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Abstract. Qualitative spatial reasoning (QSR) is a method of repre-
senting spatial data by extracting necessary information depending on a
user’s purpose, and allowing reasoning on this representation. Although
many studies have examined QSR, little work has been carried out
from the viewpoint of computational models, which are necessary for
practical use in an implemented system. This paper presents a com-
putational model of a qualitative spatial representation and shows the
correspondence of an image and its symbolic expression. Specifically, we
take PLCA as a framework of QSR, which represents a figure using the
objects used to construct it, i.e., points, lines, circuits, and areas, as
well as the relationships among them, without using numerical data. We
describe a method of constructing a PLCA expression inductively, and
prove that the defined class coincides with a subclass of PLCA that can
be realized on a two-dimensional plane. Part of the proof is implemented
using the proof assistant Coq.

Keywords: Qualitative spatial reasoning · Formalization · PLCA ·
Planarity

1 Introduction

With the advances in computer performance, we often need to deal with large
amounts of static or dynamic image data. Image data are usually represented in
raster or vector form using coordinates, which require much time and memory,
if we reason on these data. Fortunately, a user’s purpose may be met without
using precise data. For example, it is sometimes sufficient to know a relative
direction or positional relationships between landmarks during route navigation,
or it is sometimes sufficient to grasp qualitative change, such as the fact that
connected objects can be disconnected to separate them, when extracting events
from a sequence of video frames. Qualitative reasoning or qualitative physics is
a method that has long been studied in artificial intelligence (AI) [9]. It reasons
about contiguous aspects of the physical world without using numerical data.
Qualitative spatial reasoning (QSR) is a method of representing spatial data by
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extracting their topological, mereological, or geometric properties depending on
the application [5,14,16,19]. Various proposed systems for doing this depend on
focal aspects such as the relative positional relations or relative sizes of objects
and orientations.

Studies have ranged from theoretical work to practical applications, including
simulations using geographic information systems, query-answering systems for
spatial databases, and navigation in mobile robots. The qualitative treatment
not only reduces computational complexity but also reflects human cognition and
reasoning using common-sense knowledge. Moreover, it gives clear semantics, as
it uses symbolic data. Typically, these representations adopt logical expressions,
which enable us to perform mechanical reasoning on symbols.

To certify a QSR system, we must prove that an expression correctly repre-
sents the properties of the image data and that there is a corresponding image
for a given expression. Although many studies have examined QSR in artificial
intelligence [3,8,10,17,18], little work has been carried out from the viewpoint of
computational models. For representations, most studies claim expressive power
for spatial knowledge but do not refer to the class the expression stands for.
Hence, we do not know whether a proposed expression is valid or reliable. There-
fore, it is necessary to clarify the extent to which the expression is effective if we
are to implement a system based on the expression. For reasoning, most research
has focused on the consistency check, that is, whether there exist a space that
can satisfy all of the given relationships among spatial objects and efficient algo-
rithms for solving this problem. However, there has been no discussion of how to
construct such a consistent set. Practical use of an implemented system requires
rigorous proof for the correspondence of the real figure and a symbolic expres-
sion. Mechanical proving with a proof assistant is an effective approach for this
purpose.

In this paper, we describe a computational model of a qualitative represen-
tation.

Takahashi et al. have proposed a framework for qualitative spatial reasoning,
PLCA1 [20,21], which focuses on the patterns of connections between regions.
This method distinguishes patterns in which regions are connected in different
ways, for example, by a single point, by two points, by a line and so on. For
example, in Fig. 1(a), (b) and (c) are regarded as the same, while 1(d) and 1(e)
and these figures are regarded to be different. PLCA expressions represent the
properties of spatial data by describing the constituent objects, and the relation-
ships between them, without considering attributes such as the size, direction,
or shape.

Takahashi et al. have described the conditions for planarity of a given PLCA
expression [22], that is, an existence of the corresponding figure on a two-
dimensional plane, and given a proof for this; however, they have not discussed
the construction of such a planar PLCA expression.

