
Reasoning by a Bipolar Argumentation
Framework for PROLEG

Tatsuki Kawasaki, Sosuke Moriguchi, and Kazuko Takahashi

School of Science&Technology, Kwansei Gakuin University,
2-1, Gakuen, Sanda, 669-1337, JAPAN

dxk96093@kwansei.ac.jp, chiguri@acm.org, ktaka@kwansei.ac.jp

Abstract. We develop a system allowing lawyers and law school stu-
dents to analyze court judgments. We describe a transformation from the
logic programming language PROLEG to a bipolar argumentation frame-
work (BAF) and the legal reasoning involved. Legal knowledge written
in a PROLEG program is transformed into a BAF, in which the struc-
ture of argumentation in a judgment is clear. We describe two types of
reasoning by the BAF: clarification of the entire structure and causality
of arguments, and identification of the required evidence, and we show
its applications on legal reasoning.

Keywords: bipolar argumentation framework, PROLEG, reasoning, se-
mantics

1 Introduction

Recently, information technology and artificial intelligence are vigorously ap-
plied in various fields, including those that have not yet been fully digitized or
automated. In the context of legal reasoning, although the use of artificial intel-
ligence has attracted a great deal of attention, higher-level and more practical
support exploiting recent technological developments is required. A support for
a judgment process is one of the most necessary ones. When seeking to support
a judgment, it is essential to develop a system that can be easily used by lawyers
who are not computer scientists; also, the system must be highly reliable and
must reason accurately and rapidly. Firstly, lawyers must be able to access the
system in a straightforward manner, and secondly, the system must describe
both the process leading to judgment and the way in which the law was applied.

In terms of the former consideration, as law is supposed to be logical, it is
reasonable to base the system on such logic and reason from that perspective.
Several legal reasoning systems have adopted logic programming such as Pro-
log as their descriptive languages. However, it is difficult for a lawyer who is
not familiar with computer science to directly write Prolog code. A PROLEG
system was developed to solve this problem [17]. It was designed to support
inferences based on the Japanese Presupposed Ultimate Facts Theory (termed
“Yoken-jijitsu-ron” in Japanese) of the Japanese civil code, and it is currently
applied to the Japanese penal code. The theory deals with uncertainties that

sometimes arise in court, where a judge must give a decision even if evidence
is lacking. PROLEG is a system to reason about the theory by a Prolog-based
meta-interpreter. Each presupposed ultimate fact is represented using general
rules written in the form of if-then statements and exceptions. Exceptions of
fact apply to all general rules and are used as court defenses. The use of excep-
tions rather than negative atoms creates a structure equivalent to that of a law,
allowing lawyers to intuitively understand the program. A burden-of-proof [14]
is attached to each ultimate fact to allow for decision-making even if the fact is
not proven to be true. This is achieved using the negation-as-failure inference
of Prolog; thus, for a given goal, a general rule is applied and the goal is true
unless there is an exception.

On the other hand, in terms of legal process and application, it is appropriate
to employ argumentation to describe both the judgment process and how the
law was applied [1]. An argumentation system reveals both the causality in
arguments (for example, how arguments interacted to create a judgment) and
the influence of evidence. Argumentation is a powerful tool when used to resolve
conflicts, not only formalizing the structure of the process but also incorporating
any uncertainties.

In the time since Dung proposed the abstract Argumentation Framework
(AF) [9], many extensions and revisions of the system have been published [15].
AF represents an argumentation by a pair of a set of arguments and a set of
attacks between arguments, ignoring the contents of arguments. Several AF se-
mantics have been defined; acceptable arguments are calculated based on these
semantics. Visualization tools appropriate for argumentation systems have also
been developed (e.g., [16]).

Although PROLEG facilitates the representation of a law, it is difficult to
grasp the judgment process or a causal relation found in arguments from the
execution trace. On the other hand, although it is possible to create an AF
representing the interaction between a plaintiff and a defendant in court, it is
difficult to directly write the structure of a law per se, or the part of the law used
to create an argument in an AF form. Therefore, we combined the two systems.

