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Abstract. This paper discusses the representation and reasoning of spa-
tial data in a qualitative manner. Previously, we proposed a symbolic ex-
pression to represent the abstract shape of a curve on a two-dimensional
plane. In this expression, the curve is generated by connecting multiple
primitive segments, each characterized by an abstract direction and cur-
vature. A method was proposed to determine whether the curve forms a
spiral, which is unsuitable as a border for a natural object. However, this
method has drawbacks. In this paper, we revise the method and prove
its properties. In addition, we demonstrate that it is possible to draw a
curve in a speci�ed abstract shape using the proposed expression.

Keywords: qualitative spatial reasoning, knowledge expression, logic
for reasoning under uncertainty

1 Introduction

Recognizing objects or regions in images and videos is often required in various
research �elds. Several images may be blurry or noisy, and because of the pro-
jection of three-dimensional objects onto a two-dimensional plane, some parts
may be occluded. As a result, complete data is rarely obtained. Currently, the
primary approach for identi�cation in such incomplete data uses machine learn-
ing techniques. However, when employing machine learning, a large amount of
data is necessary to achieve accurate results. Additionally, the results lack expla-
nations; although research in explainable AI (XAI) is advancing, the generated
explanations are still insu�cient to fully convince users. On the other hand, al-
ternative approaches exist that handle incomplete data as it is. One of these is
a method based on Qualitative Spatial Reasoning (QSR).

QSR is a symbolic approach that represents and reasons about spatial entities
without using numerical data [3, 10, 2, 12]. The spatial aspects required by the
user are extracted and given in a symbolic expression, and reasoning is conducted
on this expression. It is advantageous for roughly capturing spatial properties
of objects or the relationships between objects, and for avoiding human errors
caused by using precise data. For example, in the framework of egg-yolk, a region
with a vague or indeterminate boundary is represented by two crisp regions,
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called the egg and the yolk. It is not determined whether the points between the
egg and yolk are in such an ambigiuous region or not [6, 7]. QSR also �ts human
recognition, provides explanations for derived results, and reduces computational
burdens since it does not use numerical data or require big data.

Takahashi has proposed an approach based on QSR to handle incomplete
and ambiguous spatial data [13, 14]. Their target was continuous open curves
projected onto a two-dimensional plane, which correspond to the borderlines of
natural regions, such as geological strata. They divide the curve into multiple
segments at in�ection points and extremum points, and represent each segment
using its abstract direction and curvature. They also determine missing parts of
the curve by connecting such segments to reconstruct its abstract shape. They
demonstrated the method for judging whether the curve, obtained in this man-
ner, forms a spiral by checking the orientation of the segments that constitute it.
However, the method has some drawbacks. In this paper, we revise the method
and show that it is possible to draw a curve on a two-dimensional plane with an
abstract shape derived from the expression.

This paper is organized as follows. In Section 2 and Section 3, we describe the
formalization and embedding of a curve on a two-dimensional plane, respectively,
that were proposed in our previous papers [14, 13]. In Section 4, we present the
revised judgment method and prove its property. In Section 5, we compare our
approach with related works. Finally, in Section 6, we show our conclusions and
future works.

2 Fundamental Concepts

Let CURVES be a set of directed curved segments with a unique direction and
curvature on a two-dimensional plane. For X ∈ CURVES , we represent the
qualitative shape of X focusing on its intrinsic direction and convexity, ignoring
the precise size and the exact curvature.

Let Sv = {n, s}, Sh = {e, w}, Conv = {cx, cc} and Dir = Sv ∪ Sh. The
symbols n, s, e and w indicate the north, south, east and west directions, re-
spectively, and cx and cc indicate convex and concave, respectively. The di-
rection exactly in the middle between north and south (east and west) is re-
garded as either n or s (e or w, resp.). Straight lines are not considered. For
X ∈ CURVES , X = (V,H,C) is said to be the qualitative representation of X
where V ∈ Sv, H ∈ Sh and C ∈ Conv. V,H and C show the vertical direction,
horizontal direction and the convexity of X, respectively. For X,Y ∈ CURVES ,
let X = (V,H,C) and Y = (V ′, H ′, C ′) be qualitative representations of X and
Y , respectively. We de�ne the relation ∼ on CURVES as follows: X ∼ Y i�
V = V ′, H = H ′ and C = C ′. Then ∼ is an equivalence relation on CURVES .
As a result, CURVES is classi�ed into eight equivalence classes which are jointly
exhaustive and pairwise disjoint. We denote the set of these equivalence classes
as S, that is, S = CURVES/ ∼. Then, X ∈ CURVES is mapped to X ∈ S.