1 The name of PLCA is originated from an acronym for Point (P), Line (L), Circuit
(C) and Area (A).
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Fig. 1. Classification of figures in PLCA. (a)–(c) Regions connected by a line,
(d) regions connected by a point, and (e) regions that are not connected.

In this paper, we describe the construction of a planar PLCA expression
inductively, and prove that the resulting class coincides with that of the planar
PLCA. The part of this proof is implemented using a proof assistant Coq [2].

The remainder of this paper is organized as follows. In Sect. 2, we describe a
PLCA expression. In Sect. 3, we describe the inductive construction of a PLCA
expression. In Sect. 4, we prove that the constructed class coincides with that of
planar PLCA. In Sect. 5 we compare our work with the related work, and Sect. 6
concludes the paper.

2 PLCA

2.1 Target Figure

The target figure of PLCA is considered as a region segmentation of a finite
space. In addition, PLCA admits regions with holes, and regards a hole itself to
be a region. It does not admit isolated lines or points, because a region cannot
be properly defined. Here, we describe a target figure using a simple closed
curve [15].

Definition 1 (Simple Closed Curve). A non-self-intersecting continuous
loop in a plane is called a simple closed curve or a Jordan curve.

The following is the well-known theorem on a simple closed curve.

Theorem 1. Every simple closed curve divides the plane into an interior region
bounded by the curve and an exterior region containing all of the nearby and far
away exterior points.

Formally, our target figure is a finite region on a two-dimensional plane,
divided into a finite set of subregions of which each boundary is a simple closed
curve. In Fig. 2(a) and (b) are target figures, whereas 2(c) and 2(d) are not.

2.2 PLCA Expression

A PLCA expression is defined as a five-tuple, 〈P,L,C,A, outermost〉, where P
is a set of points, L ⊆ P 2, C ⊆ Ln (n ≥ 3), A ⊆ Cm (m ≥ 1), outermost ∈ C.

In PLCA, there are four basic types of object: points P , lines L, circuits
C and areas A. An element l ∈ L is defined as a pair of points p1 and p2,
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Fig. 2. Examples of (a) and (b) target figures, and (c) and (d) non-target figures.

and denoted by l.points = [p1, p2], where p1 and p2 are distinct. Intuitively, a
line is an edge between points. No two lines are allowed to cross. A line has
an inherent orientation. When l.points = [p1, p2], l+ and l− mean [p1, p2] and
[p2, p1], respectively. They are called directed lines. l∗ denotes either l+ or l−

and l∗re denotes the line with the inverse orientation of l∗.
An element c ∈ C is defined as a list of directed lines and denoted by c.lines =

[l∗0, . . . , l
∗
n], where l∗i �= l∗j if i �= j (0 ≤ i, j ≤ n), l∗i = [pi, pi+1](0 ≤ i ≤ n) and

pn+1 = p0. If p ∈ l.points ∧ l∗ ∈ c.lines, it is said that p is on c. A circuit has
a cyclic structure, that is, [l∗0, . . . , l

∗
n] and [l∗j , . . . , l

∗
n, l∗0, . . . , l

∗
j−1] represent the

same circuit for any j (0 ≤ j ≤ n). Intuitively, a circuit is the boundary between
an area and its adjacent areas.

An element a ∈ A is defined as a set of circuits and denoted by a.circuits =
{c0, . . . , cn}, where any pair of circuits ci and cj (0 ≤ i �= j ≤ n) cannot share
a point. Intuitively, an area is a connected region which consists of exactly one
piece encircled by a single closed curve.

In addition, outermost is a specific circuit in the outermost side of the figure.

Example 1. Figure 3 shows an example of a target figure and its PLCA expres-
sion 〈P,L,C,A, outermost〉.

2.3 Basic Concepts of PLCA Expressions

For c1, c2 ∈ C, we introduce two new predicates lc and pc to indicate that two
circuits share line(s) and point(s), respectively.

lc(c1, c2)
def= ∃l ∈ L; (l∗ ∈ c1.lines) ∧ (l∗re ∈ c2.lines)

pc(c1, c2)
def= ∃p ∈ P ; (p ∈ l1.points) ∧ (p ∈ l2.points) ∧ (l+1 ∈ c1.lines)

∧ (l−2 ∈ c2.lines).