We developed a transformation from PROLEG to a bipolar argumentation
framework (BAF) [6], an extended AF, and showed its correctness [11]. More
specifically, we gave a semantics for the BAF obtained as a result of the transfor-
mation, and proved that the answer set of the PROLEG program was the same
as the set of acceptable arguments in BAF. However, we have not yet discussed
what kind of reasoning we can do using this BAF. The objective of this paper
is to show how reasoning which is difficult to emulate or understand using a
PROLEG program proceeds using the BAF.

Consider the following PROLEG program representing the penal code that
defines the “crime of murder.”1 The first clause indicates the general rule and
the second clause an exception. The text states that if the object is a human (not
a dead body) and there exists both the action of murder and the intention to

1 Note that the examples shown here are simplified versions of the actual penal code;
the conditions per se are simplified and the legal terminology is not precise.

murder, then the crime of murder has been committed unless there is a legitimate
defense.

crime_of_murder <= human, action_of_murder, intention_to_murder.

exception(crime_of_murder, legitimate_defense).

When evidence is provided, the facts on which that evidence bears are proved,
and it is then decided whether the crime of murder has been committed or not.

A judge should explain the judgment process to persuade those concerned
with the transparency of justice. In such a legal situation, what is required is not
only the outcome of judicial reasoning but also an explanation of the reasoning
process or the cause-and-effect relationships of arguments used in reasoning.
For example, if the crime of murder was adjudged to not in fact have been
committed; this may be because of a lack of evidence of intention to murder, or
because a legitimate defense was available.

Our transformed BAF not only shows the process and structure of judg-
ment, but also suggests a strategy by which a user can achieve a desired goal.
If a plaintiff/defendant wishes to argue that a law should or should not be ap-
plied, the BAF identifies the evidence that must be presented and any counter-
arguments that may arise. For example, when a prosecutor wishes to charge the
crime of murder, but finds that the lack of intention to murder is a complicat-
ing factor, s/he will look harder for evidence of intention to murder. Here, we
discuss such reasoning on our BAF.

This paper is organized as follows. In Section 2, we briefly explain PROLEG.
In Section 3, we describe the BAF that we use and its semantics. In Section 4,
we describe the transformation rule from PROLEG to the BAF. In Section 5, we
describe how the reasoning by the BAF proceeds, and in Section 6, we show its
application. In Section 7, we compare our method with those of others. Finally,
in Section 8, we offer conclusions and describe our planned future work.

2 Legal Description Language: PROLEG

The PROLEG program P is defined as a pair 〈R, E〉, where R is a finite set of
rules, and E is a finite set of exceptions. Each rule is a Horn clause of the form
H ⇐ B1, . . . Bn, where H,B1, . . . , Bn are atoms. Here, n may be 0, and in this
case we term such a rule a fact rule or simply a fact; when n > 0, we call the
rule a defining rule, to distinguish from a fact rule. Each exception is in the form
exception(H,B).

A fact is something given as an evidence in a court case, whereas defining rules
and exceptions describe the general case. That is, the facts are generally given
in an instantiated form whereas defining rules and exceptions include variables.
In the following examples, we use a proposition for simplicity.

For each rule R or exception E, we employ the functions head and body
such that head(R) = H and body(R) = {B1, . . . , Bn} if R = H ⇐ B1, . . . , Bn;
head(E) = H and body(E) = {B} if E = exception(H,B).

An atom may have more than one defining rule. This means that there may
exist distinct R1 and R2 such that head(R1) = head(R2).

Example 1. The following is an example of a PROLEG program.

p <= q1, q2.

exception(q1, r).

q2 <=.

r <=.

The semantics of the PROLEG program P is defined as an answer set (a set
of ground atoms). M is the answer set of P iff M is the minimum model of the set
of Horn clauses, {R ∈ R | ∀E ∈ E , if head(E) = head(R) then body(E) 6⊆ M}.
The expressive power of PROLEG is the same as that of a normal logic program
with an answer set [10, 18].

