, S. Moriguchi, K. Takahashi

language is an extension of Prolog. Each presupposed ultimate fact is represented
using general rules written in the form of if-then statements and exceptions.
Exceptions of fact apply to all general rules and are used as court defenses.
The use of exceptions rather than negative atoms creates a structure equivalent
to that of a law, allowing lawyers to intuitively understand the program. An
interpreter is implemented in Prolog. A burden-of-proof [14] is attached to each
ultimate fact to allow for decision-making even if the fact is not proven to be
true. This is achieved using the negation-as-failure inference of Prolog; thus, for
a given goal, a general rule is applied and the goal is true unless there is an
exception.

In terms of legal process and application, it is appropriate to employ ar-
gumentation to describe both the judgment process and how the law was ap-
plied [1]. An argumentation system reveals both the causality of arguments (for
example, how arguments interacted to create a judgment) and the influence of
evidence. Argumentation is powerful when used to resolve conflicts, not only for-
malizing the structure of the process but also incorporating any uncertainties.

In the time since Dung proposed the abstract Argumentation Framework
(AF) [9], many extensions and revisions of the system have been published [15].
AF represents an argumentation by a pair of a set of arguments and a set of
attacks between arguments, ignoring the contents of arguments. Several AF se-
mantics have been defined; acceptable arguments are calculated based on these
semantics. Visualization tools appropriate for argumentation systems have also
been developed (e.g., [16]).

Although PROLEG facilitates the representation of a law, it is difficult to
grasp the judgment process or argument causality from the execution trace.
On the other hand, although it is possible to create an AF representing the
interaction between a plaintiff and a defendant in court, it is difficult to directly
write the structure of a law per se, or the part of the law used to create an
argument in an AF form. Therefore, we combined the two systems.

We developed a transformation from PROLEG to a bipolar argumentation
framework (BAF) [6], an extended AF, and showed its correctness [11]. More
specifically, we gave a semantics for the BAF obtained as a result of the trans-
formation, and proved that the answer set of the PROLEG program was the
same as the set of acceptable BAF arguments. Here, we describe how the BAF
reasons.

Consider the following PROLEG program representing the penal code that
defines the “crime of murder.”! The first clause indicates the general rule and
the second clause an exception. The text states that if the object is a human
(not a dead body) and there exists both the action of murder and also the
intention to murder, then the crime of murder has been committed unless there
is a legitimate defense.

crime_of_murder <= human, action_of_murder, intention_to_murder.
exception(crime_of_murder, 1egitimate_defense).

! Note that the examples shown here are simplified versions of the actual penal code;
the conditions per se are simplified and the legal terminology is not precise.

Reasoning by BAF for PROLEG 3

When evidence is provided, the facts on which that evidence bears are proved,
and it is then decided whether the crime_of_murder has been committed or not.

A judge should explain the judgment process to persuade those concerned
with the transparency of justice. In such a legal situation, what is required is not
only the outcome of judicial reasoning but also an explanation of the reasoning
process or the cause-and-effect relationships of arguments used in reasoning.
For example, if the crime_of murder was adjudged to not in fact have been
committed; this may be because of a lack of evidence of intention_to_murder, or
because a legitimate_defense was available.

Our transformed BAF not only shows the process and structure of judg-
ment, but also suggests a strategy by which a user can achieve a desired goal.
If a defendant/plaintiff wishes to argue that a law should or should not be ap-
plied, the BAF identifies the evidence that must be presented and any counter-
arguments that may arise. For example, when a prosecutor wishes to charge the
crime_of_murder, but finds that the lack of intention_to_murder is a complicat-
ing factor, s/he will look harder for evidence of intention to_murder. Here, we
discuss such reasoning on our BAF.

This paper is organized as follows. In Section 2, we briefly explain PROLEG.
In Section 3, we describe the BAF that we develop and its semantics. In Section 4,
we develop the transformation rule from PROLEG to BAF. In Section 5 we
describe how the BAF reasons. In Section 6, we compare our method with those
of others. Finally, in Section 7, we offer conclusions and describe our planned
future work.

2 Legal Description Language: PROLEG

The PROLEG program P is defined as pairs of (R,), a finite set of rules, and
a finite set of exceptions. Each rule is a Horn clause of the form H < By, ... By,
where H, By, ..., B,, are atoms (n may be 0; we term such a rule a fact rule or
simply a fact). Each exception is in the form exception(H, B).

