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Abstract: We discuss a semantics of argumentation under incomplete information.
In this paper, we mean by “incomplete information” that an agent does not know the
other agent’s knowledge and therefore, the agent cannot predict which arguments are
attacked and which counter-arguments are used in order to attack the arguments.
In this paper, we provide a more general framework for such argumentation system
than previous proposed framework and provide a computational method how to
decide acceptability of argument by logic programming if both agents are eager to
give all the arguments.

1 Introduction

Argumentation system is a hot topic in
legal reasoning and in more general set-
ting such as negotiation in multi-agent
systems[Rahwan09]. However, most of the
work on argumentation is based on the as-
sumption where complete information about
argumentation is provided[Dung95]. It would
be appropriate for an application domain
where we can see all the arguments and
counter-arguments so that we can conclude
the most appropriate result based on all the
arguments. However, in reality, there would
be another type of argumentation where rel-
evant agents only have their own belief and
they do not know other agents’ belief and so
they do not predict how other agents attack
their own arguments.

Consider the following slightly modified
example taken from[Okuno09]1.

p0: “You killed the victim.”
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1In the example, c and p are two parties and num-
bers attached with c and p express order of arguments.

c1: “I did not commit murder! There is no
evidence!”

p1: “There is evidence. We found your license
near the scene.”

c2: “It’s not evidence! I had my license
stolen!”

p2: “It is you who killed the victim. Only you
were near the scene at the time of the
murder.”

c3: “I didn’t go there. I was at facility A at
that time.”

p3: “At facility A? Then, it’s impossible to
have had your license stolen since facil-
ity A does not allow a person to enter
without a license.”

In the above example, c2 is not firstly at-
tacked but after the argument of c3 is given,
c2 is attacked by p3. Since agent p does not
believe that the suspect was at facility A, p
could not use the counter-argument p3 at first.
But after c3 is provided, p can attack c2 by
pointing out the contradiction with c3. This
phenomena cannot be formalized in argumen-
tation system based on complete information



about arguments and so we need a new frame-
work.

Pioneer works on this direc-
tion would be, as far as we know,
[Okuno09, Okuno10, Takahashi11] where
counter-arguments, which cannot be used
at the starting point of argumentation since
these counter-arguments are not convinced by
the agent itself, are triggered by other agents’
arguments. In this paper, we extend this
direction to provide more general framework
than [Okuno09, Okuno10, Takahashi11]. The
difference between their works and this work
are as follows:

• We let an agent to give as many counter-
arguments against other agent’s argu-
ments as they like where as [Okuno09,
Okuno10, Takahashi11] allow only one
counter-argument against one argument
at one turn.

• We do not employ any specific strategy
how to make counter-argument whereas
[Okuno09, Okuno10, Takahashi11] im-
pose an agent to stick to one line of
arguments until no counter-argument is
made, then the agent change counter-
argument in the other line of arguments.

To formalize the above, we introduce sources
of arguments which represent usable argu-
ments. This means that even if there are
potential counter-arguments against the other
agent’s arguments, the agent cannot use the
argument if the argument in the source. We
also introduce derivation rule of sources which
represent augmentation of arguments which
were not initially able to be used, but later
become usable based on the other agent’s new
arguments and its own belief. By these mech-
anisms, we let agents not know whether po-
tential arguments would be usable in the fu-
ture since there are incomplete information
about the other agents’ behavior.

Then, we show a computational method
to decide which arguments are accepted by
translating argumentation framework into
logic programming from the bird’s eye view
under the assumption that all the possible ar-
guments will eventually be done by both par-
ties.

2 Framework for Argu-
mentation under In-
complete Information

Definition 1 Let ArgP (ArgC, respectively)
be a set called an argument set for P (C, re-
spectively). We write ArgP ∪ ArgC as Arg.
An attack relation for P (C, respectively)
AttackP is a subset of ArgP × ArgC(ArgC ×
ArgP , respectively). We write AttackP ∪
AttackC as Attack.
We say P (C, respectively) attacks n′ by n if
⟨n, n′⟩ ∈ AttackP (AttackC, respectively).
SourceP (SourceC, respectively) is a sub-
set of ArgP (ArgC, respectively). We write
SourceP ∪ SourceC as Source.
A derivation rule for P (C, respectively)
DeriveP (DeriveC, respectively) is a set of
the following rule:

n ⇐ n1, ...nm

where n ∈ ArgP (ArgC, respectively) and
ni ∈ Arg(1 ≤ i ≤ m). We say n is derived
from n1, ..., nm. We write DerivP ∪ DeriveC

as Derive
We call ⟨Arg,Attack, Source,Derive⟩ an

argumentation framework.