PROLEG allows cyclic definitions. However, here, we deal with an acyclic
PROLEG program, because the Japanese civil and penal codes are usually writ-
ten in an acyclic manner.

3 Bipolar Argumentation Framework

First, we define an argumentation framework [9].

Definition 1 (argumentation framework). An argumentation framework is
defined as a pair 〈AR,AT 〉 where AR is a set of arguments and AT is a binary
relation on AR, termed an attack. If (A,A′) ∈ AT , we state that A attacks A′.

A BAF is an extension of an AF in which the two relations of attack and
support are defined over a set of arguments [6]. We define a support relation
between a power set of arguments and a set of arguments; this differs from the
usual BAF, because the body of a defining rule generally includes more than one
atom in PROLEG.

Definition 2 (bipolar argumentation framework). A BAF is defined as a
triple 〈AR,ATT ,SUP〉 where AR is a finite set of arguments, ATT ⊆ AR×AR
and SUP ⊆ (2AR \ {∅}) × AR. We denote att(B,A) if (B,A) ∈ ATT , and
sup(A, A) if (A, A) ∈ SUP.

Example 2. Figure 1 is a graphical representation of a bipolar argumentation
framework 〈{a, b, c, d, e}, {(b, a), (e, d)}, {({c, d}, a)}〉. In the figure, the straight
arrow indicates an attack relation and the wavy arrow a support relation.

We gave a semantics for the BAF based on labeling [5]. Usually, labeling is
a function from a set of arguments to {in, out , undec}, but undec is unnecessary
here, because the BAF is acyclic. An argument labeled in is considered to be an
accepted argument.

Definition 3 (labeling). For 〈AR,ATT ,SUP〉, a labeling L is a function from
AR to {in, out}.

Fig. 1. Example of BAF.

Labeling of a set of arguments is denoted as follows: L(A) = in if L(A) = in
for all A ∈ A; L(A) = out , otherwise.

We assign the label in to an argument that is neither attacked nor supported
by any other argument. When an argument is both attacked and supported,
the attack is supposed to be stronger than the support. We assign a label out
to an argument that is attacked by another argument with the label out , and
simultaneously supported by a set of arguments with the label out . Note that an
argument lacking support is labeled out , even if it is attacked by an argument
labeled out .

Definition 4 (complete labeling). For 〈AR,ATT ,SUP〉, labeling L is com-
plete iff the following conditions are satisfied for any argument A ∈ AR.

– L(A) = in if
• (∀B ∈ AR,¬att(B,A)) ∧ (∀A ⊆ AR,¬sup(A, A))

or
• (∀B ∈ AR, att(B,A)⇒ L(B) = out) ∧ (∃A ⊆ AR, sup(A, A) ∧ L(A) =

in).
– L(A) = out, otherwise.

Figure 2 shows the complete labeling of four BAFs.

Fig. 2. Examples of complete labeling.

Example 3. For a BAF in Figure 1, L(b) = L(c) = L(e) = in and L(a) = L(d) =
L({c, d}) = out .

The following theorem holds [11].

Theorem 1. For any acyclic BAF, there is exactly one complete labeling.

Note that we distinguish the case in which an argument is supported by
a set of arguments from that in which it is supported by multiple arguments
separately.

Example 4. Consider two BAFs baf 1 and baf 2 shown in Figure 3. Formally,
baf 1 is represented as 〈{a, b, c, d}, {(d, c)}, {({b, c}, a)}〉 and baf 2 is represented
as 〈{a, b, c, d}, {(d, c)}, {({b}, a), ({c}, a)}〉.

In baf 1, the argument a has one support that is a set of two arguments,
whereas in baf 2, it has two supports, both of which are singletons.

