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Abstract— We discuss the modeling and verification

of marine equipment systems that are implemented

on a real-time OS. We construct the framework that

provides primary functions, such as tasks with prior-

ities, a scheduler, and an interrupt handler. Using

this framework, we construct a behavioral model for

two modules of simplified fishfinder, and verify the

requirements such as deadlock-freeness using a model

checker SPIN.
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1 Introduction

Embedded software is a special purpose computer sys-
tem designed to perform several dedicated functions and
is widely used in devices such as mobile computers, home
appliances, and cars [5][17][18]. Since such technology is
considered to be essential in our present high-technology
society, the requirement for reliability, that is, the need
to ensure that the system operates correctly, is very
high. Embedded software applications have been devel-
oped based on hardware functions and there is a close
relationship between hardware and software, which some-
times causes the developed system to behave incorrectly
because the software designer does not have sufficient
knowledge of the hardware.

Embedded software is usually implemented on a real-time
OS (RTOS), which is specialized in real-time estimation
and timing resources protection. RTOS performs multi-
ple tasks that are scheduled by synchronous communica-
tion between them, which have their own priorities and
are executed on a schedule based on these priorities. The
priorities are fixed in the RTOS while they are changed
according to the execution time in a generic OS, which
results in difficulties with constructing behavioral mod-
els using embedded systems and verifying the behavioral
correctness.

System verification, based on a formal method has re-
cently been considered as a promising approach for the
efficient analysis and verification [7][11]. Several model
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checkers have been developed as tools for the formal
method [6][10][14]. They are applied to verify a variety
of hardware and software devices, and successful results
have been reported [2][3]. However, the verification of
embedded software is mostly undertaken through check-
ing a large amount of test data, in the actual process
of its development, and relatively few studies have been
conducted in which model checking methods have been
applied.

In this paper, we construct a model for a simplified
fishfinder, a marine system that is implemented on
RTOS, and verify the behavioral correctness using the
model checker, SPIN [10]. We first construct the frame-
work for managing embedded software using the descrip-
tion language of SPIN, and construct a behavioral model
of the fishfinder on the framework. Then, we present the
requirements as specifications and verify that they are
satisfied using SPIN. We show the results of verification
and their analyses.

This paper is organized as follows. In Section 2, we de-
scribe the framework for embedded software on SPIN. In
Section 3, we show the modeling and verification of two
modules of a fishfinder, namely, a flash memory backup
module and a sonar control module. In Section 4, we
present related research. Finally, in Section 5, we present
our conclusions.

2 Framework for Embedded Software on

SPIN

2.1 Model Checking

In model checking, we construct a model as a finite state
transition machine to test the behavior of a program or
a system, and verify whether the model satisfies a given
specification represented as a logical formula. A model
checker exhaustively searches all of the possible paths and
checks whether the given specification is satisfied. If all
the paths satisfy the specification, the model checker re-
turns true as a result. However, when a path in which
the specification is not satisfied is detected, the model
checker returns the path as a counterexample, in addi-
tion to false. The counterexample is used to illustrate
the incorrect behavior of the system and supports the
user in detecting the bug in the implementation.
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2.2 SPIN

Simple Promela INterpreter (SPIN) is a model checker
that supports a high-level language to specify systems de-
scriptions called PROcess MEta LAnguage (PROMELA)
[10]. SPIN is considered to be a powerful tool for model-
ing embedded software since concurrent behaviors of mul-
tiple tasks can be naturally represented in PROMELA.

In SPIN, the behavior of the system is described in
PROMELA, and the specification, that is, the property
a user intends to verify, is given as a formula in Linear
Temporal Logic (LTL) [2]. Using the temporal operators
of LTL, we can express time-dependent properties of the
liveness, such as “a task can be executed eventually”, or
safety, such as “deadlock never occurs.”

2.3 Modeling an Embedded Software

A task is implemented as a process. The concurrent ex-
ecution of multiple tasks and task controls can be mod-
eled with relative accuracy. However, problems exist with
modeling temporal factors so that actual behavior is sim-
ulated. When multiple tasks without priorities are ex-
ecutable, any task can be executed. Therefore, SPIN
checks all executions in all possible orders, and all pos-
sible interleaving patterns are considered. Conversely, in
RTOS, when one task is executed, no other task is acti-
vated unless an interrupt or task re-dispatching occurs;
SPIN does not provide such a control mechanism. There-
fore, we construct a framework on which RTOS can be
managed.

The framework can provide an environment in which an
application of embedded software can be implemented
and verified easily. To simulate the behavior of RTOS,
we construct the scheduler as an independent process
and prepare functions corresponding to service calls. The
timer and the interrupt handler are also implemented as
processes. Task controls are realized by message passing
between the processes through these functions.