A fact is something given as an evidence in a court case, whereas the other
rules and exceptions describe the general case. That is, the former (the facts) are
generally given in an instantiated form whereas the other rules and exceptions
include variables. In the examples that follow, we use a proposition for simplicity.

For each rule R or exception E, we employ the functions head and body
such that head(R) = H and body(R) = {B1,...,Bn} if R=H < By,...,By;
head(E) = H and body(E) = {B} if E = exception(H, B). An atom may be
defined by more than one rule. This means that there may exist R; and Rs
(R1 # Rs) such that head(R;) = head(R3).

Ezxample 1. The following is an example of a PROLEG program.

p <= ql, q2.
exception(ql, r).
q2 <=.

r <=,

4 T. Kawasaki, S. Moriguchi, K. Takahashi

The semantics of the PROLEG program P are defined as an answer set (a set
of ground atoms). M is the answer set of P iff M is the minimum model of the set
of Horn clauses, {R € R | VE € &, if head(E) = head(R) then body(E) € M}.
The expressive power of PROLEG is the same as that of a normal logic program
with an answer set [10, 18].

PROLEG allows cyclic definitions. However, here, we deal with an acyclic
PROLEG program, because the Japanese civil and penal codes are usually writ-
ten in an acyclic manner.

3 Bipolar Argumentation Framework

First, we define our argumentation framework.

Definition 1 (argumentation framework). An argumentation framework is
defined as a pair (AR, AT) where AR is the set of arguments and AT is a binary
relation on AR, termed an attack. If (A, A") € AT, we state that A attacks A’.

A BAF is an extension of an AF in which the two relations of attack and
support are defined over a set of arguments [6]. We define a support relation
between a power set of arguments and a set of arguments; this differs from the
usual BAF format, because the body of a rule generally includes more than one
atom in PROLEG.

Definition 2 (bipolar argumentation framework). A BAF is defined as a
triple (AR, ATT, SUP) where AR is a finite set of arguments, ATT C ARx AR
and SUP C (247 \ {0}) x AR. We denote att(B, A) if (B,A) € ATT, and
sup(A, A) if (A, A) € SUP.

Ezample 2. Figure 1 is a graphical representation of a bipolar argumentation

framework ({a,b,c,d, e}, {(b,a),(e,d)}, {({c,d},a)}). In the figure, the straight
arrow indicates an attack relation and the wavy arrow a support relation.

QOO =
1 support

Fig. 1. Example of BAF.

Reasoning by BAF for PROLEG 5

We derived semantics for the BAF based on labeling [5]. Usually, labeling is
a function from a set of arguments to {in, out, undec}, but undec is unnecessary
here, because the BAF is acyclic. An argument labeled in is considered to be an
accepted argument.

Definition 3 (labeling). For (AR, ATT, SUP), labeling L is a function from
AR to {in, out}.

Labeling of a set of arguments is denoted as follows: L(A) = in if L(A) = in
for all A € A; L(A) = out, otherwise.

We use the label in to identify arguments that are neither attacked nor
supported by any other argument. When an argument is both attacked and
supported, the attack is supposed to be stronger than the support. We assign a
label out to an argument that is attacked by another argument with the label
out, and simultaneously supported by the set of arguments with the label out.
Note that an argument lacking support is labeled out, even if it is attacked by
an argument labeled out.

Definition 4 (complete labeling). For (AR, ATT, SUP), labeling L is com-
plete iff the following conditions are satisfied for any arqument A € AR.

- L(A)=inif
o (VB € AR, —att(B, A)) A (VA C AR, —sup(A, A4))
or
o (VB € AR,att(B,A) = L(B) = out) A (A C AR,sup(A, A) A L(A) =

— L(A) = out, otherwise.
Figure 2 shows the complete labeling of four BAFs.

OO0

gm out in oub gout - fwt out in
in out in out

Fig. 2. Examples of BAFs with complete labelings.

Ezample 3. For a BAF in Figure 1, £L(b) = L(c) = L(e) = in and L(a) = L(d) =
L({{e,d}) = out.

The following theorem holds [11].

Theorem 1. For any acyclic BAF, there is exactly one complete labeling.

6 T. Kawasaki, S. Moriguchi, K. Takahashi

Note that we distinguish the case in which an argument is supported by
a set of arguments from that in which it is supported by multiple arguments
separately.

Example 4. Consider two BAFs baf, and baf, shown in Figure 3. Formally,
baf is described as ({a,b,c,d}, {(d,c)}, {({b,c},a)}) and baf, is described as
({a,b,c,d}, {(d,)}, {({b}, 0), ({c}, a)}).