If lc(c1, c2), then either pc(c1, c2) or pc(c2, c1) holds. For any pair of circuits
c1, c2 ∈ C, if c1, c2 ∈ a.circuits, then ¬pc(c1, c2) holds from the definition of
Area.

For a circuit c, we define a corresponding circuit-segment.

Definition 2 (Circuit-Segment). Let c.lines = [l∗0, . . . , l
∗
n]. A sequence cs =

[m∗
0, . . . ,m

∗
k] (0 ≤ k ≤ n), where m∗

i = l∗(i+j) mod n (0 ≤ j ≤ n − 1) is said to be
a circuit-segment of c, and denoted by cs � c.
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Fig. 3. An example of a target figure and its PLCA expression.

For a circuit-segment cs = [m∗
0, . . . ,m

∗
k], we define its inverse as inv(cs) =

[m∗re
k , . . . ,m∗re

0 ].

Example 2. In Example 1, [l−0 , l−5 ], [l−4 , l−6 , l−0 ], [l−0 , l−5 , l−4 , l−6 ] are some circuit-
segments of c0. Furthermore, inv([l−0 , l−5 ]) is [l+5 , l+0 ].

For a pair of circuits c1 and c2, Sscs(c1, c2) represents a set of their shared
circuit-segments, that is, Sscs(c1, c2) = {cs |cs � c1, inv(cs) � c2}. For any
cs ∈ Sscs(c1, c2), inv(cs) ∈ Sscs(c2, c1) holds.

Definition 3 (MSCS). An element cs ∈ Sscs(c1, c2) is said to be a maximal
shared circuit-segment of c1 and c2 if there does not exist cs′ ∈ Sscs(c1, c2) such
that cs is a subsequence of cs′. A set of maximal shared circuit-segments of c1
and c2 is denoted by SMSCS(c1, c2).

When SMSCS(c1, c2) = {c1.lines}, c1 and c2 are the inner and the outer
circuits of a simple closed curve, respectively. Note that if pc(c1, c2)∧¬lc(c1, c2),
then SMSCS(c1, c2) = {}.

Example 3. In Fig. 4, Sscs(c0, c1) = {[], [l+0 ], [l+1 ], [l+2 ], [l+3 ], [l+0 , l+1 ], [l+2 , l+3 ]}. Fur-
thermore, SMSCS(c0, c1) = {[l+0 , l+1 ], [l+2 , l+3 ]} and SMSCS(c1, c0) = {[l−1 , l−0 ],
[l−3 , l−2 ]}.

Here, we introduce a new type Path. An instance path of type Path is
defined as a list of directed lines [l∗0, . . . , l

∗
n], where l∗i = [pi, pi+1] and pi �= pj

if i �= j (0 ≤ i, j ≤ n). It is represented by quad-ruple of the starting point,
ending point, list of inner points and list of inner lines. For path, start(path),
end(path), inner points(path) and inner lines(path) show the starting point,
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Fig. 4. Shared circuit-segments of c0 and c1.

ending point, list of inner points and list of inner lines, respectively. The length of
inner lines(path), which may be 0, is said to be the length of the path. Clearly,
any circuit-segment is a Path. Path is used to construct a new circuit.

2.4 Consistency

A consistent PLCA expression does not allow an isolated point or an isolated line,
and all of the objects should be correctly defined by the incidence relations. For
any point, there exists at least one line that contains it. For any line, there exist
exactly two distinct circuits that contain it and its inverse direction, respectively.
For any circuit, there exists exactly one area that contains it. The outermost is
not included in any area. The consistency is formally defined as follows.

Definition 4 (PLCA Consistency).