2.3.1 Task Control

To realize the behavior of a task with priorities, we utilize
a built-in command provided in PROMELA, which makes
a task executable if and only if the specified condition is
satisfied.

The state of a task is one of the following three states:
WAIT, EXECUTABLE, and RUN. WAIT is the state in
which the task is waiting for a message. When a task
receives a message in the WAIT state, the task transits
to the EXECUTABLE state. When a task in the EX-
ECUTABLE state is permitted to run by the scheduler,
it transits to the RUN state. When a task receives a
message in the RUN state, then the message is stored

WAIT

EXECUTABLE

RUN

receive message

scheduled

Figure 1: State transition of a task

in the messagebox or abandoned depending on the sit-
uation, and the task transits to the WAIT state. This
cycle is repeated. A task in the RUN state may transit
to the EXECUTABLE state if another task in the EXE-
CUTABLE state transits to the RUN state (Figure 1).

2.3.2 Scheduling

The scheduler dispatches the execution of tasks depend-
ing on their priorities. The task control system adopts the
fixed priority scheduling mechanism, in which a priority
for each task is initially assigned, and when the scheduler
is activated, the task control system gives a permission
of execution to the executable task with the highest pri-
ority. The scheduling policy is based on the behavioral
specification of the actual system. Service calls that are
called from tasks are based on the specification of the task
control system. We have implemented four service-calls
as functions in SPIN.

• Message sending function
A message is sent to the target task. If the target is
in the WAIT state, then the function changes to the
EXECUTABLE state. If the target is in the RUN
state, and no message is stored in the messagebox,
then the function stores the message. If the target is
in the RUN state, and a message already exists, the
function abandons the conveyed message. In either
case, the function reactivates the scheduler.

• Message receiving function
This function is called from the task in the RUN
state. If there is a message in the messagebox, then
the task is transited to the EXECUTABLE state.
Otherwise, it is transited to the WAIT state. In
either case, the function reactivates the scheduler.

• Function for sending a message from an interrupt
handler
Almost the same with the message sending function,
but the function for sending a message from an in-
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Figure 2: Display of the fishfinder

terrupt handler ends without reactivating the sched-
uler.

• Function for stopping the interrupt handler with
rescheduling
This function stops the interrupt handler and reac-
tivates the scheduler.

3 Verification of a Fishfinder

3.1 A fishfinder

A fishfinder is a marine equipment system that is imple-
mented on RTOS. The fishfinder kicks a TX pulse period-
ically, collects a sequence of echo signals, it stores in the
memory, and processes the stored data for display as an
image on the color liquid crystal display (Figure 2) [9].
The screen scrolls from right to left every time the se-
quence of data is collected. A user can set parameters
such as the depth range and the display mode.

We use two modules of the simplified fishfinder, a flash
memory backup module and a sonar control module. For
each module, we construct a model on the framework
described in the previous section so that the behavior
of the actual system can be simulated as far as possi-
ble and verify the deadlock-freeness on this model. The
experimental environment consists of a 1.60 GHz IntelR
PentiumRM, with a 597 MHz bus and 224 MB of RAM.

3.2 Flash Memory Backup Module

3.2.1 Modeling

In this module, when the collected echo signals and user’s
input for parameter settings are given, they are written
onto a proper sector of the memory. A sector consists of
multiple data structures. If the sector is full and there
is no fresh data structure, then another sector is used.
The full sector is erased and reset for use. This module
consists of one interrupt handler and three tasks: signal
processing task, operation task, and sector erasing task
(Figure 3), the priorities of which are in the same order

(signal processing task is the highest) and their behaviors
are described as follows:

• Interrupt handler
Interrupt handler may occur at any instant when it
receives external signal data. The interrupt handler
activates the scheduler and sends a message to the
signal processing task.

• Signal processing task
After activation, this task immediately transits to
the WAIT state. When this task receives the mes-
sage, it processes the signal data, sends the mes-
sage to the operation task, and transits to the WAIT
state.

• Operation task
After activation, this task immediately transits to
the WAIT state. When this task receives the mes-
sage, it processes the signal data and the user’s in-
put. This task writes the result of the computation
onto the sector of the memory that is currently be-
ing accessed. If there is no fresh data structure in
the sector, then the data is written onto another sec-
tor. At the same time, this task sends the message
of erasing to the sector erasing task and transits to
the WAIT state.

• Sector erasing task
After activation, this task immediately transits to
the WAIT state. When the message is received, this
task eliminates all of the contents of the full sector
and transits to the WAIT state.