Let L1 and L2 be the complete labeling of baf 1 and baf 2, respectively. In
baf 1, L1(b) = L1(d) = in and L1(c) = out hold. It follows that L1({b, c}) = out
holds. Therefore, L1(a) = out . On the other hand, in baf 2, L2(b) = L2(d) = in
and L2(c) = out hold similarly. However, L2({b}) = in and L2({c}) = out .
Therefore, L1(a) = in.

(a) baf 1: supported by a set (b) baf 2: supported independently

Fig. 3. Two types of support.
.

4 Transformation

4.1 Transformation rule

We show a transformation from a PROLEG program to a BAF. The atoms,
rules, and exceptions of the PROLEG program are transformed into arguments,
supports, and attacks, respectively.

We add two types of arguments to the BAF that do not appear as explicit
atoms in PROLEG. One is an argument reflecting the absence of any rules of
inference in PROLEG. In PROLEG, an atom H that does not appear in the
header of any rule or exception is not in the answer set. On the other hand,
arguments that are neither attacked nor supported are labeled in. To fill this gap,
we add the argument ab(H) that attacks H. We term this argument an absence

argument. We also add arguments showing the existence of fact rules. For a fact
rule (i.e., a rule in the form H ⇐), there are no arguments that support H in
BAF; any support is a binary relation. Therefore, we add an argument ex(H)
that supports H. We term this argument an existence argument.

Definition 5 (transformation rule).
Transformation from a PROLEG program 〈R, E〉 to a BAF 〈AR,ATT ,SUP〉

is defined as follows.

– Atom =
⋃

R∈R({head(R)} ∪ body(R)) ∪
⋃

E∈E({head(E)} ∪ body(E))
– Rule = {(body(R), head(R)) | R ∈ R ∧ body(R) 6= ∅}
– Exc = {(B,H) | exception(H,B) ∈ E}
– Existence = {H | H ⇐∈ R}
– ExistenceSupport = {({ex(H)}, H) | H ∈ Existence}
– Absence = Atom\({head(R) | R ∈ R} ∪ {head(E) | E ∈ E})
– AbsenceAttack = {(ab(B), B) | B ∈ Absence}
– AR = Atom ∪ {ex(H) | H ∈ Existence} ∪ {ab(B) | B ∈ Absence}
– ATT = Exc ∪AbsenceAttack
– SUP = Rule ∪ ExistenceSupport

The following theorem indicates that the semantics is preserved during trans-
formation [11].

Theorem 2. For PROLEG program P , let M be an answer set of P . Assume
that L is the complete labeling of the BAF transformed from P . Then, for each
atom H in P , H ∈M iff L(H) = in.

Example 5. The program in Example 1 is transformed into the following BAF:
〈 {p, q1, q2, r, ex(q2), ex(r)}, {(r, q1)},
{({q1, q2}, p), ({ex(q2)}, q2), ({ex(r)}, r)} 〉.

Complete labeling of the BAF is performed in the following manner. Argu-
ments q1 and q2 together support argument p. The existence arguments ex(q2)
and ex(r) are added to support q2 and r, respectively. Figure 4 shows a graphical
representation of the BAF, with the complete labeling 2. As L(q1) = out and
L(q2) = in, the label of the set of arguments L({q1, q2}) = out . Also, as p is
supported by {q1, q2}, L(p) = out . When we ignore the existence and absence
arguments introduced during transformation, the set of arguments labeled in is
{q2, r}, which coincides with the answer set of the program in Example 1.

5 Reasoning by the BAF

We describe the two types of reasoning performed by the BAF transformed from
the PROLEG program:

1. Clarification of the entire structure of judgment and the causality in the
arguments.

2. Identification of the required evidence.
2 Note that, in the following figures, we omit the dotted rectangle over existence

arguments to avoid making a figure messy.

Fig. 4. BAF for the program in Example 1.

5.1 PROLEG program

Example 6. Consider the following PROLEG program. The first set of a defining
rule and an exception states that if the object is a human (not a dead body)
and there exists both the action of murder and the intention to murder, then
the crime of murder has been committed unless there was a legitimate defense.
The second set of a defining rule and an exception states that if the accused
is infringed and takes emergent, necessary, and appropriate action to defend
himself/herself, then this is a legitimate defense, unless there was no aggressive
intention to harm the deceased. The remainder of the program deals with the
facts in evidence.