We assume that there is no loop in AttackP ∪
AttackC to avoid infinite loop of arguments2.

In the above definition, a derivation rule
enables an agent to augment its own source
of arguments by adding the conclusion of the
derivation rule if condition part is satisfied.

We define an argumentation tree which
gives a semantics of acceptance of arguments
as follows.

Definition 2 An argumentation tree Tr =
⟨N,E⟩ w.r.t. an argumentation framework
⟨Arg,Attack, Source,Derive⟩ is an in-tree3

such that N ⊂ Arg and E ⊂ Attack and sat-
isfies the following conditions:

• The root of Tr is p ∈ SourceP called
“conclusion”.

2We may formalize an argumentation with loop if
we follow Dung’s stable extension or preferred exten-
sion.

3An in-tree is an directed tree in which a single
node is reachable from every other one (See Fig.1).



• If ⟨n, n′⟩ ∈ E then either of the follow-
ing holds.

– n ∈ SourceP and n′ ∈ SourceC

and ⟨n, n′⟩ ∈ AttackP .

– n ∈ SourceC and n′ ∈ SourceP

and ⟨n, n′⟩ ∈ AttackC.

Let Tr = ⟨N,E⟩ be an argumentation tree.
n ∈ N is accepted w.r.t. Tr if

• there is no edge from n, or

• there is no n′ s.t. ⟨n′, n⟩ ∈ E and n′ is
accepted w.r.t. Tr.

Now, we can define a game called an argu-
mentation game which gives a dialog between
two parties. In argumentation game, agents
can refer to source of arguments to produce
counter-arguments.

Definition 3 A move of an argumentation
game w.r.t. argumentation tree Tr = ⟨N,E⟩
and a pair of source sets ⟨SP , SC⟩ is an ex-
pansion of Tr, SP and SC defined as follows.

• P ’s move is a set MoveP ⊂ AttackP

such that for every n such that ⟨n, n′⟩ ∈
MoveP , n ̸∈ N and n ∈ SourceP and
n′ ∈ N . Then, a new set of nodes in
a new argumentation tree N ′, a new set
of edges in a new argumentation tree E ′

and a new pair of source sets ⟨S ′
P , S ′

C⟩
becomes the following.

– N ′ = N ∪ {n|⟨n, n′⟩ ∈ MoveP}
– E ′ = E ∪ MoveP

– S ′
P = SP

– S ′
C = SC∪
{n|(n ⇐ n1, ..., nm) ∈ DeriveC

and ni ∈ N ′(1 ≤ i ≤ m)}

• C’s move is a set MoveC ⊂ AttackC

such that for every n such that ⟨n, n′⟩ ∈
MoveC, n ̸∈ N and n ∈ SourceC and
n′ ∈ N . Then, a new set of nodes in
a new argumentation tree N ′, a new set
of edges in a new argumentation tree E ′

and a new pair of source sets ⟨S ′
P , S ′

C⟩
becomes the following.

– N ′ = N ∪ {n|⟨n, n′⟩ ∈ MoveC}

– E ′ = E ∪ MoveC

– S ′
P = SP∪
{n|(n ⇐ n1, ..., nm) ∈ DeriveP

and ni ∈ N ′(1 ≤ i ≤ m)}
– S ′

C = SC

If both agents give ∅ in consecutive two moves,
then we say that the game is finished and we
call a final tree after a game is finished argu-
mentation game tree. Let Tr be an argumen-
tation game tree ⟨N,E⟩. We say that a node
n ∈ N is accepted w.r.t. the argumentation
game tree Tr if n is accepted w.r.t. argumen-
tation tree Tr.

Note that a move can be ∅4. and a conclusion
is decided to be accepted or not using the tree
at the final stage.

Example 1 Consider the example discussed
at Introduction. Then,

AttackP = {⟨p1, c1⟩, ⟨p2, c1⟩, ⟨p3, c2⟩},
SourceP = {p0, p1, p2},
DeriveP = ∅
AttackC = {⟨c1, p0⟩, ⟨c2, p1⟩, ⟨c3, p2⟩},
SourceC = {c1, c2, c3},
DeriveC = {c3 ⇐ p3}

Note that since initial SourceP does not in-
clude p3 so we cannot use an attack to c2 by
p3.