In the implementation of this model, message passing be-
tween tasks is realized by the functions defined in the
framework. We set the number of data structures of a
sector as 3000 in our model, considering that, in an ac-
tual system, the size of a sector is 64 Kbytes and the size
of each data to be written is 20 bytes.

3.2.2 Verification and Analysis

We verify such property that data-writing onto the mem-
ory always succeeds. We describe this property as the
safety: “no state occurs in which data is written onto the
full sector,” which is expressed in the form of the LTL
formula:

[]!(sector0_is_full && sector1_is_full
&& writing)

The verification fails and a counterexample is generated
in the 744,069th step. The used CPU time is 6.990 sec-
onds. The counterexample corresponds to the following
situation. The speed of data collection is so fast that
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Figure 3: Flash memory backup module

frequent input occurs, and the data is written on the
memory before the full sector is erased. This may occur
when the signal processing task and the operation task
run continuously, while the sector erasing task is seldom
permitted to run.

Figure 4 shows the correct behavior and the incorrect
behavior for this process. In Figure 4(a), task 3 is sched-
uled at time t, since tasks 1 and 2, which have higher
priority, are in the WAIT state. On the other hand, in
Figure 4(b), task 1 is scheduled at time t since it is in
the EXECUTABLE state. Task 2 is scheduled afterwards
and task 3 cannot run. In most cases, the system behaves
as shown in (a). However, if a frequent interrupt occurs,
then the system may behave as shown in (b). This bug
is judged as a false-positive since the speed of erasing is
actually much faster than that of data collection.

3.3 Sonar Control Module

3.3.1 Modeling

This module is characterized by a cyclic behavior involv-
ing kicking a TX pulse periodically, collecting the se-
quence of the echo signals and storing the sequence in
the memory, and processing the stored data to display
this image.

The period of a kick is set in advance and the TX timer
is activated on kicking and ensures that the next kick
does not occur until the allocated time expires. One echo
returns for every TX pulse. When a defined number of
echo signals are collected, image processing on the data
is performed and the result is displayed on screen.

This module consists of the hardware, two interrupt han-
dlers and two tasks: kick TX task and data processing
task (Figure 5), the priorities of which are in the same

order (kick TX task is higher) and their behaviors are
described as follows:

• TX timer (hardware)
If the current time exceeds the budgeted time, the
TX timer interrupt handler is activated.

• TX timer interrupt handler
The TX timer interrupt handler stops the TX timer
and sends a message to the kick TX task.

• Data collection interrupt handler
The data collection interrupt handler judges whether
the pre-defined number of echo signals have been re-
ceived. Once all of the data are collected, they are
stored in the memory, eventually turning on the flag
that indicates the completion of data storage. There-
after, the data collection interrupt handler sends the
message to the data processing task.

• Data processing task
After setting the initial parameters, such as the pe-
riod of kicking TX, the data processing task sends
the message to the kick TX task, and then transits
to the WAIT state and waits for a message from the
data collection interrupt. Next, when the data pro-
cessing task receives the message from the data col-
lection interrupt, it resets the parameters and sends
the message to the kick TX task. The data process-
ing task then displays the image of the echo data,
transits to the WAIT state and waits for a message
from the data collection interrupt.

• Kick TX task
Initially, when the kick TX task receives a message
from the data processing task, it obtains the period
of kicking TX from the message. The kick TX task
then kicks the TX pulse, starts the TX timer, tran-
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task1: signal processing task
task2: operation task
task3: sector erasing task

(a) correct behavior

schedulertask1 task2 task3

task1

task2

task3

task1

interrupt

t

(b) incorrect behavior

schedulertask1 task2 task3

task1

task2

task1

task2

interrupt

t message passing
scheduled task

executable

run

Figure 4: Scheduling of tasks

sits to the WAIT state and waits for the message
from the TX timer interrupt.

The state in which a task receives a message is nondeter-
ministic. In Figure 5, the dotted lines show an example of
timing at which the kick TX task receives the messages.
A message sent to a task is stored in the messagebox of
the task if the task is not in the state in which it can pro-
cess the message. If a message arrives at the task when
another message exists in the messagebox, then any mes-
sage that arrives later is abandoned.

In the implementation of this model, a message passing
between tasks is realized by the functions defined in the
framework.

