
Argumentation System with Changes of an Agent’s Knowledge Base

Kenichi Okuno

Graduate School of Science & Technology

Kwansei Gakuin University

o.kenichi.gm@gmail.com

Kazuko Takahashi

School of Science & Technology

Kwansei Gakuin University

ktaka@kwansei.ac.jp

Abstract

This paper discusses a process of argumentation.
We propose an algorithm for dynamic treatment of
argumentation in which all lines of argumentation
are executed in succession, and the agent’s knowl-
edge base can change during argumentation. We
show that there exists a case in which an agent dy-
namically loses argumentation that would be con-
sidered won by a static analysis. We also show that
the algorithm terminates, and describe acceptable
arguments that are obtained after the argumenta-
tion.

1 Introduction

Argumentation is an important concept and a logical basis for
legal reasoning and agent communication. Dung constructed
a logical framework for argumentation [Dung, 1995]. He de-
fined an argumentation framework as a set of arguments and a
set of pairs with an attack relation, and showed that this is ef-
fective for logic programming and nonmonotonic reasoning.
He also gave semantics for an argumentation theory and de-
fined acceptable sets based on these semantics. An acceptable
set is considered to be a set of arguments which both agents
accept after the argumentation.

Subsequently, many studies have been undertaken based
on this argumentation framework, including applications for
defeasible logic programming [Garcia and Simari, 2004;
Chesnevar et al., 2005; Prakken, 2006; Chesnevar and Simari,
2007], belief revision [Falappa et al., 2002; Paglieri and
Castelfranchi, 2004; Takahashi and Sawamura, 2004], and
negotiation between agents [Kraus et al., 1998; Amgoud et
al., 2000].

Generally, argumentation proceeds as follows: two agents,
a proposer and a defeater, each make arguments attacking the
other’s utterances in turn. A tree form is proposed to represent
the structure of argumentation. The root node is a proposed
formula [Amgoud et al., 2000; Garcia and Simari, 2004],
and each branch corresponds to a single argumentation line,
namely, a sequence of arguments. Usually the constraints of
loop-freeness and consistency of the proposer’s utterances are
imposed on each argumentation line. Each branch is consid-
ered to be argumentation in a possible world that is indepen-
dent of the other branches, so relationships between branches

P1

C1

2P

C2

3C

3P

Figure 1: Structure of argumentation

are not considered. However, in actual argumentation, after
one line of argumention ends, argumentation along another
line follows. At that time, the information gained in one ar-
gumentation line is reflected in the following argumentation.
Our aim is to provide a system that simulates such actual ar-
gumentation.

Let us consider an example of argumentation. We suppose
a situation in which a murderer P tells a lie, ”I did not commit
murder,” and a policeman C argues that it is a lie. Pi and Ci

show P’s and C’s i-th utterances, respectively.

P1: “I did not commit murder! There is no evidence!”

C1: “There is evidence. We found your license near the
scene.”

P2: “It’s not evidence! I had my license stolen!”

C2: “It is you who killed the victim. Only you were near
the scene at the time of the murder.”

P3: “I didn’t go there. I was at facility A at that time.”

C3: “At facility A? No, that’s impossible. Facility A
does not allow a person to enter without a license. You
said that you had your license stolen, didn’t you?”

Figure 1 shows the structure of this argumentation. In
the argumentation system proposed previously, argumenta-
tion proceeds along the left branch, and, if C has no grounds
upon which to attack P2, then the argumentation ends with P
the winner.

However, in practical argumentation, C continues a coun-
terargument in the right branch which attacks P1 from another
side. Finally, C points out the contradiction between P’s ut-
terances and wins. P’s utterance P2 gives C new information
and causes C to generate C3.

226

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)

In the argumentation system proposed previously, the exe-
cution of each single argumentation line is considered sepa-
rately, and successive execution of all argumentation lines is
not considered, thereby excluding this example. To capture
the behaviour in the example, we also have to consider the
change of knowledge bases caused by exchanging arguments.