% rules regarding crime_of_murder

crime_of_murder <= human, act_of_murder, intention_to_murder.

exception(crime_of_murder, legitimate_defense).

legitimate_defense <=

infringement, emergency, necessity, appropriateness,

defense_intention.

exception(legitimate_defense, aggressive_intention_to_harm).

% facts

human <=.

act_of_murder <=.

intention_to_murder <=.

infringement <=.

emergency <=.

necessity <=.

appropriateness <=.

defense_intention <=.

5.2 Clarification of the entire structure of judgment and causality
in the arguments

In this case, the entire PROLEG program is transformed into a BAF using the
rules shown in Section 4.

For each atom, rules that define it and the exceptions are transformed into the
BAF. If there exists a fact, then a corresponding existence argument supporting
the fact is added. If an atom does not appear in the header of any rule or
exception, then a corresponding absence argument attacking the atom is added
to the transformed BAF. We show a graphical representation of the transformed
BAF in Figure 5.

Fig. 5. Graphical representation of a transformed BAF for a murder case.

This BAF was obtained from an entire PROLEG program including facts,
and shows the structure of the entire argumentation from which we can grasp
the cause-and-effect relationships of the arguments.

Using this BAF, the argumentation process is explained as follows. As the
label of the absence argument ab(aggressive intention to harm) is in, that of the
argument aggressive intention to harm is out (there was no intention to harm).
Therefore, the label of the argument legitimate defense is in (it is a legitimate
defense). The argument crime of murder has one attacking argument, the label
of which is in, and one supporting set of arguments, the label of which is in.
Hence, the label of the argument crime of murder is out (the crime of murder
was not committed).

The BAF is updated as the judgment proceeds. Counter-arguments and evi-
dences may be incrementally added as the corresponding nodes. Then, the node

labels can be changed. For example, if there is another exception to a legit-
imate defense argument, and this is proven, a new argument is added; legiti-
mate defense is attacked by this argument and its label is changed to out . As
another example, if evidence of aggressive intention to harm is given, then its ab-
sence argument is replaced by an existence argument, and attack by the absence
argument is replaced by support from the existence argument. As a result, the
label of the node aggressive intention to harm is changed to in. It follows that
the label of legitimate defense is changed to out , and that of the crime of murder
to in.

5.3 Identification of required evidence

The BAF also identifies the evidence required to apply the law or prevent its
application.

We transform a PROLEG program except for the fact part, and determine
the existence arguments required to apply or not apply the law. Unlike the first
type of reasoning, all available defining rules and exceptions are assumed to be
represented, and no defining rules or exceptions are added.

From the definition of complete labeling, L(A) = in holds iff the labels of all
arguments that attack A are out and there exists an argument that supports A,
of which the label is in, or A is neither attacked nor supported.

Assume that a plaintiff wants to apply a law or that a defendant wants to
prevent its application. Then they seek to label the corresponding argument in
and out , respectively. The BAF detects the evidence required for attainment of
their goals, respectively. This is achieved by repeatedly applying the following
process:

Let A be an argument.

– Make L(A) = in.
Both of the following conditions should be satisfied.

• (attack condition) Make L(B) = out for each B such that att(B,A). If
there does not exist such an argument B, then the condition is satisfied.

• (support condition) Make L(A) = in for some A such that sup(A, A),
that is, for each A′ ∈ A,L(A′) = in. If there does not exist such A, then
an existence argument ex(A) and a support sup({ex(A)}, A) should be
added.

– Make L(A) = out .
Either of the following conditions should be satisfied.

• (attack condition) Make L(B) = in for some B such that att(B,A).
If there does not exist such an argument B, then this condition is not
satisfied.

• (support condition) Make L(A) = out for each A such that sup(A, A),
that is, for some A′ ∈ A,L(A′) = out . If there does not exist such A,
then this condition is not satisfied.