A Revised Method on Judging Abstract Shape of a Curve 3

For example, in Figure 1, the three segments in the upper frame are regarded
as equivalent, whereas they are not equivalent to the lower two segments. The
qualitative representation of a segment in the upper frame is (n, e, cx).

Fig. 1. Classes of curved seg-
ments.

(a) (b) (c) (d) (e)

Fig. 2. Connection of segments.

In this paper, a smooth continuous curve without a self-intersection is called
an scurve. We connect multiple segments in S to create an scurve.

For X ∈ S, its initial and terminal points are indicated by init(X) and
term(X), respectively. For X,Y ∈ S, if an scurve is obtained by considering
that init(Y ) and term(X) are identical, then X and Y are said to be directly
connectable, denoted by dc(X,Y ), and the outcome of the connection is repre-
sented as X · Y . For X,Y ∈ S, if X = Y , then they are directly connectable
and the result is regarded as a single segment without a cusp, since the precise
curvatures of X and Y are ignored (Figure 2(a)). When X and Y are directly
connectable, and X 6= Y , the connection of X and Y creates an in�ection point
(Figure 2(b)), or an extremum point (Figure 2(c)) via direct connections. For
X1, . . . , Xn ∈ S (n ≥ 2), if for each j such that 1 ≤ j ≤ n − 1, dc(Xj , Xj+1),
then we obtain an scurve by directly connecting Xj and Xj+1, and the outcome
of the connections is represented as X1 · . . . ·Xn. As a result, scurve is a sequence
of qualitative representations of curved segments. For example, X = (n, e, cx)
and Y = (s, e, cc) are not directly connectable, since a cusp is created at their
connection (Figure 2(d)); but if we insert Z = (s, e, cx) between X and Y , then
we get an scurve X · Z · Y (Figure 2(e)).

3 Embedding of an scurve on a Two-Dimensional Plane

In the following, `embedding of X' means an assignment of one X ∈ CURVES
to X ∈ S.

De�nition 1 (embedding).

1. Let X ∈ CURVES be a curved segment on a two-dimensional plane of which
X ∈ S is its qualitative representation. Then X is said to be an embedding
of X. init(X) and term(X) represent the locations of the initial point and
the terminal point of X on a two-dimensional plane, respectively.
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2. Let X1 · . . . · Xn be an scurve X1 · . . . · Xn, and Xi (∀i; 1 ≤ i ≤ n) be
an embedding of Xi. For all i such that 1 ≤ i ≤ n − 1, if term(Xi) and
init(Xi+1) are located in the same position, then X1 · . . . ·Xn is said to be
an embedding of an scurve X1 · . . . ·Xn.

Note that there are in�nite number of X's for X ∈ S. For example, Figure 3
shows two kinds of embedding of X · Y where X = (n, e, cx) and Y = (s, e, cx).
The relative directions of the locations of term(Y ) with respect to init(X) are
(n, e) and (s, e) in Figure 3(a) and Figure 3(b), respectively.

(a) (b)

Fig. 3. Di�erent embeddings of X · Y .

(a) (b)

Fig. 4. Open/closed embedding

For an embedding of X, dir(X) is represented as (V,H) where V ∈ Sv

and H ∈ Sh, which indicates the relative direction of term(X) with respect to
init(X). For an embedding of X ·Y , dir(X ·Y ) is represented as (V,H) which
indicates the relative direction of term(Y ) with respect to init(X). If X · Y
creates an in�ection point, then dir(X · Y ) = dir(X) = dir(Y ); while if it
creates an extremum point, it is nondeterministic.

If an embedding of an scurve forms a spiral, it is not desirable, when an
scurve corresponds to a boundary of an actual object. However, there exists an
scurve which cannot be drawn in a non-spiral form no matter how it is drawn.
We show how to determine whether there exists an embedding that does not
form a spiral on a two-dimension plane, for a given scurve. For this purpose, we
introduce a concept of open/closed embedding.