– [Consistency of Point-Line]
∀p ∈ P (∃l ∈ L; p ∈ l.points)
∀l ∈ L(∀p ∈ l.points; p ∈ P )

– [Consistency of Line-Circuit]
∀l ∈ L(∃c, c′ ∈ C; l+ ∈ c.lines ∧ l− ∈ c′.lines)
∀c ∈ C(∀l∗ ∈ c.lines; l ∈ L)
∀l ∈ L(l∗ ∈ c1.lines, l∗ ∈ c2.lines → c1 = c2)

– [Consistency of Circuit-Area]
∀c ∈ C(∃a ∈ A; c ∈ a.circuits)
∀a ∈ A(∀c ∈ a.areas; c ∈ C)
∀c ∈ C(c ∈ a1.circuits, c ∈ a2.circuits → a1 = a2)

– [Independence of outermost]
¬∃a ∈ A; outermost ∈ a.cuicuit.

2.5 PLCA-connectedness

Intuitively, PLCA-connectedness guarantees that no objects are separated,
including the outermost. In other words, for any pair of objects, there exists
a trail from one object to the other via further objects.
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Definition 5 (d-pcon). Let e = 〈P,L,C,A, outermost〉 be a PLCA expression.
For a pair of objects of e, the binary relation d-pcon on P ∪L∪C ∪A is defined
as follows.

1. d-pcon(p, l) iff p ∈ l.points.
2. d-pcon(l, c) iff l ∈ c.lines.
3. d-pcon(c, a) iff c ∈ a.circuits.

Definition 6 (pcon). Let α, β and γ be objects of a PLCA expression.

1. If d-pcon(α, β), then pcon(α, β).
2. If pcon(α, β), then pcon(β, α).
3. If pcon(α, β) and pcon(β, γ), then pcon(α, γ).

Definition 7 (PLCA-Connected). A PLCA expression e is said to be PLCA-
connected iff pcon(α, β) holds for any pair of objects α and β of e.

2.6 PLCA-Euler

Intuitively, PLCA-Euler guarantees that a PLCA expression can be embedded in
a two-dimensional plane so that the orientation of each circuit can be correctly
defined.

Definition 8 (PLCA-Euler). For a PLCA expression 〈P,L,C,A, outermost〉,
if |P | − |L| − |C| + 2|A| = 0, then it is said to be PLCA-Euler.

Takahashi et al. have derived this equation from Euler’s formula on a con-
nected planar graph [22].

2.7 Planar PLCA Expression

Takahashi et al. have given a proof of the following theorem on the planarity of
a PLCA expression [22].

Theorem 2. For a consistent, connected PLCA expression, it is PLCA-Euler
iff there exists a corresponding target figure on a two-dimensional plane.

Planar PLCA is defined as follows.

Definition 9 (Planar PLCA). For a PLCA expression, if it is consistent,
PLCA-connected and PLCA-Euler, then it is said to be planar PLCA2.

For example, the PLCA expression in Example 1 is planar.
The following lemmas hold for a planer PLCA expression, and are used in

the subsequent proof for the realizability of an inductively constructed PLCA.
2 Strictly, the original PLCA admits a curved line, and multiple lines between the

same pair of points. If we admit only straight lines, we convert a PLCA expression
in the original definition by adding the same number of points and lines, and this
conversion does not affect the condition for planarity or the proof thereof.
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Lemma 1. For a planar PLCA expression, there exists an area that has a single
circuit.

Proof. Let 〈P,L,C,A, outermost〉 be a planar PLCA expression. Assume that
for any area a ∈ A, |a.circuits| ≥ 2 holds.

Set k = 0 and ck be outermost. Take c such that lc(ck, c) holds. Take an area
ak such that c ∈ ak.circuits holds. Let ak.circuits be {c, ck1 , . . . , ckn

}. Note
that ¬pc(c, cki

) holds for all i from the definition of Area. Take an arbitrary cki

(cki
�= c) and let ck+1 be cki

Increment k and repeat this procedure, then we
can take an infinite sequence of circuits SeqC = c0, c1, . . ..

Figure 5 illustrates each step of this procedure. Take c0 as an outermost
and c such that lc(c0, c) holds. Take an area a0 such that c ∈ a0.circuits holds
(Fig. 5(a)). There are three circuits in a0.circuits other than c. Take an arbitrary
circuit among them and set it as c1; take c such that lc(c1, c) holds. Take an area
a1 such that c ∈ a1.circuits holds (Fig. 5(b)). There is one circuit in a1.circuits
other than c. Take this circuit and set it as c2; take c such that lc(c2, c) holds.
Take an area a2 such that c ∈ a2.circuits holds (Fig. 5(c)). We continue this
procedure.