In this paper, we formalize argumentation from a more
practical viewpoint. We propose a successive execution of all
argumentation lines while allowing agents’ knowledge bases
to change. The argument is treated operationally, considering
that execution of argumentation changes an agent’s knowl-
edge base. We also keep a history of the proposer’s utter-
ances. This is accumulated during the argumentation and is
finally equivalent to the acceptable set of the argumentation.

This paper is organized as follows. Section 2 provides the
definitions of basic concepts such as argumentation and ar-
gumentation tree. Section 3 proposes an execution algorithm
for argumentation incorporating with changes of an agent’s
knowledge base and discusses its properties. Section 4 pro-
vides an example of this algorithm. Section 5 compares the
proposed approach with related works. Finally, section 6
presents conclusions.

2 Argumentation

2.1 Argumentation Framework

Definition 1 (consistent) Let Ψ be a set of formulas in
propositional logic. If there does not exist ψ that satisfies
both ψ ∈ Ψ and ¬ψ ∈ Ψ, Ψ is said to be consistent.

The knowledge base Ka for each agent a is a finite set
of propositional formulas. Note that Ka is not necessarily
consistent and may have no deductive closure; that is, there
may be a case in which φ, φ → ψ ∈ Ka and ψ /∈ Ka hold.
An agent a participates in argumentation using elements of
Ka.

Definition 2 (support) For a nonempty set of formulas Ψ
and a formula ψ, if there exist φ, φ → ψ ∈ Ψ, then Ψ is
said to be a support for ψ.

Definition 3 (argument) Let Ka be a knowledge base for an
agent a. An argument of a is a pair (Ψ, ψ) where Ψ is a
subset of Ka, and ψ ∈ Ka such that Ψ is the empty set or a
consistent support for ψ.

For an argument A = (Ψ, ψ), Ψ and ψ are said to be
grounds and a sentence of A, respectively. They are denoted
by Grounds(A) and Sentence(A), respectively. S(A) de-
notes Grounds(A) ∪ {Sentence(A)}. If ψ ∈ S(A), it is
said that a formula ψ is contained in an argument A.

Definition 4 (preference) Each formula is assigned a pref-
erence value. Let ν(ψ) be the preference for a formula
ψ. Then, the preference of an argument A is defined by∑
ψ∈S(A)

ν(ψ).

Preferences are assigned depending on the strength, cer-
tainty, or stability of formulas. Note that a formula is as-
signed the same preference regardless of the knowledge base
in which it is contained so as to avoid loops in the argumen-
tation.

Definition 5 (attack) Let ARKa
and ARKb

be sets of all
possible arguments of agents a and b, respectively.

1. If Sentence(Aa) ≡ ¬Sentence(Ab) and ν(Aa) ≥
ν(Ab), then (Aa, Ab) is said to be a rebut from a to b.

2. If ¬Sentence(Aa) ∈ Grounds(Ab) and ν(Aa) ≥
ν((∅,¬Sentence(Aa))), then (Aa, Ab) is said to be an
undercut from a to b.

3. An attack from a to b is either a rebut or an undercut
from a to b.

When (Aa, Ab) is an attack from a to b, it is said that Aa

attacks Ab.
Let S be a set of arguments. S attacks an argument B if B

is attacked by an argument in S. S defends an argument A if
S attacks each argument which attacks A.

Definition 6 (acceptable arguments) Let S be a set of argu-
ments and F (S) denote the set of arguments which S defends.
If there are no arguments A, B ∈ S such that A attacks B, the
least fixed point with respect to set inclusion of F is defined
to be a set of acceptable arguments.

Based on Dung [Dung, 1995], in an argumentation frame-
work between two agents, a proposer P makes the first argu-
ment and a defeater C makes counterarguments. Hereafter,
KP and KC denote their knowledge bases, respectively.

Definition 7 (argumentation framework) Let ARKP
and

ARKC
be sets of all possible arguments of P and C,

respectively, with preferences ν. Let ATKP⇀KC
and

ATKC⇀KP
be sets of attacks from P to C and those from

C to P , respectively. An argumentation framework be-
tween P and C, AF (KP,KC, ν) is defined as a quadruple
〈ARKP

, ARKC
, ATKP⇀KC

, ATKC⇀KP
〉.