De�nition 2 (closed, open). For X,Y ∈ S, let C be an embedding of an
scurve from X to Y on a two-dimensional plane, where X and Y are embeddings
of X and Y , respectively. And let C ′ be an in�nite-length curve that is obtained
by extending C in both directions in a manner such that the curvatures of X
at init(X) and Y at term(Y ) are preserved. If C ′ has a self-intersection point,
then the embedding is said to be closed; otherwise, it is open.

Here, a closed embedding is considered to be a spiral form.

De�nition 3 (admissible). If there is an open embedding of an scurve, then
the scurve is said to be admissible.
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For example, Figure 4(a) and Figure 4(b) show open embedding and closed
embedding of scurve X ·Z · Y , respectively, where X = (n, e, cx), Z = (s, e, cx),
Y = (s, w, cc). Therefore, X ·Z ·Y is admissible. On the other hand, X ·Z ·Y ·W ,
where W = (n,w, cc) is not admissible.

4 Judgment of Admissibility

4.1 Orientation of an scurve

We use an orientation of an scurve to judge its admissibility.
For X ∈ S, its orientation is de�ned either as clockwise (+) or anti-clockwise

(−). Moreover, the orientation of an scurve is de�ned as a sequence of orienta-
tions of the segments that con�gure it. The function inv is the assignment of
the opposite orientation, that is, inv(+) = − and inv(−) = +. We denote a set
of orientations for scurves by Σ.

De�nition 4 (orientation).

� For X ∈ S,
orn(X) = ′ + ′ i� X = (n, e, cx), (s, e, cx), (s, w, cc) or (n,w, cc); orn(X) =
′ − ′ i� X = (s, w, cx), (s, e, cc), (n, e, cc) or (n,w, cx).

� For X1, . . . , Xn ∈ S,
orn(X1 · . . . ·Xn) = orn(X1) . . . orn(Xn).

De�nition 5 (rotation di�erence). For an scurve p, the di�erence of the
numbers of + and − that appear in orn(p) is said to be rotation di�erence of p.

4.2 Reduction

Generally it is known that if the rotation angle of a curve is greater than or
equal to 2π, then it forms a spiral and may have a self-intersection point on a
two-dimensional plane. For an scurve p, if its rotation di�erence is more than
three, the rotation angle of p is greater than or equal to 2π; in this case, p is not
admissible. Then, how can we determine the admissibility in the other cases? For
example, is the scurve of which an orientation is −++−++++−− admissible?
To address this problem, the reduction has been introduced [14]. However, the
proposed de�nition has two drawbacks: a redundant condition is imposed on
applying the rule, and con�uence on the reduction process does not hold. Here,
we revise the de�nition, and show its properties with their correctness.

There are two reduction rules: the subsequence +−+ (or −+−) is reduced
to + (or −, resp.), and the subsequence ++−− (or −−++) is reduced to +−
(or −+, resp.).

[reduction rule]
Let σ1, σ2 ∈ Σ and s1, s2, s3, s4 ∈ {+,−}.

(r1) If s1 = s3 = inv(s2), then σ1s1s2s3σ2 is reduced to σ1s1σ2.
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(r2) If s1 = s2 = inv(s3) = inv(s4), then σ1s1s2s3s4σ2 is reduced to σ1s1s4σ2.

De�nition 6 (reduced form). For σ ∈ Σ, the orientation obtained by apply-
ing the reduction rules as far as possible is said to be the reduced form of σ. Let
p and p′ be scurves, also let σ = orn(p) and σ′ = orn(p′). If σ′ is the reduced
form of σ, then p′ is said to be the reduced form of p.

For example, σ1 = +++−− + +− is reduced to σ2 = + + − + +− by
applying (r2) to the underlined part. Then σ2 = ++−+ + − is reduced to
σ3 = +++− by applying (r1) to the underlined part. σ3 is the reduced form of
σ1.

The following properties hold regarding the reduction.

Proposition 1. 1. (termination)
The reduction procedure terminates.

2. (rotation di�erence preservation)
The rotation di�erence is preserved in the reduction.

