Interactive System for Arranging Issues
based on PROLEG in Civil Litigation

Ken Satoh

National Institute of Informatics
Chiyoda, Tokyo, Japan
ksatoh@nii.ac.jp

1 INTRODUCTION

In Japan, we have the procedure of “arranging issues” in civil liti-
gation where we clarify which facts are in dispute and what kind
of evidence action should be made for these issues. Currently, IT
technology is used only for online meeting for arranging issues
and more sophisticated method is expected by a full use of IT/AI
technology.

We proposed a method for formalizing Japanese presupposed
Ultimate Fact theory (JUF theory, in short, Youken-jijisturon, in
Japanese) and converting it into logic programming and developed
a system called PROLEG (PROlog-based LEGal reasoning support
system)[1]. JUF formalises which party should give certain facts to
get a desired legal effect for the party, in other words, formalizes
which party has a burden of proof for these facts. Then, given these
facts, PROLEG simulates reasoning by a judge to make a final con-
clusion and present such process in a directed tree structure called
“block diagram.”

In this work, we modify the PROLEG system to support arrang-
ing issues in civil litigation. In the PROLEG system, they assume
that all the facts are given before simulation of judge’s reasoning
so there are no interaction between both parties of plaintiff and de-
fendant during the simulation. On the other hand, given a desired
effect requested by one party, our interactive system (which we call
int-PROLEG) automatically calculates possible justifications for the
desired effect based on JUF theory stored in the system. After the
party chooses a justification and int-PROLEG asks for the existence
of necessary facts to the party to satisfy the justification. Then,
int-PROLEG asks whether the other party agrees on alleged facts
and also calculates possible counter-arguments against the chosen
justification and provides them to the other party. We iterate this
process until no further (counter-)arguments are presented. When
this process is finished, disagreed facts are issues for which a judge
decides the truth value.

Most interactive argument systems are mainly for construct-
ing arguments manually by a user or evaluating arguments con-
structed by a user. A notable exception would be the Carneades
system which has a funcition of argument invention using argu-
mentation schemes [2]. On the other hand, in our system, a user
does not construct arguments from the scratch but chooses a pat-
tern of legal arguments provided by int-PROLEG based on the JUF

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

ICAIL’21, June 21-25, 2021, Sao Paulo, Brazil

© 2021 Copyright held by the owner/author(s).

Kazuko Takahashi
Kwansei Gakuin University
Sanda, Hyogo, Japan
ktaka@kwansei.ac.jp

Tatsuki Kawasaki
educe Co.,Ltd
Chiyoda, Tokyo, Japan
sktk40829@gmail.com

theory and specifies concrete facts to make concrete legal argu-
ments for a specific case in a civil litigation. Moreover, from our
experience working with lawyers, we noticed that if we introduced
a system with sophisticated but complex reasoning mechanisms,
they would be very reluctant to use the system. So, our purpose
of this work is to identify the simplest function to arrange issues
which would be easily understood by lawyers. In a sense, we ex-
tract a useful part of Carneades for arrangement of issues in civil
litigation.

2 PROLEG

We firstly review the PROLEG system[1]. A program of PROLEG
consists of a rulebase and a factbase. A rulebase consists of a set of
general rules of the form

H < By, ... By.
where H (called head or conclusion), By, ..., B, (called body) are first-
order atom, and a set of exception rules of the form

exception(H, E)
where H and E are the head of some general rules. We call E excep-
tion. A factbase consists of set of the following expression fact(P)
where P is an atom which is never the head of any general rule.
We call P fact predicate.

A rule represents a general default rule meaning that if B; in R
are all proved then in general H is true except there is an exception
rule exception(H, E) such that E is proved.

Given a PROLEG program, we can construct a proof tree of a
given goal which is the root of the tree and the child nodes are
conditions of general rules of the conclusion and the exceptions of
the conclusion.

3 EXTENSION TO ARRANGE ISSUES

In this section, we show how to modify the PROLEG system into
int-PROLEG.

3.1 Indexing a level for PROLEG literals

(1) First, we define the dependency on the atomic formula that
appears in the general rule. Among the conclusions of the
general rule, the conclusion that does not appear in the body
of any general rule or is not an exception of any exception
rule is called 0-level conclusion. Then, when making a top-
down proof tree from the 0-level conclusion using only the
general rules, we end up the fact predicates. We call the fact
predicates finally visited 0-level facts and the 0-level con-
clusion and the intermediate visited atomic formulas called
0-level atomic formulas.

(2) Suppose that the i-level atomic formulas and the i-level facts
are decided. For exception rules that conclude with the i-
level atomic formula, the collection of the atomic formulas



ICAIL’21, June 21-25, 2021, Sao Paulo, Brazil

of the exceptions of the such exception rules are called (i +
1)-level exception rules. When making a top-down proof tree
from the (i+1)-level exception using only the general rules,
we end up the atomic formulas. We call the fact predicates
finally visited (i+1)-level facts and the (i+1)-level exception
and the intermediate visited atomic formulas called (i + 1)-
level atomic formulas.