In baf,, the argument a has one support that is a set of two arguments,
whereas in baf,, it has two supports, both of which are singletons.

Let £, and L9 be the complete labeling of baf; and baf,, respectively. In
baf, L1(b) = L1(d) = in and L1(c) = out hold. Tt follows that L ({b,c}) = out
holds. Therefore, £4(a) = out. On the other hand, in baf,, L2(b) = Lo(d) = in
and Lo(c) = out hold by the similar reasoning. However, £o({b}) = in and
Lo({c}) = out. Therefore, L1(a) = in.

————
1
1

oo P~dio

—_————

- | N—gutl
0

(a) baf,: supported by a set (b) baf,: supported independently

Fig. 3. Two types of support.

4 Transformation

4.1 Transformation rule

We here show a transformation from a PROLEG program to a BAF. The atoms,
rules, and exceptions of the PROLEG program are transformed into arguments,
supports, and attacks, respectively.

We add two types of arguments to the BAF that do not feature as explicit
atoms in PROLEG. One is an argument reflecting the absence of any rules of
inference in PROLEG. In PROLEG, an atom H that does not appear in the
header of any rule or exception is not in the answer set. On the other hand,
arguments that are neither attacked nor supported are labeled in. To fill this gap,
we add the argument ab(H) that attacks H. We term this argument an absence
argument. We also add arguments showing the existence of fact rules. For a fact
rule (i.e., a rule in the form H <), there are no arguments that support H in
BAF; any support is a binary relation. Therefore, we add an argument ex(H)
that supports H. We term this argument an existence argument.

Reasoning by BAF for PROLEG 7

Definition 5 (transformation rule).

Transformation from a PROLEG program (R,E) to a BAF (AR, ATT, SUP)
is defined as follows.

— Atom = Jper ({head(R)} U body(R)) U Ugcs ({head(E)} U body(E))
— Rule = {(body(R), head(R)) | R € R A body(R) # 0}

— Fzc = {(B, H) | exception(H, B) € £}

— Euzistence = {H | H <€ R}

— EuxistenceSupport = {({ex(H)},H) | H € Existence}

— Absence = Atom\({head(R) | R € R} U{head(E) | E € £})

— AbsenceAttack = {(ab(B), B) | B € Absence}

— AR = Atom U {ex(H) | H € Fuxistence} U {ab(B) | B € Absence}

— ATT = FEzc U AbsenceAttack

— SUP = Rule U ExistenceSupport

The following theorem indicates that the semantics is preserved during trans-
formation [11].

Theorem 2. For PROLEG program P, let M be an answer set of P. Assume
that L is the complete labeling of the BAF transformed from P. Then, for each
atom H in P, H € M iff L(H) = in.

Ezxample 5. The program in Example 1 is transformed into the following BAF":
({p, a1, a2, 7, ex(gq2), ex(r)}, {(r,q1)},

{({q1, a2}, p), {ex(q2)}, g2), ({ex(r)}, r)}).

Complete labeling of the BAF is performed in the following manner. Ar-
guments q; and ¢ together support the argument p. The existence arguments
ex(gz) and ex(r) are added to support g2 and r, respectively. Figure 4 shows a
graphical representation of the BAF, with the complete labeling. As £L(¢1) = out
and L(g2) = in, the label of the set of arguments £({q1,q2}) = out. Also, as p
is supported by {¢1, g2}, L(p) = out. When we ignore the existence and absence
arguments introduced during transformation, the set of arguments labeled in is
{q2,7}, which coincides with the answer set of the program of Example 1.

5 Reasoning by the BAF

We describe the two types of reasoning performed by the BAF transformed from
the PROLEG program:

1. A portrayal of the entire structure of judgment and the causality of argu-
ments.
2. Identification of the required evidence.

8 T. Kawasaki, S. Moriguchi, K. Takahashi

oF

— attack

w3 support g
r-=I-- =1
(o0 Jovooos (1) (1) ()
in in ' out __ in_! in
out

Fig. 4. BAF for the program in Example 1.

5.1 PROLEG program

Ezxample 6. Consider the following PROLEG program. The first set of rules and
exceptions states that if the object is a human (not a dead body) and there
exists both the action of murder and also the intention to murder, then the
crime of murder has been committed unless there was a legitimate defense. The
second set of rules and exceptions states that if the accused is attacked and takes
emergency, necessary, and appropriate action to defend himself/herself, then this
is a legitimate defense, unless there was no intention to harm the deceased. The
remainder of the program deals with the facts in evidence.