3. (reduced form)
(a) The reduced form is a nonempty sequence of the same symbol enclosed

by at most one opposite symbol on each end.
(b) The symbols at both ends are not changed in the reduction.

4. (con�uence)
There is a unique reduced form, regardless of the order of rule application.

Proof)
1.2. They are trivial, since a given sequence is �nite and the segments are

eliminated by a pair of + and −, or two pairs of them.
3(a). Let s ∈ {+,−} and σ′ = σ1σ2σ3 be the reduced form where σ2 is a

nonempty sequence of s. Assume that σ1 or σ3 is a sequence of more than one
inv(s). Without a loss of generality, assume that σ1 = −−. Then there are two
cases: if σ′ = −−++ . . ., then (r2) is applicable, and if σ′ = −−+− . . ., then
(r1) is applicable; both contradict the de�nition of the reduced form. Therefore,
both of σ1 and σ3 should be sequences of at most one inv(s).

3(b). It clearly holds from the de�nition of the reduction rules.
4. Consider that there exist more than one subsequence to which a rule is

applicable. If the subsequences do not overlap, it does not matter whichever
rule is applied �rst. Therefore, we consider the cases in which the subsequences
overlap. Due to the symmetricity of + and −, and that of the order of the
sequence, it is su�cient to consider only three patterns as such cases: +−+−,
+ + − − +− and + + − − ++. The reduced forms of these sequences are +−,
+− and ++, respectively, regardless of the order of rule applications. Therefore,
the con�uence holds. ut

In addition to these properties, reduction process preserves admissibility. The
following Lemma 1 and Lemma 2 present that (r1) and (r2) preserve admissibil-
ity, respectively. Their proofs are based on the qualitative treatment of segments:
segments with the same abstract direction and curvature are embeddings of the
same qualitative representation. We just show the proof idea, due to the page
limit. The detail of the proofs is shown in the appendix.
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Lemma 1. Let an scurve p = X1 · . . . ·Xn (n ≥ 3). Assume that orn(Xi−1) =
inv(orn(Xi)) = orn(Xi+1) (∀i; 2 ≤ i ≤ n−1). If we take X ′ such that X ′ = Xi−1
holds, then p′ = X1 · . . . ·Xi−2 ·X ′ ·Xi+2 · . . . ·Xn is also an scurve from X1 to
Xn. Moreover, p′ is admissible if and only if p is admissible.

Proof) In case i = 2 or i = n − 1, we do not care the direct connection of X ′

and the adjacent segments after the rule is applied. If i 6= 2 then dc(Xi−2, X
′),

and if i 6= n− 1 then dc(X ′, Xi+2), from X ′ = Xi−1 ∧X ′ = Xi+1. Therefore, p
′

is also an scurve from X1 to Xn.
Next, assume that p is admissible. As there exists an open embedding of p,

we draw X ′ in this embedding in a manner such that init(X ′) = init(Xi−1)
and term(X ′) = term(Xi+1) are satis�ed (Figure 5(a)). Let A be a region
that is enclosed by Xi−1,Xi,Xi+1 and X ′. We may move or stretch/shrink the
embedding of the segments with keeping their connections, so that neither of the
parts X1 · . . . ·Xi−1 nor Xi+1 · . . . ·Xn intersects with the region A. Then, we
get an open embedding of p′. Therefore, p′ is admissible.

Conversely, assume that p′ is admissible. Take an open embedding of p′. For
this embedding, we can draw Xi−1,Xi and Xi+1 so that their curvatures are
su�ciently small. Note that there always exists a space in which these segments
can be drawn. Then it is an open embedding of p. ut

Lemma 2. Let p = X1 · . . . ·Xn (n ≥ 4). Assume that orn(Xi) = orn(Xi+1) =
inv(orn(Xi+2)) = inv(orn(Xi+3)) (∀i; 1 ≤ i ≤ n − 3). If we take X ′, Y ′ such
that X ′ = Xi and Y

′ = Xi+3 hold, then p′ = X1 · . . . ·Xi−1 ·X ′ ·Y ′ ·Xi+4 · . . . ·Xn

is also an scurve from X1 to Xn. Moreover, p′ is admissible if and only if p is
admissible.