1. Let p0 be a conclusion. Then
Tr = ⟨{p0}, ∅⟩.

2. C’s next move has two possibilities, that
is, to give either ∅ or {⟨c1, p0⟩}.

3. Suppose that C gives {⟨c1, p0⟩}
Then, Tr = ⟨{p0, c1}, {⟨c1, p0⟩}⟩.

4. P ’s next move has four possibilities,
that is, to give either ∅ or {⟨p1, c1⟩} or
{⟨p2, c1⟩} or {⟨p1, c1⟩, ⟨p2, c1⟩}.

5. Suppose that P gives {⟨p1, c1⟩, ⟨p2, c1⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2},

{⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩}⟩.
6. C’s next move has four possibilities,

that is, to give either ∅ or {⟨c2, p1⟩} or
{⟨c3, p2⟩} or {⟨c2, p1⟩, ⟨c3, p2⟩}.

4This means that even if there are possible
counter-arguments, an agent can be silent.
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Figure 1: Representation of Arguments and
Derive Relation for Example 1

7. Suppose that C gives {⟨c2, p1⟩, ⟨c3, p2⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2, c2, c3},

{⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩, ⟨c2, p1⟩,
⟨c3, p2⟩}⟩.

Then, since (c3 ⇐ p3) ∈ DeriveC,
SourceP becomes {p0, p1, p2, p3}.

8. P ’s next move has only two possibilities,
that is, to give {⟨p3, c2⟩} or ∅ since p3 is
now in SourceP = {p0, p1, p2, p3} and
⟨p3, c2⟩ becomes usable.

9. Suppose that P gives {⟨p3, c2⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2, c2, c3, p3},

{⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩, ⟨c2, p1⟩,
⟨c3, p2⟩, ⟨p3, c2⟩}⟩.

10. There is no move from both sides so we
are done.

11. Then, p3 is accepted and so c2 is not
accepted. Then p1 is accepted and c1 is
not accepted. Finally p0 is accepted.

In this example, p3 is a key to rebut c2 and
p3 was not in initial source but is invoked af-
ter c3 is made. This invocation is made by a
derivation rule p3 ⇐ c3 (See Fig.1).

There are many ways to develop an argu-
mentation game tree, but we can show that it
converges into one argumentation tree if both
parties eventually give all possible arguments.
We call this strategy eager, so we can say that
an argumentation game tree will converge into
one if both agents are eager. On the other
hand, we can define a lazy agent which gives
only necessary counter-arguments. In other

words, a lazy agent will choose one counter-
argument among possible counter-argument
against the other agent’s argument and it
will choose another counter-argument only if
the chosen counter-argument is rebutted by
the other agent’s counter-counter-argument.
Then, in this lazy agent’s case some of deriva-
tion rules might not be invoked so that an
effective counter-argument might not be pro-
duced. We show such an example as follows.

Example 2 Consider the following case
where we add ⟨c4, p2⟩ to AttackC of the pre-
vious example. Then,

AttackP = {⟨p1, c1⟩, ⟨p2, c1⟩, ⟨p3, c2⟩},
SourceP = {p0, p1, p2},
DeriveP = ∅
AttackC = {⟨c1, p0⟩, ⟨c2, p1⟩, ⟨c3, p2⟩,

⟨c4, p2⟩},
SourceC = {c1, c2, c3, c4},
DeriveC = {c3 ⇐ p3}

We show an example when an agent does not
give full arguments but hides an argument.

1. Let p0 be a conclusion. Then
Tr = ⟨{p0}, ∅⟩.

2. C’s next move has two possibilities, that
is, to give either ∅ or {⟨c1, p0⟩}.

3. Suppose that C gives {⟨c1, p0⟩}
Then, Tr = ⟨{p0, c1}, {⟨c1, p0⟩}⟩.

4. P ’s next move has four possibilities,
that is, to give either ∅ or {⟨p1, c1⟩} or
{⟨p2, c1⟩} or {⟨p1, c1⟩, ⟨p2, c1⟩}.

5. Suppose that P gives {⟨p1, c1⟩, ⟨p2, c1⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2},

{⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩}⟩.
6. C’s next move has eight possibili-

ties, that is, to give a subset of
{⟨c2, p1⟩, ⟨c3, p2⟩, ⟨c4, p2⟩}.

7. Suppose that C gives {⟨c2, p1⟩, ⟨c4, p2⟩}.
Then,
Tr = ⟨{p0, c1, p1, p2, c2, c4},

{⟨c1, p0⟩, ⟨p1, c1⟩, ⟨p2, c1⟩, ⟨c2, p1⟩,
⟨c4, p2⟩}⟩.

Note that since C did not choose
⟨c3, p2⟩, we cannot make p3 usable.