Since each circuit is a simple closed curve, ci and ci+2 are circuits in the
exterior region and interior region of ci, respectively, by Theorem 1. Therefore,
¬pc(ci, ci+2) holds for each i, On the other hand, the number of circuits is finite.
Therefore, we cannot take an infinite sequence of circuits SeqC. Hence, there
exists an area a ∈ A such that |a.circuits| = 1.

Lemma 2. For any circuit c of a planar PLCA expression, there exists a circuit
that has only one maximal shared circuit-segment with c.

Proof. Let 〈P,L,C,A, outermost〉 be a planar PLCA, and c ∈ C be an arbi-
trary circuit. There should be a circuit c′ ∈ C, such that |SMSCS(c, c′)| �= 0
holds, by the consistency of Line-Circuit. We take such a circuit c′. Assume
that |SMSCS(c, c′)| ≥ 2. Let SMSCS(c, c′) = {cs1, cs2} without losing general-
ity (Fig. 6). Circuit-segments cs1 and cs2 do not share a point. Since cs1 and
cs2 are considered to be paths, we can take their starting points and ending
points: start(cs1) = p, end(cs1) = q, start(cs2) = r, end(cs2) = s. Then there
exists cs � c such that start(cs) = q, end(cs) = r, and each line in cs is not
included in c′.lines. Here, p, q, r and s are distinct with each other. Since c′

is a circuit, there exists cs′; cs′ � c′, start(cs′) = r, end(cs′) = q. On the
other hand, from the consistency of Line-Circuit, there exists c0; inv(cs) � c0,
start(inv(cs)) = r, end(inv(cs)) = q. Then, circuit c0 is defined by append-
ing two circuit-segments inv(cs′) and inv(cs). Therefore, Sscs(c, c0) = {cs}. It
follows that |SMSCS(c, c0)| = 1, which is a contradiction.

3 Construction of PLCA

Theorem 2 gives the conditions for planarity of a given PLCA expression. The
next issue to address is how to construct such an expression.
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Fig. 5. Existence of an area with a single circuit.

We can construct a PLCA expression of elements P , L, C and A in this
order, for example. In this approach, we must check all of the constraints on the
objects carefully during each stage. For example, we must make a circuit so that
there exist exactly two distinct circuits: one that contains a line, and the other
that contains the line in its inverse direction. If this is not satisfied, we must
backtrack to construct these lines. This not only requires time, but it is also
very difficult to prove that the resulting structure is a planar PLCA expression.

Therefore, we take a different approach, in which we begin with outermost
and construct a PLCA expression inductively.

We define a class for PLCA expressions using the following three construc-
tors: single loop, add loop and add path. A constructor single loop corresponds
to the base case, and the other two correspond to operations that construct a
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Fig. 6. Existence of an area with a single maximal shared circuit-segments. (Relation-
ships of circuit-segments: cs1, cs2, cs � c, inv(cs1), inv(cs2), cs

′ � c′ inv(cs), inv(cs′) �
c0, start(cs1) = p, end(cs1) = q, start(cs2) = r, end(cs2) = s. start(cs) = q, end(cs) =
r, start(cs′) = r, end(cs′) = q.)

new PLCA expression by dividing an existing area in a current PLCA expres-
sion using a path. An arbitrary path, the length of which is more than one is
introduced, makes a new circuit using it. Points and lines contained in the path
are added simultaneously, and the area is divided into two areas.

We must add objects of four different types simultaneously during an induc-
tion step because the objects of a PLCA expression are mutually related. We
take the number of areas as a measure of induction, and the number of other
objects increases following the application of each constructor. We cannot take
the number of points or lines as such a measure, because the expression that is
obtained as a result of adding a single point or a single line to a PLCA expression
may not be a PLCA expression.