Proof) The relative positional relations among the segments in open embed-
dings of p and p′ are shown in Figure 5(b). This lemma is proved similarly with
Lemma 1, by considering regions A1 and A2 and splitting the cases by the rela-
tive positional relations among the points P,Q and R. ut

(a) r1 (b) r2

Fig. 5. Admissibility preservation.

From Lemma 1 and Lemma 2, we have gotten the following theorem.

Theorem 1. An scurve is admissible i� its reduced form is admissible.
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4.3 Admissibility of an scurve

We show the admissibility of an scurve p.
Let n be the length of p. There are 2n patterns of its orientation in total.

Although this number is decreased to 2n−2 by considering the symmetricity of +
and −, and that of the order of the sequence, it is still large. The introduction of
the reduction signi�cantly decreases the number of scurves to be checked, since
the length is shortened and the reduced forms are restricted. Let k be rotation
di�erence of p. When n ≥ 8, it is not admissible since k ≥ 4. When n ≤ 7, the
number of the cases can be decreased to only 11 patterns by the reduction. We
show the result of the investigation of these 11 patterns in Figure 6. As a result,
two patterns in which k = 3 are not admissible.

From above all, we conclude that for any scurve, its admissibility can be
determined by its orientation, and we have gotten the following theorem.

Theorem 2. Let n be the length of a given scurve p, and k be its rotation
di�erence. When n ≤ 3, p is admissible. When n ≥ 4, p is admissible i� k < 3.

Fig. 6. Embeddings of all possible patterns.

4.4 Example of drawing

When an admissible scurve p is given, we can actually draw a �gure that does not
form a spiral on a two-dimensional plane as follows: take the �gure in Figure 6
which corresponds to its reduced form, and replace the segments in the manner
based on the proofs of Lemma 1 and Lemma 2.

For example, consider an scurve p where orn(p) = − + + − + + + + −−.
p is reduced to p1 where orn(p1) = − + + − + + +− by (r2). p1 is reduced to
p2 where orn(p2) = − + + + +− by (r1), which is the reduced form of p. p2 is
admissible and can be drawn as a �gure shown in Figure 7(a). p1 can be drawn
by replacing the third segment of p2 (Figure 7(b)). p can be drawn by replacing
the seventh and eighth segments of p1 (Figure 7(c)). Finally, we have gotten the
curve shown in Figure 7(d) which is an open embedding of p.
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(a) p2 (b) p2 ⇒ p1 (c) p1 ⇒ p (d) p

Fig. 7. Example of drawing an scurve.

5 Related Works

Although there have been lots of research on QSR, few of them focus on shapes,
especially on curves. Several systems in these works divide the boundary of an
object into segments and represent its shape by lining up the symbols corre-
sponding to the segments. Leyton proposed the division of a closed curve into
segments based on convexity and de�ned the grammar based on the symbols cor-
responding to the primitive segments [9]. He also proposed the representation of
the change of the shapes of closed curves, using this grammar. Tosue et al. ex-
tended this grammar so that tangent points and division of closed curves can be
handled [15]. Galton et al. de�ned the grammar that can treat not only curved
segments but also straight segments and cusps [5]. Cabedo et al. proposed the
description in which each segment is equipped with additional information such
as relative length and angles and extended it so that it may treat juxtaposition
of objects [1, 11, 4]. Kulik et al. applied QSR to landscape silhouettes [8]; they
proposed a descriptive language for the shape of an open line that is the bor-
der of a landscape seen from the horizontal perspective. However, these existing
systems do not treat the connection between objects in a distant location.

6 Conclusion

We have shown a revised judgment method for determining the spiral form and
demonstrated that it is possible to generate a curve with an abstract shape from
the speci�ed expression, when it is judged as not forming a spiral.

Curves are commonly observed in many natural objects, ranging from micro-
scopic structures like cells to macroscopic features such as terrains. Frequently,
we encounter situations where it is necessary to predict the entire shape of a
curve from partially disclosed or unclear data. The method proposed in this pa-
per o�ers a novel approach for reasoning about spatial data with uncertainty,
serving as an alternative to machine learning-based methods. It may have ap-
plications in areas such as medical image processing, where data often include
ambiguous or missing parts. An application for predicting the abstract shape of
a global geological stratum from a set of local strata data was suggested in our
previous paper [13]. The condition of an scurve is relevant to wiring problems in
circuit design.
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In future, we aim to develop a new QSR calculus to address the connecting
relationships between curved segments.