As a result, a set of existence arguments, that is, a set of evidences that
should be provided, is found; this allows either party to attain his/her goal no
matter what evidence his/her opponent offers.

Example 7. Figure 6 shows a BAF transformed from the PROLEG program
excluding the fact part of Example 6. For convenience, each node is named
a, b, . . . , k, respectively.

Fig. 6. Reasoning about required evidences.

– In this BAF, consider the conditions required to make L(a) = in.
• By attack condition for a, L(e) = out should be satisfied. To achieve

this, attack condition for e or support condition for e should be satisfied.
By attack condition for e, L(k) = in should be satisfied, and since k has
no support, ex(k) is required. By support condition for e, at least one
of L(f) = out , L(g) = out , L(h) = out , L(i) = out or L(j) = out holds.
However, this is impossible since f, g, h, i and j are neither attacked nor
supported.

• By support condition for a, L(b) = L(c) = L(d) = in should be satisfied.
To achieve this, ex(b), ex(c) and ex(d) are required.

As a result, the plaintiff should provide the four evidences ex(k), ex(b), ex(c)
and ex(d) to apply the law.

– On the other hand, consider the conditions required to make L(a) = out .
• By attack condition for a, L(e) = in should be satisfied. To achieve this,
L(k) = out should be satisfied, but this is impossible since k is neither
attacked nor supported.

• By support condition for a, either L(b), L(c) or L(d) should be out , but
this is impossible since b, c and d are neither attacked nor supported.

Therefore, the defendant never prevents application of the law.

In this example, only one set of existence arguments is found to make L(a) =
in, and no argument is found to make L(a) = out . However, in general, we may
find multiple sets in both cases. For example, assume that a plaintiff wishes to
make L(a) = in in the BAF shown in Figure 7. The evidence required to make
L(a) = in is one of ex(b) or ex(c). The evidence required to make L(f) = in is
one of ex(g) or ex(h). Thus, we find four sets of required evidences.

Fig. 7. Multiple sets of evidences are obtained.

6 Application of Reasoning

Here, we discuss how lawyers use the reasoning shown in subsection 5.3 in actual
cases.

Consider an example regarding the Japanese civil code. This is a modified
version of the house lease example discussed by Satoh et al. [17].

Assume that a plaintiff and a defendant have entered into a lease contract
on a house. The defendant subleased a room of the house to his sister, who used
the room, and the plaintiff claimed that the contract was ended by this sublease.
The defendant claimed that he subleased the room for only ten days, which does
not constitute abuse; however, the plaintiff argued that the neighbors complained
that the sublessee played the piano, generating noise, which constituted an abuse.

The PROLEG program for this example, excluding the fact part is as follows.
The first part shows that cancellation due to the sublease is effective if there was
a lease contract and the house was handed over by the lessor to the lessee,
there was a sublease contract and the room was handed over by the lessee to

the sublessee, the sublessee used the leased item, and the lessor manifested the
intention of cancelling the lease contract; however, this is effective unless the
lessor granted approval for the sublease and there was no abuse of confidence.
The second part shows that the lessee is considered to have obtained approval for
the sublease if the lessor granted approval of the sublease before cancellation.
The third part shows that there is no abuse of confidence if there is a fact
supporting non-abuse unless there is an abuse of confidence. The last part shows
that there is an abuse of confidence if there is a fact supporting abuse.

% rules regarding lease

cancellation_due_to_sublease <=

agreement_of_lease_contract, handover_to_lessee,

agreement_of_sublease_contract, handover_to_sublessee,

using_leased_thing, manifestation_cancellation.

exception(cancellation_due_to_sublease,get_approval_of_sublease).

exception(cancellation_due_to_sublease,nonabuse_of_confidence).

get_approval_of_sublease <=

approval_of_sublease, approval_before_cancellation.

nonabuse_of_confidence <= fact_of_nonabuse_of_confidence.

exception(nonabuse_of_confidence,abuse_of_confidence).

abuse_of_confidence <= fact_of_abuse_of_confidence.