3.2 Interaction Process in int-PROLEG
Let D be a defendant and P be a plaintiff.

(1) Let P choose one of the following 0-level conclusion. This
is P’s claim.

(2) We make a top-down proof tree from 0-level conclusion and
when we encounter the 0-level fact, we ask P if the P claims
that fact. If P claims it, then we let P to instantiate variables
in 0-level facts and added instantiated facts to the fact base
and we reflect the relevant part of the proof tree with such
instantiation. If P does not claim it, we delete the path re-
lated with the fact in a proof tree.

(3) If all the concrete facts are entered, the modified proof tree
is displayed.

(4) Suppose that a user finished to enter ¢-level facts. We make a
proof tree for (¢+1)-level exception and when we encounter
the (¢t + 1)-level fact,

e if (t+1) is odd, we ask D if D claims that fact. If D claims it,
then we let D to instantiate variables in (¢ + 1)-level facts
and added instantiated facts to the fact base and we reflect
the relevant part of the proof tree with such instantiation.
If D does not claim it, we delete the path related with the
fact in a proof tree. We also ask D whether D admits turn-
level fact or not, and if D does not admit it, we make a
label of the fact as an “issue to be determined”.

e if (t+1) is even, we ask P if P claims that fact. If P claims
it, then we let the P to instantiate variables in (¢ + 1)-
level facts and added instantiated facts to the fact base and
we reflect the relevant part of the proof tree with such
instantiation. If P does not claim it, we delete the path
related with the fact in a proof tree. We also ask P whether
P admits turn-level fact or not, and if P does not admit it,
we make a label of the fact as an “issue to be determined”.

(5) If all the concrete facts are entered, the modified proof tree
is displayed.

(6) Continue above until there are no new argument raised.
The final proof tree will be all the arguments raised by the both
parties and fact nodes labelled as an “issue to be determined” are
issues for which a judge decide the truth value.

4 DEMONSTRATION

We show a demonstration how a plaintiff and a defendant interact
each other to arrange issues in the following claims about claiming
payment in a purchase contract!. In the example case, the plaintiff
(Alice) requested the defendant (Bob) for the payment of goods ac-
cording to the purchase contract with Bob. Bob claimed that Alice
threatened Bob to buy the goods for a counter-argument, but Alice
did not admit the threatening action. The system works as follows.

Thttp://research.nii.ac.jp/~ksatoh/PROLEGdemo/IssueArrangmentDemo.mp4

[equesting_money_based_on_pu |

rchase_contract

Sseller 8152
buyer 8154

Ken Satoh, Kazuko Takahashi, and Tatsuki Kawasaki

contract

8158

u

I—lipurchase_oo niract_establishm

lent

purchase_contract_

seller

alice

seller I

alice

buyer

bob

buyer |

bob

contract |

contract!

contract

contract!

rescinding_contract_due_to_d
uress

\duress_action

intimidator

I alice

intimidator

bob

i

intimidated

| bob

alice

duress_action

| menaced

contract

contract!

duress_action

menaced

[feeling_fear

intimidated

bob

intimidator

alice

duress_action

menaced

contract

contractl

u
_of_rescission
rescinder | bob
rescinded | alice
contract | contractl
)

Figure 1: Final Diagram

(1) Firstly, Alice claims the payment and the system tells a nec-
essary fact to establish the claim according to the Civil Code,
which is an establishment of a purchase contract. Alice gives
a specific fact for the purchase contract (called “contract1”).

(2) Secondly, the system computes counter arguments against
Alice’s claim according to the Civil Code and provides two
counter arguments (“already paid” argument and “menaced
to establish the contract” argument). Bob chooses “menaced
to establish the contract” argument and gives relevant fact
for the argument. (A block conntected with a dotted arrow
in Fig.1 represents a counter argument.).

(3) Thirdly, the system computes counter arguments agaist Bob’s
claim but founds no counter arguments. So the only thing
Alice can do is to deny some facts. In this example, Alice
denies the facts related with Bob’s claim of being menaced
so these facts become issues for which a judge decides the
truth value. (Leaf blocks with "u’ in the bottom in Fig.1 are
issues.).

5 CONCLUSION

We present how to extend the PROLEG system to arrange issues.
This system helps for lawyers to prevent missing claims and for
lay person to make correct legal claims without lawyers. For a fu-
ture research, we need an evaluation of the system and investigate
a method of automatic extraction of relevant legal facts directly
from claims in natural language.

Acknowledgements: This work was supported by JSPS KAKENHI,
JP17H06103 and JP19H05470 and JST AIP, JPMJCR20G4.

REFERENCES

[1] K. Satoh et al. 2012. PROLEG: An Implementation of the Presupposed Ultimate
Fact Theory of Japanese Civil Code by PROLOG Technology. In New Frontiers
in Artificial Intelligence: JSAI-isAI 2010 Workshops, Revised Selected Papers, LNAT
6797. 153-164.

D. Walton and T. F. Gordon. 2017. Argument Invention with the Carneades Argu-
mentation System. Scripted 14, 2 (2017), 168-207. https://script-ed.org/?p=3391

i