References

1. Cabedo, L.M., Abril, L.G., Morente, F.V., Falomir, Z.: A pragmatic qualitative
approach for juxtaposing shapes. Journal of Universal Computer Science 16(11),
1410�1424 (2010)

2. Chen, J., Cohn, A., Liu, D., Wang, S., Ouyang, J., Yu, Q.: A survey of qualitative
spatial representations. The Knowledge Engineering Review 30, 106�136 (2013)

3. Cohn, A., Renz, J.: Qualitative spatial representation and reasoning. In: Handbook
of Knowledge Representation, chap. 13. Elsevier (2008)

4. Falomir, Z., Pich, A., Costa, V.: Spatial reasoning about qualitative shape compo-
sitions. Annals of Mathematics and Arti�cial Intelligence 88(11), 589�621 (2020)

5. Galton, A., Meathrel, R.: Qualitative outline theory. Proceedings of the Sixteenth
International Joint Conference on Arti�cial Intelligence. pp. 1061�1066 (1999)

6. Guesgen, H.W.: From the egg-yolk to the scrambled-egg theory. In: 15th Florida
Arti�cial Intelligence Research Society Conference (FLAIRS 2022). pp. 476�480
(2002)

7. Guesgen, H.W.: Advances in Knowledge Representation, Logic Programming, and
Abstract Argumentation 2015, chap. A Fuzzy Set Approach to Expressing Prefer-
ences in Spatial Reasoning, pp. 173�185. Springer (2015)

8. Kulik, L., Egenhofer, M.J.: Linearized terrain: languages for silhouette representa-
tions. Spatial Information Theory. Foundations of Geographic Information Science,
International Conference, COSIT 2003. pp. 118�135 (2003)

9. Leyton, M.: A process-grammar for shape. Arti�cial Intelligence 34, 213�247 (1988)
10. Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley (2011)
11. Pich, A., Falomir, Z.: Logical composition of qualitative shapes applied to solve

spatial reasoning tests. Cognitive Systems Research 52, 82�102 (2018)
12. Sioutis, M., Wolter, D.: Qualitative spatial and temporal reasoning: current status

and future challenges. In: Proceedings of the 30th International Joint Conference
on Arti�cial Intelligence. pp. 4594�4601 (2021)

13. Takahashi, K.: Qualitative formalization of a curve on a two-dimensional plane. In:
The 16th International Conference on Spatial Information Theory (COSIT 2024).
pp. 4:1�4:19 (2024)

14. Takahashi, K.: Reasoning about the embedded shape of a qualitatively represented
curve. In: SCSS 2024 WIP: 10th International Symposium on Symbolic Computa-
tion in Software Science - Work in Progress Workshop. pp. 113�118 (2024)

15. Tosue, M., Takahashi, K.: Towards a qualitative reasoning on shape change and
object division. In: 14th International Conference on Spatial Information Theory
(COSIT 2019). pp. 7:1�7:15 (2019)

Appendix

Proof of Lemma 1)
In case i = 2 or i = n − 1, we do not care the direct connection of X ′ and

the adjacent segments after the rule is applied, since the part to which the rule
is applied is one of the ends of an scurve. If i 6= 2 then dc(Xi−2, X

′), and if
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i 6= n− 1 then dc(X ′, Xi+2), from X ′ = Xi−1 ∧X ′ = Xi+1. Therefore, p
′ is also

an scurve from X1 to Xn.
Next, assume that p is admissible. As there exists an open embedding of p,

we can draw X ′ in this embedding in a manner such that init(X ′) = init(Xi−1)
and term(X ′) = term(Xi+1) are satis�ed (Figure 8(a)). Let A be a region that
is enclosed by Xi−1,Xi,Xi+1 and X ′.

(a) (b) (c) (d)

Fig. 8. Admissibility preservation of (r1).