2.2 Argumentation Tree

Definition 8 (move) A move is a pair of a player (an agent)
P/C and an argument A where A ∈ ARKP

/ARKC
. If player

is P/C, then it is said to be P/C’s move.

Definition 9 (move’s attack) Let movei = (playeri, Ai)
and movej = (playerj, Aj). movei is said to be an attack to
movej , if (Ai, Aj) is an attack from playeri to playerj .

Definition 10 (argumentation line) Let P,C denote a pro-
poser of a formula ϕ and its defeater. Let also
AF (KP,KC, ν) be an argumentation framework between P
and C. An argumentation line D for ϕ on AF (KP,KC, ν)
is a finite nonempty sequence of moves [move1, . . . , moven]
where movei = (playeri, Ai) (i = 1, . . . , n) that satisfies:

1. move1 = (P, A1) where Sentence(A1) = ϕ.

2. If i is odd, then playeri = P , and if i is even, then
playeri = C.

3. movei+1 is an attack to movei for each i (1 ≤ i ≤
n− 1).

4. There is no attack against An.

5. movei �= movej for each pair of i, j (1 ≤ i �= j ≤ n).

Definition 11 (win of an argumentation line) If the last el-
ement of an argumentation line D is P ’s move, then it is said
that P wins D.

227

1

2

3

4

depth

0

P

C

P

C

(b)

AND

move
1

move
20

move
21

move
30 move

32

(c)

AND

move
1

move
20 move

21

move
31

move
32

move
4

(a)

OR

AND

move
1

move
20

move
30

move
21

move
31

move
4

move
32

Figure 2: An argumentation tree and its candidate subtrees

Definition 12 (argumentation tree) An argumentation
tree for ϕ on AF (KP,KC, ν) is a tree where the root node
at depth 0 is empty and all the branches1 starting from the
node of depth one are different argumentation lines for ϕ on
AF (KP,KC, ν).

An argumentation tree can be considered to be an AND/OR
tree. The nodes corresponding to C’s move are OR nodes,
whereas the nodes corresponding to P’s move are AND
nodes. This reflects the fact that P needs to defend all counter-
arguments made by C, whereas it is sufficient for C to select
its own counterargument that leads to a win. Arguments in the
nodes of depth one have ϕ as sentences but different grounds.
Therefore, the root node is also an OR node.

Definition 13 (win branch) If P wins an argumentation line
D, the branch representing D in the argumentation tree is said
to be a win branch.

Definition 14 (candidate subtree) A candidate subtree is a
subtree of an argumentation tree that selects only one child
node for each node corresponding to C’s move in the original
tree, and selects all child nodes for each node corresponding
to P’s move.

Definition 15 (solution subtree) A solution subtree is a
candidate subtree in which P wins all of the argumentation
lines in the tree.

Each candidate subtree corresponds to a proposer’s selec-
tion of an argument, and the solution subtree indicates the
case in which P takes a winning strategy. In Figure 2, (a) is
an argumentation tree, (b) and (c) are its candidate subtrees,
and (b) is the solution subtree.

Definition 16 (static win of an argumentation tree) If an
argumentation tree has a solution subtree, then P statically
wins the argumentation tree; otherwise, statically loses it.

1Here, a branch means a path from the designated node to a leaf
node.

3 Argumentation with Changes of Knowledge

Base

3.1 Execution of Argumentation

We now present the dynamic treatment of argumentation.

When P statically wins an argumentation line, C is con-
sidered to consent to the result, because there are no more
counterarguments to the last argument. Therefore, C’s knowl-
edge base is revised when argumentation of a win branch is
finished. However, a counterargument to a move in a mid-
dle node of the argumentation line may still remain. Here, P
will need also to defeat this counterargument using a revised
knowledge base.

Definition 17 (justified) Let [move1, . . . , moven] be a win
branch in an argumentation tree. If movej has no AND-
branch and playerj is P where 1 ≤ j ≤ n, then an argu-
ment corresponding to movej is said to be justified after the
execution of the win branch.

For example, assume that argumentation of a win branch
[move1, move20, move30] in Figure 2(a) is executed. P’s ar-
gument move30 is justified but move1 is not, since there is
another possible counterargument move21 to move1.