8. Only P ’s next move is to give ∅.
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Figure 2: Representation of Arguments for
Example 2

9. C hides the another counter-argument
{c3, p2} and gives ∅. Then, there is no
move from both sides so we are done.

10. Then, c2 and c4 are accepted. Then ei-
ther p1 nor p2 is accepted and c1 is ac-
cepted. Finally p0 is not accepted.

In this example, an agent c does not use c3
to rebut p2 but use c4 therefore, p3 is not
invoked and p0 is not accepted. An agent
c does not need to make more argument us-
ing c3 since the current counter-arguments are
enough to win the example (See Fig. 2).

3 Computing Accep-
tance in Argumentation
Framework

In this section, we assume that agents are
both eager. Then we can translate an ar-
gumentation framework into a logic program
in order to compute acceptability of a given
argument from the bird’s eye view. There
is a proposal of computing Dung’s argumen-
tation semantics by translating the Dung’s
framework into a logic program and corre-
sponding answer set of the program with
acceptability[Osori05]. We extend their work
by adding an extra condition reasoning about
“sources”. In order to do so, we introduce
new predicate “announced(A)” meaning that
an argument A is actually used for building an
argumentation game tree. If an argument can
be attacked by satisfying the condition that

there is an attack relation for the argument
and counter-argument is in the source, then
counter-argument becomes announced to the
other agent so that the agent can use other
sources of arguments.

Definition 4 Let
⟨Arg,Attack, Source,Derive⟩ be an ar-
gumentation framework. For A ∈ Arg, we
define CounterA = {B|⟨B,A⟩ ∈ Attacks}.
For each argument A, we define the trans-
lation of argument A to rules of logic
programming as follows:
accepted(A) ←∧

B∈CounterA

not (source(B) ∧ accepted(B)).

Note that if CounterA is empty then the above
rule becomes accepted(A).
For every B ∈ CounterA

5,

announced(B) ← announced(A)∧source(B).

We also add the following rules for (A ⇐
A1, ..., Am) ∈ DeriveC:

source(A) ←
m∧

i=1

bodyC(Ai).

where body(Ai) is defined as follows:

bodyC(Ai) =
{

source(Ai) if Ai ∈ ArgC

announced(Ai) if Ai ∈ ArgP

Similarly, we add the following rules for (A ←
A1, ..., Am) ∈ DeriveP :

source(A) ←
m∧

i=1

bodyP (Ai).

where bodyP (Ai) is defined as follows:

bodyP (Ai) =
{

source(Ai) if Ai ∈ ArgP

announced(Ai) if Ai ∈ ArgC

We also add the following for an argument A
in the initials source sets:

source(A).

5If the parent node is announced and the current
node is in the source, then the current node will be
announced. This rule expresses the eager strategy of
argumentation.



We also add the following for the conclusion
A0 which is the root of the argumentation
game tree:

announced(A0).

Example 3 Consider the setting of Exam-
ple 1. The translated logic program becomes
as follows:

accepted(c1) ←
not (source(p1) ∧ accepted(p1))∧
not (source(p2) ∧ accepted(p2)).

accepted(c2) ←
not (source(p3) ∧ accepted(p3)).

accepted(p0) ←
not (source(c1) ∧ accepted(c1)).

accepted(p1) ←
not (source(c2) ∧ accepted(c2)).

accepted(p2) ←
not (source(c3) ∧ accepted(c3)).

accepted(c3).
accepted(p3).
announced(p1)

← announced(c1) ∧ source(p1).
announced(p2)

← announced(c1) ∧ source(p2).
announced(p3)

← announced(c2) ∧ source(p3).
announced(c1)

← announced(p0) ∧ source(c1).
announced(c2)

← announced(p1) ∧ source(c2).
announced(c3)

← announced(p2) ∧ source(c3).
source(p3) ← announced(c3).
source(p0). source(p1). source(p2).
source(c1). source(c2). source(c3).
announced(p0).

Then, we can show that accepted(p0) is de-
rived from the above program.

Theorem 1 Let
⟨Arg,Attack, Source,Derive⟩ be an argu-
mentation framework and A0 be a conclusion
and Tr be a final argumentation game tree
w.r.t. the framework for the eager strategy
and Pr be a translated logic program from
the framework. Then, A0 is accepted if and
only if Pr |= accepted(A0)

4 Conclusion

The contributions of the paper are as follows.

• We give more general framework of ar-
guments under incomplete information.

• We give a computational method of how
to decide the acceptability of the argu-
ments using a translation from an argu-
mentation framework to a logic program
under the assumption that every possi-
ble arguments are made.

As a future research, we should give a com-
putational method of acceptability for a lazy
agent. The method must reflect multiple ex-
tensions of arguments related with choices of
arguments.
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