In this process, as Figure 8(b) shows, if we can draw X ′ (shown in the blue
line) with su�ciently small curvature so that neither of the parts X1 · . . . ·Xi−1
nor Xi+1 · . . . ·Xn (shown in the red line) intersects with the region A, then
this is an open embedding of p′. However, as Figure 8(c) shows, if we cannot
draw such an X ′, then we modify this embedding by moving the part Xi−2 ·
Xi−1 ·Xi ·Xi+1 ·Xi+2 in the lower direction with the locations of init(Xi−2)
and term(Xi+2) �xed, to get X

′
i−2 ·X ′i−1 ·X ′i ·X ′i+1 ·X ′i+2, shown by the dotted

line in the �gure 1. The resulting curve is also an open embedding of p. Then,
we draw X ′ with su�ciently small curvature so that the new enclosed region is
su�ciently thin. Then, this is an open embedding of p′.

Conversely, assume that p′ is admissible (Figure 8(d)). Take an open embed-
ding of p′ (red line). For this embedding, we can drawXi−1,Xi andXi+1 so that
their curvatures are su�ciently small (blue line). Note that there always exists
a space in which these segments can be drawn. Then it is an open embedding of
p. ut

Proof of Lemma 2)
In case i = 1 or i = n − 3, we do not care the direct connection of X ′, Y ′

and the adjacent segments after the rule is applied, since the part to which the
rule is applied is one of the ends of an scurve. If i 6= 1 then dc(Xi−1, X

′), and if

1 We show one representative case. The moving direction is not always the lower one,
but depends on the dir(Xi). In addition, other segments should be moved together
in some cases. These other cases can be handled in a similar manner.
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i 6= n−3 then dc(X ′, Xi+4), from X ′ = Xi−1∧Y ′ = Xi+3. Moreover, dc(X ′, Y ′)
holds. Therefore, p′ is an scurve from X1 to Xn.

Next, assume that p is admissible. As there exists an open embedding of p,
we can draw X ′ in this embedding in a manner such that init(X ′) = init(Xi)
and term(X ′) = term(Xi+1) are satis�ed, and Y ′ in a manner init(Y ′) =
init(Xi+2) and term(Y ′) = term(Xi+3) are satis�ed (Figure 9(a)). Let A1

be the region enclosed by Xi,Xi+1 and X ′, and A2 be the region enclosed by
Xi+2,Xi+3 and Y ′. Also let P,Q andR be init(Xi), init(Xi+2) and term(Xi+3),
respectively.

(a) (b) (c)

Fig. 9. Admissibility preservation of (r2).

(Case 1) dir(Xi ·Xi+1) = dir(Xi+2 ·Xi+3) = dir(Xi).
If we can draw X ′ with su�ciently small curvature so that neither of the

parts X1 · . . . ·Xi−1 nor Xi+4 · . . . ·Xn intersects with A1 nor A2. Then we get
an open embedding of p′.

Otherwise, as Figure 9(b) shows, if either of the parts X1 · . . . · Xi−1 or
Xi+4 ·. . .·Xn intersects with A1 or A2 (red line), then we modify this embedding
by moving Q and R in the upper direction to Q′ and R′, respectively, and draw
X ′i,X

′
i+1,X

′
i+2 and X ′i+3 shown by the dotted line in this �gure. As a result,

neither of the parts X1 · . . . ·Xi−1 nor Xi+4 · . . . ·Xn intersects with A1 nor A2.
The resulting curve is also an open embedding of p. Then, we draw X ′and Y ′

(blue line). Therefore, we can get an open embedding of p′

(Case 2) dir(Xi ·Xi+1) 6= dir(Xi) or dir(Xi+2 ·Xi+3) 6= dir(Xi).
We modify the embedding of p by moving P to P ′ in the lower direction and

R to R′ in the upper direction with the locations of init(Xi−1) and term(Xi+4)
�xed, so that dir(Xi ·Xi+1) = dir(Xi+2 ·Xi+3) = dir(Xi) is satis�ed to get
X ′i−1,X

′
i,X

′
i+3,X

′
i+4 shown by the dotted line (Figure 9(c)). The relative rela-

tions of P ′, Q and R′ are the same as that in (Case 1). Therefore, we can get an
open embedding of p′.

Conversely, assume that p′ is admissible. Take an open embedding of p′. For
this embedding, we can draw Xi,Xi+1,Xi+2 and Xi+3 so that their curvatures
are su�ciently small. Then it is an open embedding of p. ut