An alternative method of generating a new area is to add a path to the outer
part of the outermost. That is, we take two points on the current outermost
and combine these with a path in the exterior region of outermost. In this case,
outermost changes during each step where a constructor is applied. Because the
construction of a new outermost is the base case in an inductive definition, we
cannot succeed in a proof if we change the definition of outermost during each
step. Therefore, we do not adopt this method.

We now describe the construction. The idea of construction is based on draw-
ing a figure. Although we demonstrate the construction process on a figure to
provide an intuitive discussion, the construction itself is performed symbolically.

A constructor single loop is for a base case, and corresponds to the simplest
target figure with one area. There are only two circuits: the outermost circuit and
the inner side thereof. Consider an arbitrary path path, such that start(path) =
x, end(path) = y, and inner lines(path) = [l+0 , . . . , l+n ]. Then we create new
circuits outermost such that outermost.lines = [l+, l+0 , . . . , l+n ] and c such that
c.lines = [l−n , . . . , l−0 , l−], where l.points = [y, x]. We also create a new area a
such that a.circuit = {c} (Fig. 7).
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Formally, single loop is defined as follows:

path = 〈x, y, ip, [l+0 , . . . , l+n ]〉 ∧ x �= y ∧ n ≥ 1
→ e = 〈P,L,C,A, o〉

where

P = inner points(path),
L = inner lines(path) ∪ {l},

C = {c, outermost},

A = {a},

o = outermost,

l.points = [y, x],

outermost.lines = [l+, l+0 , . . . , l+n ]

c.lines = [l−n , . . . , l−0 , l−],
a.circuit = {c}.

Fig. 7. The constructor single loop.

Next, we define add loop. Consider an arbitrary area a (Fig. 8(a)). Take an
arbitrary path path, such that start(path) = x, end(path) = y and inner lines
(path) = [l+0 , . . . , l+n ]. Make a line l such that l.points = [y, x] (Fig. 8(b)). Then
make new circuits c1 and c2 such that c1.lines = [l+, l+0 , . . . , l+n ], and c2.lines =
[l−n , . . . , l−0 , l−]. Add c1 to a1.circuits and c2 to a2.circuits (Fig. 8(c)). As a result,
a is divided into two areas, a1 and a2 (the hatched part). The points and lines
contained in path are added accordingly. If a contains more than one circuit, all
of them remain in a1, and a2 contains none.

Formally, add loop is defined as follows:

e = 〈P,L,C,A, o〉 ∧
path = 〈x, y, ip, [l+0 , . . . , l+n ]〉 ∧ x �= y ∧ n ≥ 1 ∧ a ∈ A ∧ ∀p(p ∈ ip → p /∈ P )
→ e′ = 〈P ′, L′, C ′, A′, o′〉
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where

P ′ = P ∪ inner points(path),
L′ = L ∪ inner lines(path) ∪ {l},

C ′ = C ∪ {c1, c2},

A′ = A \ a ∪ {a1, a2},

o′ = o,

l.points = [y, x]

c1.lines = [l+, l+0 , . . . , l+n ],

c2.lines = [l−n , . . . , l−0 , l−],
a1.circuit = a.circuits ∪ {c1},

a2.circuit = {c2}.

Fig. 8. The constructor add loop.

Next, we define add path. Consider a circuit c such that c ∈ a.circuits,
and two points y, z on c. Here y and z may be identical. Because a circuit-
segment is a path, consider a circuit-segment cs � c such that start(cs) = y,
end(cs) = z. Then c is divided into two circuit-segments: cs and cs′. Let c.lines =
[ll+0 . . . , ll+m], cs = [ll+0 . . . , ll+k ] (0 ≤ k ≤ m) and cs′ = [ll+k+1 . . . , ll+m] (Fig. 9(a)).
Take an arbitrary path path, such that start(path) = s, end(path) = e and
inner lines(path) = [l+0 , . . . , l+n ]. Make lines ls and le such that ls.points =
[s, y] and le.points = [z, e], respectively (Fig. 9(b)). Then make new circuits
c1 and c2 such that c1.lines = [l−s , l+0 , . . . , l+n , l−e , ll+k+1 . . . , ll+m] and c2.lines =
[l+e , l−n , . . . , l−0 , l+s , ll+0 . . . , ll+k ]. Add c1 to a1.circuits and add c2 to a2.circuits
(Fig. 8(c)). As a result, a is divided into two areas, a1 and a2 (the hatched part),
c is eliminated, and two new circuits are created. The points and lines contained
in path are added and the objects are changed. If a contains circuits other than
c, all of them remain in a1, and a2 contains none.