Definition 18 (change of a knowledge base) Let KC be a
knowledge base and movei = (playeri, Ai). The change of
KC by movei, denoted by KC ∗movei, is defined as follows:
if playeri = P , then (KC \ {¬Sentence(Ai)}) ∪ S(Ai); if
playeri = C, then KC.

KP is never changed, whereas KC may be changed af-
ter accepting P’s argument, and C may attempt a counterar-
gument based on the revised knowledge base. As a result,
the formulas appearing in C’s arguments may be inconsistent.
However, the formulas appearing in P’s arguments within the
set of the executed argumentation lines are consistent.

Definition 19 (history) The set of formulas contained in P’s
preceding arguments is said to be a history of P’s arguments.

228

Definition 20 (dynamic argumentation line) Let P,C de-
note a proposer of a formula ϕ and its defeater. Let
also AF (KP,KC, ν) be an argumentation framework be-
tween P and C. A dynamic argumentation line D for ϕ on
AF (KP,KC, ν) with a history H is defined as the extension
of the (static) argumentation line by adding the following ad-
ditional condition.

6. H ∪ S(Ai) is consistent if i is odd.

If no misleading is involved, a dynamic argumentation line
for ϕ on AF (KP,KC, ν) with a history H is said to be just
an argumentation line on AF (KP,KC, ν) by omitting ϕ and
H.

When the argumentation procedure allows change in the
agents’ knowledge bases, a win branch of a candidate subtree
is selected and the change of C’s knowledge base by the cor-
responding argumentation line is performed. The argumenta-
tion tree is reconstructed using the revised knowledge base.
This process is repeated, and, when the proposal is contained
in C’s knowledge base while its negation is not contained, P
wins the argumentation tree. We show below this Argumen-
tation Procedure with Knowledge Change (APKC).

Argumentation Procedure with Knowledge Change (APKC)

Let AF (KP,KC, ν) be an argumentation framework, ϕ be
a proposed formula, and H be a history of P’s arguments.
[STEP0(initialization)]

Set H = ∅.
[STEP1((re)construction of a tree)]

Construct an argumentation tree for AF (KP,KC, ν) on ϕ
with H.

[STEP2(execution of an argumentation line)]
if ϕ ∈ KC and ¬ϕ �∈ KC

then terminate with success.
else if there is no win branch

then terminate with failure.
else

select a win branch [move1, . . . , moven]
where movei = (playeri, Ai).

if there exists a justified argument in these moves,
then set i to be the minimum number of such a move.

else set i = 0.
set KC =(. . . (KC∗moven)∗moven−1)∗. . .∗movei+1.
set H = H ∪ {S(Ai) | 1 ≤ i ≤ n, i is odd }.
goto STEP1.

Note that there are multiple ways to select a win branch,
and APKC can decide the success or failure of a certain exe-
cution.

The change of KC is nonmonotonic. Therefore, in the re-
constructed tree, new nodes may be added at the leaves of
branches other than the executed one, and several existing
nodes are removed. The nodes corresponding to P’s moves
that contradict H will also disappear.

3.2 Properties of APKC

First, we prove the termination of APKC, by showing that the
nodes decreases in number at every resonstuction of a tree,
and that each reconstruction terminates.

Lemma 1 Let T0, . . . , Tk be a sequence of argumentation
trees, each of which is constructed for the revised knowledge
base. If a move at depth more than zero in Ti (0 ≤ i ≤ k− 1)
is executed, then it does not appear either in Ti+1, . . . , Tk.

Proof
(i) C’s move:
When P executes a move that is a parent node of C’s move,
some formulas included in the argument of C’s move are re-
moved from KC. Therefore, the argument does not exist in
ARKC

′ , where KC
′ is a revised knowledge base of KC. A

formula ψ is removed from KC only when a move with sen-
tence ¬ψ is executed. Therefore, if ψ is removed from KC,
¬ψ must be in the history H. It follows that the move with
sentence ψ is not included in the argumentation line. In con-
trast, assume that a formula ψ is added to KC. It means that
the move with sentence ψ is included in the argumentation
line. This is a contradiction. Therefore, ψ is not added to KC

again. Hence, if a formula is removed from KC, it is never
added again. Therefore, C’s executed move never appears in
any subsequent reconstructed argumentation trees.
(ii) P’s move:
When P’s move at a depth greater than zero is executed,
C’s move at its parent node is executed. C’s executed move
never appears in any reconstructed argumentation trees from
(i). Therefore, P’s executed move does not appear either.
Q.E.D.