% rules regarding crime_of_murder
crime_of_murder <= human, act_of_murder, intention_to_murder.
exception(crime_of _murder, legitimate_defense).

legitimate_defense <=
infringement, emergency, necessity, appropriateness,
defense_intention.

exception(legitimate_defense, aggressive_intention_to_harm).

% facts

human <=.

act_of_murder <=.
intention_to_murder <=.
infringement <=.
emergency <=.
necessity <=.
appropriateness <=.
defense_intention <=.

Reasoning by BAF for PROLEG 9

5.2 The entire structure of judgment and causality of the arguments

In this case, the entire PROLEG program is transformed into a BAF using the
rules shown in Section 4.

For each atom, a general rule defining both the atom and the exceptions
is transformed into the BAF using a transformation rule. If there exists a fact,
then a corresponding existence argument supporting the fact is added. If an atom
does not appear in the header of any rule or exception, then a corresponding
absence argument attacking the atom is added to the transformed BAF. We
show a graphical representation of the transformed BAF in Figure 5.

| e R |
. : human Hm| eX(human) | in
int! . J \)
out 1 ¢ vl - Y.
,«7crime—of_murder ‘ : ‘ act_of_murder |<-Irvvv~ |\ ex (act_of_murde,) | in
7] 1 ‘ intention_to_murder |<+WV'I | eX(intentionftofmurder) | in
S — 2 L J
I y
1 ‘ infringement |<-'~w~ ‘ ex(infringement) | mn
i, v ! ‘ N
: ‘ emergency |<:-M~" ‘ eX(emergency) | in
—_— 1 § p .
in| legitimate_defence | €~ ‘ necessity |<-:.~\-‘ ex(necessity) | in

- o | " e
1 ‘ appropriateness |(r~vv~ ‘ ex (appropriateness) | n
1 / \ /

p | N
: ‘ defence_intention |<l~w~ ‘ ex (defensefintention) | in
\ / I \ /

out in

Fig. 5. Graphical representation of a transformed BAF for a murder case.

This BAF was obtained from an entire PROLEG program including facts,
and shows the structure of the entire argumentation from which we can grasp
the cause-and-effect relationships of the arguments.

Using this BAF, the argumentation process is explained as follows. As the
label of the absence argument ab(aggressive_intention_to_harm) is in, that of the
argument aggressive_intention_to_harm is out (there was no intention to harm).
Therefore, the label of the argument legitimate_defense is in (it is a legitimate
defense). The argument crime_of_murder has one attacking argument, the label
of which is in, and one supporting set of arguments, the label of which is in.
Hence, the label of the argument crime_of_murder is out (the crime of murder
was not committed).

The BAF is updated as the judgment proceeds. Counter-arguments and ev-
idences may be incrementally added as the corresponding nodes. Then, the

10 T. Kawasaki, S. Moriguchi, K. Takahashi

node labels can be changed. For example, if there is an exception to a legit-
imate_defense argument, and this is proven, a new argument is added; legiti-
mate_defense is attacked by this argument and its label is changed to out. As
another example, if evidence of aggressive_intention_to_harm is given, then its ab-
sence argument is replaced by an existence argument, and attack by the absence
argument is replaced by support from the existence argument. As a result, the
label of the node aggressive_intention_to_harm is changed to in. It follows that
the label of legitimate_defense is changed to out, and that of the crime_of_murder
to in.

5.3 Identification of required evidence

The BAF also identifies the evidence required to apply the law or prevent its
application.

We transform a PROLEG program except for the fact part, and determine
the existence arguments required to apply or not apply the law. Unlike the
first type of reasoning, all available rules and exceptions are assumed to be
represented, and no rules or exceptions are added.

From the definition of complete labeling, £(A) = in holds iff the labels of all
arguments that attack A are out and there exists an argument that supports A,
of which the label is in, or A is neither attacked nor supported.

Assume that a defendant wants to apply a law or that a plaintiff wants to
prevent its application. Then they seek to label the corresponding argument in
and out, respectively. The BAF determines the evidence required for attainment
of either goal. This is achieved by repeatedly applying the following process:

Let A be an argument.