Figure 8 shows a BAF transformed from the PROLEG program. For conve-
nience, the nodes are named a, a1, . . . , a6, b, c, d, . . . , h, respectively.

We identified the evidences that are required for this BAF to enable the
plaintiff and the defendant to achieve their respective goals using the reasoning
proposed in the previous section. As a result, it is impossible for the plaintiff to
make the label of a to in. Therefore, there is no way for the plaintiff to win by
applying the law, depending on the defendant’s behaviors. On the other hand,
the defendant should provide evidences ex(c) and ex(d) to make the label of a
to out . Then, it is possible to prevent application of the law, regardless of the
evidences provided by the plaintiff.

In this case, what can the plaintiff do? Is there no way to achieve his/her goal?
One solution is to scrutinize the evidences required for the defendant, that is,
ex(c) and ex(d). Is it possible for the defendant (the lessee) to provide evidences
for c and d, that is, approval of sublease and approval before cancellation? Me-
chanically, it is impossible to make either of the labels c and d to out if the
defendant provided evidences for these nodes. But actually, these two approvals
must be granted by the lessor, and the defendant may not give such evidences.

Assume that evidences for c and d are not provided. By applying the rea-
soning process again, the plaintiff would find that the evidences for a1, . . . , a6
and h would be required to achieve his/her goal. If he/she were able to present

Fig. 8. BAF for a house-lease case.

these evidences, the defendant would not be able to prevent application of the
law. Therefore, he/she will prepare these evidences. This example shows that,
even if mechanical reasoning based on the BAF structure yields a solution of
“impossible,” it is not always impossible actually.

The reasoning proposed for the BAF supports the plaintiff’s/defendant’s abil-
ity to achieve his/her goals by producing the required evidences. Additionally,
it helps them to check the possibility of presenting evidences that would be dis-
advantageous to their case and suggests the behaviors that would be to their
advantage.

7 Related Works

Several works on BAF semantics have been undertaken. In almost all of them,
the BAFs are given in advance or obtained by a translation from artificial logic
programs. Such programs principally discuss argumentation structures that are
seldom seen in actual judgments. On the other hand, we sought to apply real-
world legal reasoning. A significant issue during transformation is to give BAF
semantics preserving legal reasoning; no previous BAF semantics met this crite-
rion.

Cayrol et al. investigated BAF semantics, defining several types of indirect
attacks by combining attacks with supports. They also defined several types of
extension [6]. Next, the concept of “coalition” (a set of arguments) was intro-
duced and used to define a meta-AF [7, 8]. The idea was to reduce a BAF to an
AF by deleting the support relations between arguments in the same coalition.
An argument in BAF is accepted if it is included in an accepted coalition of

the meta-AF. Boella et al. pointed out that this approach does not allow use of
the Dung semantics, and revised the semantics by introducing different meta-
arguments and meta-supports [2]. However, if we adopt these semantics, the
semantics of PROLEG and BAF do not coincide [11]. It follows that we cannot
combine arguments to form a single support without considering their original
relationships in PROLEG.

Noueioua et al. proposed a BAF that considered a support relation to be
a “necessity” relation [12]. In this approach, each atom corresponds to each
argument, similar to our approach. They proved the correspondence between a
normal logic program and their BAF. The main drawback of the method is that
it does not discriminate support by a set of arguments from support given by
separate multiple arguments. They do not reflect the case in which a set of body
goals support its head goal in a logic program.

Oren and Norman developed an evidence-based argumentation by introduc-
ing a special unique argument, corresponding to an environment, into a BAF [13].
The introduction of such a special argument is similar to that of existence and
absence arguments in our method. The difference is that we add an existence
or absence argument for each fact and add a support/an attack from each exis-
tence/absence argument, respectively, so that our BAF should keep a PROLEG
structure.