Lemma 2 The (re)construction of an argumentation tree ter-
minates.

Proof
ARKP

∪ ARKC
is a finite set. For each node correspond-

ing to a move, the number of child nodes is finite, because
the moves are taken from ARKP

∪ ARKC
. The length of a

branch is finite because the same move never appears more
than once in a branch. Therefore, the number of possible ar-
gumentation trees is finite. It follows that the reconstruction
step terminates. Q.E.D.

Theorem 1 (termination) The algorithm APKC terminates.

Proof
From lemma 2, the reconstruction step of an argumentation
tree terminates, and the number of nodes in an argumentation
tree is finite. From lemma 1, the number of nodes appearing
in an argumentation tree decreases at every execution of a
move.

In APKC, reconstruction of a tree is performed every time
more than one move is executed. Therefore, for an arbitrary
win branch, either the length of the branch is finally decreased
to one or the branch is finally changed to one that is not a win
branch. In the former case, C’s knowledge base is revised
upon the execution of a move at depth one in the tree, that
is, P’s move, where the sentence is a proposal ϕ. Then the
algorithm terminates with the result ϕ ∈ KC, ¬ϕ �∈ KC. In
the latter case, it terminates with P’s defeat. Q.E.D.

A set of justified arguments is a subset of H, and the jus-
tified arguments increase in number along with the execution
of win branches. When APKC terminates with success, it is
equivalent to H. Therefore, we have the following theorem.

229

move i

move j

move j+1

threat

generate

move i

move j

move j+1

threat
generate

(a) (b)

Figure 3: A threat

Theorem 2 (acceptable arguments) When APKC termi-
nates with success, then the resulting H is a set of acceptable
arguments which includes the proposed formula ϕ.

The set of acceptable arguments may be different depend-
ing on the execution order. In addition, APKC terminates with
success for some execution orders and fail for other execution
orders. A winning strategy for P will be to take the former or-
der.

A dynamic win/loss of an argumentation tree can be de-
fined based on APKC.

Definition 21 (dynamic solution subtree) Let CT be a can-
didate subtree of an initial argumentation tree. For any order
of execution of win branches of CT , the algorithm APKC ter-
minates with success, and if more than one selection of can-
didate subtrees is generated by the addition of P’s move, and
at least one of them satisfies this condition, then CT is said
to be a dynamic solution subtree.

Definition 22 (dynamic win of an argumentation tree) If
an argumentation tree has a dynamic solution subtree, then
P dynamically wins the argumentation tree; otherwise, P
dynamically loses it.

In the reconstruction of a tree, a node which does not ap-
pear in the initial tree may be generated. We introduce the
concept of a threat to explain this situation.

Definition 23 (threat) Let movei and movej be moves in an
argumentation tree on AF (KP,KC, ν). If KC ∗ movei re-
sults in the creation of a new move movej+1, which is an at-
tack to movej , then movei is said to be a threat to movej

(Figure 3(a)). If no win branch contains movej+1, then
movei is said to be a strict threat to movej .

Intuitively, a strict threat is a move that provides informa-
tion advantageous for a defeater. A move may be a threat to
a move in the same branch (Figure 3(b)), however, we do not
consider such a case here, since we assume that the argumen-
tation line, once executed, is not changed.

An agent can statically win an argumentation tree even if
the initial argumentation tree contains a strict threat, because
such a threat will not be detected in the initial argumentation
tree. It follows that an agent who statically wins does not
always dynamically win.

Theorem 3 (relationship of static win and dynamic win)
If P dynamically wins an argumentation tree T , then P
statically wins T , but not vice versa.

Proof
The former part of the statement is trivial by the definition.
As for the latter part, the next section presents an example
which shows a case P statically wins but dynamically loses.
Q.E.D.