— Make L(A) = in.
Both of the following conditions should be satisfied.
o (attack condition) Make £(B) = out for each B such that att(B, A). If
there does not exist such an argument B, then the condition is satisfied.
e (support condition) Make £(A) = in for some A such that sup(A, A),
that is, for each A’ € A, L(A’) = in. If there does not exist such A, then
an existence argument ex(A) and a support sup({ex(A)}, A) should be
added.
— Make L(A) = out.
Either of the following conditions should be satisfied.
o (attack condition) Make L£(B) = in for some B such that att(B, A).
If there does not exist such an argument B, then this condition is not
satisfied.
e (support condition) Make £(A) = out for each A such that sup(A, A),
that is, for some A" € A, L(A") = out. If there does not exist such A,
then this condition is not satisfied.

As a result, a set of existence arguments, that is, a set of evidences that
should be provided, is found; this allows either party to attain his/her goal no
matter what evidence his/her opponent offers.

Reasoning by BAF for PROLEG 11

Ezample 7. Figure 6 shows a PROLEG program excluding the fact part of Ex-

ample 6. For convenience, each node is named a, b, ..., k, respectively.
1 1
| b: human I
1 |
(N c: act_of_murder ‘I
| a: crime_of_murder |<vv-~: ‘ - N

1 : ‘ d: intention_to_murder ‘:

1 | f: infringement ‘

: ' g: emergency ‘

1

1

1

1

, : . -
e: legitimate_defence |<vv--|| h: necessity ‘ :
L J i -
1

1

1

I

1 | i: appropriateness ‘
1.)

:| j: defence_intention ‘

k: aggressive_intention_to_harm ‘

Fig. 6. Reasoning about required evidences.

— In this BAF, consider the conditions required to make £(a) = in.

e By attack condition for a, L£(e) = out should be satisfied. To achieve
this, attack condition for e or support condition for e should be satisfied.
By attack condition for e, £(k) = in should be satisfied, and since k has
no support, ex(k) is required. By support condition for e, at least one
of L(f) = out, L(g) = out, L(h) = out, L(i) = out or L(j) = out holds.
However, this is impossible since f, g, h,7 and j are neither attacked nor
supported.

e By support condition for a, £(b) = L(c) = L(d) = in should be satisfied.
Therefore, ex(b), ex(c) and ex(d) are required.

As aresult, the defendant should provide the four evidences ex(k), ex(b), ex(c)
and ex(d) to apply the law.
— On the other hand, consider the conditions required to make L£(a) = out.

e By attack condition for a, £(e) = in should be satisfied. To achieve this,
L(k) = out should be satisfied, but this is impossible since k is neither
attacked nor supported.

e By support condition for a, either £(b), L(c) or L(d) should be out, but
this is impossible since b, ¢ and d are neither attacked nor supported.

Therefore, the plaintiff never prevents application of the law.

12 T. Kawasaki, S. Moriguchi, K. Takahashi

In this example, only one set of existence arguments is found to make £(a) =
in, and no argument is found L£(a) = out. However, in general, we may find
multiple sets in both cases. For example, assume that a defendant wishes to
make £(a) = in in the BAF shown in Figure 7. The support required to make
L(a) = in is one of ex(b) or ex(c). The support required to make L(f) = in is
one of ex(g) or ex(h). Thus, we find four sets of required evidences.

Q)
P~

[

%*)Wf@
@i:;

[g

Fig. 7. Multiple sets of evidences are obtained.

6 Related Works

We compare our BAF semantics to the semantics derived by others.

Several works on BAF semantics have been undertaken. In almost all of them,
the BAF's are given in advance or obtained by a translation from artificial logic
programs. Such programs principally discuss argumentation structures that are
seldom seen in actual judgments. We sought to apply real-world legal reasoning.
A significant issue during transformation is to create BAF semantics preserving
legal reasoning; no previous BAF semantics met this criterion.

Cayrol et al. investigated BAF semantics, defining several types of indirect
attacks by combining attacks with supports. They also defined several types of
extension [6]. Next, the concept of “coalition” (a set of arguments) was intro-
duced and used to define a meta-AF [7,8]. The idea was to reduce a BAF to an
AF by deleting the support relations between arguments in the same coalition.
An argument in BAF is accepted if it is included in an accepted coalition of
the meta-AF. Boella et al. pointed out that this approach does not allow use of
the Dung semantics, and revised the semantics by introducing different meta-
arguments and meta-supports [2] However, if we adopt these semantics, the
semantics of PROLEG and BAF do not coincide [11]. It follows that we cannot

Reasoning by BAF for PROLEG 13

combine arguments to form a single support without considering their original
relationships in PROLEG.