3.3.2 Verification and Analysis

We verify such property that deadlock never occurs. We
describe this property as the safety: “the system never
reaches the state in which neither of two tasks is exe-
cutable and no interrupt handler occurs.” The task is
not executable if there is no message in the messagebox
in the WAIT state. Therefore, this property is expressed
in the form of the LTL formula:

[]!(DataProcTask_WAIT && KickTXTask_WAIT &&
no_mes_queue &&
TXtimer_timerCheck && no_timer_set &&
DataCol_echoCheck && no_echo_pulse)

The verification fails and a counterexample is generated
in the 232nd step. The used CPU time is 0.151 sec-
onds. The counterexample corresponds to the situation
in which the kick TX task receives a message from the TX
timer interrupt handler and a message from the data pro-
cessing task before acknowledging one of the messages;
the message that arrives later is discarded. In this situ-
ation, the kick TX task can no longer receive the second

inline send_msg(id,sig){
if ::msg_queue[id]==true -> skip;
::else -> msg_queue[id]=sig;

if
::task_state[task_id[id]]==wait ->

task_state[task_id[id]]=executable;
::else -> skip;
fi;
process_in_active=scheculer;

fi;
}

inline rec_msg(id){
do

::msg_queue[id]==true ->
task_id[id]=process_in_active;
msg_queue[id]=false;
break;

::msg_queue[id]==false ->
task_id[id]=process_in_active;
task_state[task_id[id]]=wait;
process_in_active=scheduler;

od;
}

Figure 7: Correct implementation of the messagebox

message while it waits for the message. This causes the
deadlock. Figure 6 shows the correct and the incorrect
behaviors of the kick TX task.

Such deadlock may occur if a task has a unique message-
box for messages from all of the different tasks or the
interrupt handler. This was an example of a bug that oc-
curs due to the lack of specifications. The system designer
intended to prepare different messageboxes for different
type of messages, while the programmer considered that
a unique messagebox was required. We corrected the im-
plementation so that different messageboxes are prepared
(Figure 7). The verification of the corrected implemen-
tation by SPIN reports “valid” after 20.139 seconds.
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Figure 5: Sonar control module

(a) correct behavior (b) incorrect behavior

Figure 6: Correct behavior and incorrect behavior of the kick TX task
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4 Discussions

There have been few studies on the verification of embed-
ded software systems by a model checker.

Aoki constructed a library of service calls implemented
in µITRON on a RTOS using PROMELA and applied
it to the verification of the priority inversion problem [1].
The goal of his research was to construct a general library
applied to RTOS rather than to verify a specific system.

Cofer et al. applied SPIN to modeling and analyzing
the time partitioning features in the scheduler of Avion-
ics RTOS [8][16]. They implemented the basic elements
of the interrupt handler, the timer, and the scheduler
in PROMELA. The relationships of activations between
tasks and the scheduler of their target system are differ-
ent from those used in the fishfinder. We realized the
relationships using the functions of message passing to
and from the messsageboxes.

In embeddeing software, the actual system behaves along
continuous time, while a model checker like SPIN handles
the discrete time, which causes the difficulty in construct-
ing a model. It is more desirable to realize a clock in
the model. Mizuguchi et al. applied the model checking
method to the time-dependent software using NuSMV [6],
an extension of SMV, by adopting the concept of a unit
time in modeling the timer [15]. While their work was
challenging, they showed no results of checking the prop-
erties related to real time.

The clock variable can be easily introduced in UP-
PAAL [14] and the other tools based on timed automata.
Campos et al. discussed the time-sensitive characteristics
and schedulability of real-time industrial systems [4] and
proposed an algorithm for computing the exact bounds
on the delay between two specific events based on sym-
bolic model checking. Krichen et al. shows the verifi-
cation of real-time systems using timed automata [12].
They proposed a black-box conformance testing frame-
work with the introduction of the concept of a clock.
However, their target system has neither multiple tasks
nor a scheduler. Larsen et al. also proposed a tool for
black-box conformance testing of an embedded software
based on timed-automata [13]. They introduced a clock
variable and showed the results of testing. However, a
model checker such as UPPAAL and the tools based on
timed automata easily fall into the state explosion in the
verification, compared to SPIN, and a user has to contrive
harder.

5 Conclusion

We have modeled and verified a simplified fishfinder im-
plemented on RTOS using the model checker SPIN. There
have been no studies which apply formal method to veri-
fying the behavioral correctness of marine equipment sys-

tems.

To sum up our work:

• Constructed a framework using SPIN that can man-
age the behavior of RTOS.

• Constructed a model that simulates the behavior of
a fishfinder on the framework and confirmed the use-
fulness of the framework.

• Verified the deadlock-freeness of the system, i.e., per-
formed bug detection and verified the validity of the
corrected version.

In the future, we consider the introduction of a temporal
component and intend to provide a method to handle the
time-dependent properties.
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