4 An Example

Let us consider an example shown in Section 1. The knowl-
edge bases of a proposer and a defeater are shown below.
The number attached to each formula shows its preference.
We assume that the facts and rules are all represented in the
knowledge base, and the agents have no other knowledge.

KP =

{
¬m[1], ¬e[2], (¬e → ¬m)[1], ¬(la → e)[1],
ls[1], (ls → ¬(ls → e))[1], ¬n[1], a[2],
(a → ¬n)[1]

}

KC =

{
e[1], la[1], (la → e)[2], m[2], n[2],
(n → m)[1], ¬a[1], (ls → ¬a)[1]

}

The propositions have the following meanings:

m: P commits murder.
e: There is evidence.
la: P’s license was left at the scene of the murder.
ls: P’s license was stolen.
n: P was near the scene when the murder was committed.
a: P was at facility A when the murder was committed.

APKC first constructs an initial argumentation tree. For
simplicity, only the part relevant to the discussion is shown in
Figure 4(a). P statically wins, since all leaves of this tree are
P’s moves.

The argumentation is executed along the left branch, and
C’s knowledge base is revised. The following three formulas
are added to KC and ls → e is removed from KC.

¬(la → e), ls, ls→ ¬(la → e)

As a result, the left branch is removed. Moreover, P’s ar-
gument in move3 causes a new fact ls to be added to KC. It
follows that P can provide a new counterargument in move6,
which is not defeated, to the leaf of the right branch. The
reconstructed argumentation tree is shown in Figure 4(b). It
contains only one argumentation line. P loses this argumen-
tation line, since its leaf node is C’s move. Therefore, APKC
terminates in failure. In this case, move3 is a strict threat to
move5. Note that if the argumentation along the right branch
is executed first, move6 is not added.

This example is a case in which P statically wins but dy-
namically loses the argumentation tree.

230

e

la la e

m

n n m

n

a nals

(la e)

(la e)ls

m

e e m

(a) an initial argumentation tree

move1

move2

move3

move4

move5

(b) a reconstructed argumentation tree

m

n n m

n

a na

m

e e m
move1

move4

move5

move6
ls

a

als

Figure 4: The argumentation trees

5 Related Works

Garcı́a applied argumentation to defeasible logic program-
ming. He considered argumentation to be an explanation and
proposed a model in which argumentation is evaluated when
a claim is accepted [Garcia et al., 2007]. In his model, evalu-
ation of argumentation is a dialectical proof procedure that is
performed by traversing a constructed dialectical tree. Mogu-
illansky discussed revision of the knowledge base represented
in the form of defeasible logic programming [Moguillansky
et al., 2008]. These works both examined reconstruction of
the tree with the revised knowledge base, but their goal was to
construct undefeated argumentation by selecting suitable de-
feasible rules and not to consider the effect of the execution
of argumentation.

Several works regard argumentation as a dialogue ex-
changing information between agents [Kraus et al., 1998;
Amgoud et al., 2000; Amgoud and Cayrol, 2002; Paglieri and
Castelfranchi, 2004]. An argument is regarded as a commu-
nication protocol between agents. In most models, an agent
rejects a proposal if it contradicts his or her knowledge base
and accepts it otherwise, and in the end agreement may be
achieved. In these models, an agent’s behaviour is determined
by the arguments he or she receives, but his or her knowledge
base never changes during the argumentation.

Amgoud formalized a negotiation system in an argumenta-
tion framework [Amgoud et al., 2007]. She considered the
knowledge base for each agent separately and its revision by
exchanging arguments. The significant difference between
her work and ours is that in her approach only a single ar-
gumentation line is considered, so only threats to the same
branch are taken into account, whereas in our approach all
argumentation lines are considered successively, so threats
to the other branches are examined. Dunne proposed “dis-
pute tree” on which successive execution of all argumentation
lines are considered [Dunne and Bench-Capon, 2003]. How-

ever, the revision of agents’ knowledge base which means
that the executed move may add new information to the op-
ponent’s knowledge base is not considered.

Recently, Cayrol presented interesting research on the re-
vision of an argumentation theory [Cayrol et al., 2008]. She
investigated how acceptable arguments are changed when an
argument is added. The aim of her research is a formal anal-
ysis under changes to argumentation, and the contents of the
additional arguments and reasons for the addition are beyond
her scope. In contrast, we focus specifically on the effect of
knowledge gained by executing argumentation.