Formally, add path is defined as follows:

e = 〈P,L,C,A, o〉 ∧
path = 〈s, e, ip, [l+0 , . . . , l+n ]〉 ∧ s �= e ∧ n ≥ 0 ∧ a ∈ A ∧ ∀p(p ∈ ip → p /∈ P )∧
c ∈ a.circuits ∧ c.lines = [ll+0 . . . , ll+m]
→ e′ = 〈P ′, L′, C ′, A′, o′〉



310 K. Takahashi et al.

where

P ′ = P ∪ inner points(path),
L′ = L ∪ inner lines(path) ∪ {ls, le},

C ′ = C \ c ∪ {c1, c2},

A′ = A \ a ∪ {a1, a2},

o′ = o,

ls.points = [s, y],
le.points = [z, e],

c1.lines = [l−s , l+0 , . . . , l+n , l−e , ll+k+1 . . . , ll+m],

c2.lines = [l+e , l−n , . . . , l−0 , l+s , ll+0 . . . , ll+k ],
a1.circuit = a.circuits ∪ {c1},

a2.circuit = {c2}.

Fig. 9. The constructor add path.

Note that add loop is applied to a specific area, whereas add path is applied
to a specific circuit and two points on it.

Definition 10 (IPLCA). PLCA expressions constructed by the above three
constructors are said to be Inductive PLCA (IPLCA).

4 Proof of Formalization

Here we prove that IPLCA coincides with planar PLCA.

4.1 Proof of Planarity

We first prove that IPLCA is planar. From Theorem 2, we prove the following
theorem.

Theorem 3. If e is an IPLCA expression, e is (i) consistent, (ii) PLCA-
connected, and (iii) PLCA-Euler.
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We implement IPLCA and prove these three properties using the proof assis-
tant Coq [2]. Coq is based on typed logic adopted for higher-order functions.
The data types and functions are defined in recursive form, and the proof pro-
ceeds by connecting suitable tactics. The definition of IPLCA and the proof of
Theorem 3 required approximately 5500 lines of code in total. As for consistency,
we combine several conditions in a single formula and verify them simultane-
ously. As for PLCA-connectivity, the proof is somewhat involved, and we prove
it by decomposing it into several sub-lemmas. As for PLCA-Euler, the proof is
straightforward, since we only need to convert the numbers that appear in the
formula. The advantage of using Coq is to certify the correctness of the formal-
ization. We do not show the detail of the proof here, since it is out of the focus
of this paper. The entire code is shown in [12].

4.2 Proof of Realizability

We prove that a planar PLCA is IPLCA. This means that any target figure
can be drawn by applying the constructors of IPLCA in a suitable order. For
example, consider Fig. 10. If we apply add loop first, we cannot successively apply
constructors, because any intermediate figure is not the target figure (Fig. 10(a)).
However, if we apply add path first, we can successively add areas by applying
add path again (Fig. 10(b)). In proving mechanically, we search all the possible
cases and show an instance in each case.

Fig. 10. Constructing figures (a) by first applying add loop, and (b) by first applying
add path.

Theorem 4. A planar PLCA is IPLCA.

Proof. We prove the theorem using induction on the number of areas of a given
planar PLCA.

(Base case) The number of areas is 1.
This is clearly a base case of IPLCA, and is constructed by applying single

loop.

(Induction step) The number of areas is n + 1.
The principle of our proof via induction is as follows. For a planar PLCA e, of

which the number of areas is n+1, we remove a suitable area a such that we can
form a planar PLCA e′, of which the number of areas is n. Because e′ is IPLCA
from the induction hypothesis, we can apply add loop or add path to obtain e.
We proceed the proof based on this principle. The point of the proof is that we
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Fig. 11. Removing an area with case 1.