Unlike the works cited above, Brewka et al. developed an abstract dialectical
framework (ADF) as a generalization of the Dung AF [3, 4]. In the ADF, each
node is associated with an acceptance condition depending on the parent nodes,
and each link exhibits an individual strength. A bipolar ADF is a subclass of
ADF in which a link is either attacked or supported depending on the polarity
of its strength. A BAF transformed from PROLEG may be considered to be an
instantiation of an ADF. It would be interesting to explore whether an ADF
semantics could be simply applied to a BAF transformed from PROLEG.

8 Conclusion

We have described the transformation from a PROLEG description to a BAF,
and the legal reasoning using the BAF. We gave semantics to the BAF preserving
the features of a PROLEG program. The BAF reflects the structure of the
judgment process and causality among arguments. We have developed reasoning
on the BAF, that is difficult to emulate or understand using a PROLEG program
or execution trace. Our system will help lawyers and law school students to
analyze judgments.

In future, we will improve reasoning by the BAF and create a graphical
interface. We are also considering the combination of our reasoning method and
existing causal reasoning, and we will compare our method with the existing
reasoning scheme such as Abductive Logic Programming.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP17H06103.

References

1. Bench-Capon, T., Prakken H. and Sartor, G.: Argumentation in legal reasoning.
Argumentation in Artificial Intelligence, 363-382 (2009).

2. Boella, G., Gabbay, D. M., Torre, L. van der and Villata, S.: Support in abstract
argumentation In Proc. of COMMA2010, 40-51 (2010).

3. Brewka, G. and Woltran, S.: Abstract dialectical frameworks. In Proc. of
KR2010,102-111 (2010).

4. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P. and Woltran, S.: Abstract
dialectical frameworks revisited. In Proc. of IJCAI2013, 803-809 (2013).

5. Caminada, M.: On the issue of reinstatement in argumentation. In Proc. of
JELIA2006, 111-123 (2006).

6. Cayrol, C. and Lagasquie-Schiex, M.: On the acceptability of arguments in bipolar
argumentation frameworks. In Proc. of ECSQARU2005, 378-389 (2005).

7. Cayrol, C. and Lagasquie-Schiex, M.: Coalitions of arguments: A tool for handling
bipolar argumentation frameworks. In International Journal of Intelligent Systems,
Volume 25, 83-109 (2010).

8. Cayrol, C. and Lagasquie-Schiex, M.: Bipolarity in argumentation graphs: Towards
a better understanding. International Journal of Approximate Reasoning, Volume
54, 876-899 (2013).

9. Dung, P. M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, Volume 77, 321-357 (1995).

10. Gelfond, M. and Lifschitz, V.: The stable model semantics for logic programming.
In Proc. of ICLP, 1070-1080 (1988).

11. Kawasaki, T., Moriguchi, S. and Takahashi, K.: Transformation from PROLEG to
a bipolar argumentation framework. In Proc. of SAFA2018, 36-47 (2018).

12. Nouioua, F. and Risch, V.: Argumentation framework with necessities. In Proc. of
SUM2011, 163-176 (2011).

13. Oren, N. and Norman, T. J.: Semantics for evidence-based argumentation. In Proc.
of COMMA2008, 276-284 (2008).

14. Prakken, H., Reed, C. and Walton, D.: Dialogues about the burden of proof. In
Proc. of ICAIL2005, 115-124 (2005).

15. Rahwan, I. and Simari, G.(eds.): Argumentation in Artificial Intelligence, Springer
(2009).

16. Reed, C. and Rowe, G.: Araucaria: Software for argument analysis, diagramming
and representation. In International Journal of AI Tools, Volume 13, 961-980
(2004).

17. Satoh, K. et al.: PROLEG: An Implementation of the Presupposed Ultimate Fact
Theory of Japanese Civil Code by PROLOG Technology. In JSAI-isAI 2010: New
Frontiers in Artificial Intelligence, 153-164 (2010).

18. Satoh, K. et al.: On generality of PROLEG knowledge representation. In Proc. of
JURISIN2012, 115-128 (2012).