6 Conclusion

We have proposed an argumentation system in which multi-
ple argumentation lines are executed in succession, and an
agent’s knowledge base can change during argumentation.
This system can accommodate practical phenomena ignored
by argumentation systems so far proposed.

We have implemented the system in Prolog, for the core
algorithm, and Java, for the interface. In our implementation,
a win branch is selected not automatically but rather manually
by a user. The system displays the process of argumentation
and shows the final judgment of dynamic win or loss.

In the future, we will extend this system to cases that in-
volve the type of threat shown in Figure 3(b). We will also
consider improvements to an agent’s ability to use logical rea-
soning to derive new facts from added information.

References

[Amgoud et al., 2000] L.Amgoud, S.Parsons, and
N.Maudet: Arguments, dialogue, and negotiation,
ECAI2000, pp.338-342, 2000.

[Amgoud and Cayrol, 2002] L.Amgoud, C.Cayrol: Infer-
ring from inconsistency in preference-based argumenta-

231

tion frameworks, J. of Automated Reasoning, pp.125-
169, 2002.

[Amgoud et al., 2007] L.Amgoud, Y.Dimopolos and
P.Moraitis: A general framework for argumentation-
based negotiation, ArgMAS2007, pp.1-17, 2007.

[Cayrol et al., 2008] C.Cayrol, F.D.de St-Cyr, and M-C
Lagasquie-Shiex: Revision of an argumentation system.
pp.124-134, KR2008, 2008.

[Chesnevar et al., 2005] C.I.Chesñevar, A.Maguitman and
R.Loui: Logical models of argument. ACM Computing
Surveys, 32(4), pp.337-383, 2005.

[Chesnevar and Simari, 2007] C.I.Chesñevar and
G.R.Simari: A lattice-based approach to computing
warranted beliefs in skeptical argumentation frame-
works. IJCAI2007, pp.280-285, 2007.

[Dunne and Bench-Capon, 2003] P.E.Dunne and
T.J.M.Bench-Capon: Two party immediate response dis-
putes: properties and efficiency. Artificial Intelligence,
149(2), pp.221-250, 2003.

[Dung, 1995] P.M.Dung: On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games, Artificial Intel-
ligence, 77, pp.321-357, 1995.

[Falappa et al., 2002] M.Falappa, G.Kern-Isberner and
G.R.Simari: Explanations, belief revision and defeasible
reasoning, Artificial Intelligence, 141(1-2), pp.1-28,
2002.

[Garcia and Simari, 2004] A.Garcı́a, and G.Simari: Defeasi-
ble logic programming: an argumentative approach. The-
ory and practice of logic programming, 4(1), pp.95-138,
2004.

[Garcia et al., 2007] A.Garcı́a, C.Chesñevar, N.Rotstein, and
G.Simari: An abstract presentation of dialectical expla-
nations in defeasible argumentation, ArgNMR07, pp.17-
32, 2007.

[Kraus et al., 1998] S.Kraus, K.Sycara and A.Evenchik:
Reaching agreements through argumentation: a logical
model and implementation, Artificial Intelligence, 104(1-
2), pp.1-69, 1998.

[Moguillansky et al., 2008] M.O.Moguillansky, et al.: Argu-
ment theory change applied to defeasible logic program-
ming, AAAI2008, pp.132-137, 2008.

[Prakken, 2006] H.Prakken: Combining skeptical epistemic
reasoning with credulous practical reasoning. COMMA
2006, pp.311-322, 2006.

[Paglieri and Castelfranchi, 2004] F.Paglieri and
C.Castelfranchi: Revising beliefs through arguments:
bridging the gap between argumentation and belief
revision in MAS, ArgMAS2004, pp.78-94, 2004.

[Takahashi and Sawamura, 2004] T.Takahashi and
H.Sawamura: A logic of multiple-valued argumen-
tation, AAMAS2004, pp.789-805, 2004.

232

	IJCAI-09 CD
	Home
	Contents
	Index
	IJCAI Website