Fig. 12. Circuit-segments in case 2. Circuit c is divided into cs and cs1, and circuit c′

is divided into inv(cs) and cs2.

Fig. 13. Removing an area with case 2.

can find a suitable area. We can take an area a with a single circuit c from e by
Lemma 1. There exists c′ such that |SMSCS(c, c′)| = 1, from Lemma 2. Assume
that c′ = outermost. Since the number of areas of e is more than one, a contains
more than one circuit, which is a contradiction. Therefore, c′ �= outermost.

Case 1. SMSCS(c, c′) = {c.lines}.
In this case, we remove a, c, c′, and all objects on c and c′ to obtain a

planar PLCA e′ such that |e′.areas| = n. Let a′ be an area such that c′ ∈
a′.circuits holds. Note that since c′ �= outermost, e′ has an outermost. Here e′

is IPLCA from the induction hypothesis. Then we can construct e by applying
the constructor add loop on a′ (Fig. 11).

Case 2. SMSCS(c, c′) �= {c.lines}.
Let SMSCS(c, c′) = {cs}. In this case, c is divided into two circuit-segments cs

and cs1, and c′ is divided into two circuit-segments inv(cs) and cs2 (Fig. 12). We
remove a, c, c′, and all objects on c and c′, and add a circuit newC by appending
cs1 and cs2. We obtain a planar PLCA expression e′ such that |e′.areas| = n. e′
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is IPLCA from the induction hypothesis. Then we can construct e by applying
the constructor add path on newC, start(cs1) and end(cs1) (Fig. 13).

5 Related Work

There exist several symbolic expressions other than qualitative spatial represen-
tations for a figure on a two-dimensional plane, including computational geome-
try [1] and graph theory [13]. Different from qualitative spatial representations,
the main objective of computational geometry is to analyze the complexity of
algorithms for problems expressed in terms of geometry and to develop efficient
ones, rather than to recognize or to analyze the characteristics of a figure. Graph
theory can be used to provide symbolic expressions of spatial data. The topolog-
ical structure of spatial data can be represented as a graph by treating spatial
objects, such as points and lines, as nodes and the relationships between them
as edges. There exists a condition to determine the planarity of a given graph;
however, in general, a graph does not contain any information on an area, and
therefore we only know that we can embed a graph by locating areas properly.
In contrast, a PLCA expression places constraints on the locations of areas. In
this respect, a PLCA expression is more specific than a graph.

One of the challenges for symbolic expressions of a figure on a two-dimensional
plane is the concept of a hypermap. A hypermap is an algebraic structure that
represents objects and relationships between them, and can be used to distin-
guish the topological and geometric aspects. There are several works that use a
hypermap and give a formalization and a proof of the properties of these aspects
using proof assistants. Gonthier et al. formalized and proved the four-color the-
orem and showed a proof [11]. In this work, planar subdivisions are described by
a hypermap. Dufourd applied a hypermap to formalize and to prove a Jordan
curve theorem [6]. He also showed a treatment of surface subdivision and pla-
narity based on a hypermap [7]. Brun et al. showed a derivation of a program
to compute a convex-hull for a given set of points from their specification using
a hypermap [4]. They specified the algorithm and proved its correctness using a
structural induction. Hypermap is a strong method for providing a mechanical
proof of the topological or geometric properties in a symbolic form; however, the
representation is too complicated to understand intuitively.

6 Conclusion

We have described a method of constructing a PLCA expression inductively, and
have proved that the defined class coincides with that of planar PCLA. Formal-
ization and part of the proof was implemented using the proof assistant Coq.
Our main contribution is giving a computational model to a qualitative spatial
representation, which is the first attempt in the research field on qualitative
spatial reasoning.
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Here, we discuss the realizability of a PLCA expression on a two-dimensional
plane. We are considering its realizability on surfaces such as a sphere or a torus
as well.

Mechanical proof using a proof assistant provides a rigorous proof of correct-
ness of the formalization. In future, we will complete the mechanical proof of the
part currently done manually.
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