Noueioua et al. proposed a BAF that considered a support relation to be
a ‘“necessity” relation [12]. In this approach, each atom corresponds to each
argument, similar to our approach. They proved the correspondence between a
normal logic program and their BAF. The main drawback of the method is that
it does not discriminate support by a set of arguments from support given by
separate multiple arguments. They do not reflect the case in which a set of body
goals support its head goal in a logic program.

Oren and Norman developed an evidential argumentation by introducing
a special argument, corresponding to an environment, into a BAF [13]. This
concept is similar to the existence argument of our method. The difference is
that they introduced a single argument from which both attack and support
relations arise. In contrast, we add an existence or absence argument for each
fact. The structure of their evidential argumentation is more compact than ours,
but the evidences bearing upon individual facts are unclear.

Unlike the works cited above, Brewka et al. developed an abstract dialectical
framework (ADF) as a generalization of the Dung AF [3,4]. In the ADF, each
node is associated with an acceptance condition depending on the parent nodes,
and each link exhibits an individual strength. A bipolar ADF is a subclass of
ADF in which a link is either attacked or supported depending on the polarity
of its strength. A BAF transformed from PROLEG may be considered to be an
instantiation of an ADF. It would be interesting to explore whether an ADF
semantics could be simply applied to a BAF transformed from PROLEG.

7 Conclusion

We have described the transformation from a PROLEG description to a BAF,
and the legal reasoning using the BAF. We gave semantics to the BAF preserving
the features of a PROLEG program. The BAF reflects the structure of the
judgment process and causality among arguments. We have developed reasoning
on the BAF, that is difficult to emulate or understand using a PROLEG program
or trace of its execution. Our system enables lawyers and law school students to
analyze judgments.

In future, we will improve reasoning by the BAF and create a graphical
interface.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP17H06103.

References

1. Bench-Capon, T., Prakken H. and Sartor, G.: Argumentation in legal reasoning.
Argumentation in Artificial Intelligence, 363-382 (2009).

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

T. Kawasaki, S. Moriguchi, K. Takahashi

. Boella, G., Gabbay, D. M., Torre, L. van der and Villata, S.: Support in abstract

argumentation In Proc. of COMMA2010, 40-51 (2010).

Brewka, G. and Woltran, S.: Abstract dialectical frameworks. In Proc. of
KR2010,102-111 (2010).

Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P. and Woltran, S.: Abstract
dialectical frameworks revisited. In Proc. of IJCAI2013, 803-809 (2013).
Caminada, M.: On the issue of reinstatement in argumentation. In Proc. of
JELIA2006, 111-123 (2006).

Cayrol, C. and Lagasquie-Schiex, M.: On the acceptability of arguments in bipolar
argumentation frameworks. In Proc. of ECSQARU2005, 378-389 (2005).

Cayrol, C. and Lagasquie-Schiex, M.: Coalitions of arguments: A tool for handling
bipolar argumentation frameworks. In International Journal of Intelligent Systems,
Volume 25, 83-109 (2010).

Cayrol, C. and Lagasquie-Schiex, M.: Bipolarity in argumentation graphs: Towards
a better understanding. International Journal of Approrimate Reasoning, Volume
54, 876-899 (2013).

Dung, P. M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, Volume 77, 321-357 (1995).

Gelfond, M. and Lifschitz, V.: The stable model semantics for logic programming.
In Proc. of ICLP, 1070-1080 (1988).

Kawasaki, T., Moriguchi, S. and Takahashi, K.: Transformation from PROLEG to
a bipolar argumentation framework. In Proc. of SAFA2018, 36-47 (2018).
Nouioua, F. and Risch, V.: Argumentation framework with necessities. In Proc. of
SUM2011, 163-176 (2011).

Oren, N. and Norman, T. J.: Semantics for evidence-based argumentation. In Proc.
of COMMAZ2008, 276-284 (2008).

Prakken, H., Reed, C. and Walton, D.: Dialogues about the burden of proof. In
Proc. of ICAIL2005, 115-124 (2005).

Rahwan, I. and Simari, G.(eds.): Argumentation in Artificial Intelligence, Springer
(2009).

Reed, C. and Rowe, G.: Araucaria: Software for argument analysis, diagramming
and representation. In International Journal of AI Tools, Volume 13, 961-980
(2004).

Satoh, K. et al.: PROLEG: An Implementation of the Presupposed Ultimate Fact
Theory of Japanese Civil Code by PROLOG Technology. In JSAI-isAI 2010: New
Frontiers in Artificial Intelligence, 153-164 (2010).

Satoh, K. et al.: On generality of PROLEG knowledge representation. In Proc. of
JURISIN2012, 115-128 (2012).

