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Abstract

We discuss description and reasoning over regions. We have
proposed a system called SRCC that integrates integration
of spatial and semantic data. SRCC can describe and rea-
son about the propagation or causality of semantic properties
that hold for pairs of connected or unconnected regions. We
extend SRCC by introducing meta-variables so that it can
handle both the propagation of a semantic property for a spe-
cific region and general propagation rules for an arbitrary re-
gion. Moreover, we revise our algorithm that checks for the
unsatisfiability of a given set of formulas, so that it can de-
rive the necessary spatial constraints if the set is satisfiable.
In the revised algorithm, the relative positional relation over
regions is derived a constraint from the properties that hold
for a single region or interrelationship over multiple regions.
For example, this can be applied to determining where a new
building should be built.
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1. Introduction
Region Connection Calculus (RCC) (Randel et al. 1992)
is a calculus for qualitative spatial reasoning. In RCC, “a
region” is regarded as a primitive that constructs a space,
and considers relative positional relations between regions
are handled such as “France and Germany touch.” So far,
many studies have discussed procedures for examining the
consistency of a given set of positional relations (Cohn &
Gotts 2002)(Renz 2002)(Li & Ying 2003), how some rela-
tions change with the passage of time (Muller 1998)(Wolter
& Zakharyaschev 2000), and so on (Borgo et. al 1996)(Cohn
et al. 1997). These studies have clarified interesting features
of RCC.

However, RCC cannot handle semantic properties that
hold in some region such as “It rains in Manhattan,” or in-
terrelations between the attributes of regions such as “Many
persons living in city A work in city B.” We have proposed
a system called SRCC that can integrate spatial and se-
mantic data by extending RCC (Takahashi 2002)(Takahashi
2003). We have presented a sound and complete algorithm
that checks the unsatisfiability of a given set of formulas in
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SRCC and have shown SRCC can provide description and
reasoning for propagation over regions, such as “If it rains in
cityA, then many workers arrive late for work at companies
in city B.”

However, our previous work is insufficient in the follow-
ing points: (i) the description of propagation is not general
(i.e. propagations over the regions that satisfy the same con-
dition should be described separately) and (ii) the checking
algorithm for a given set of formulas does not find the con-
straints on the regions when the set is satisfiable. In this pa-
per, we revise SRCC with respect to these points to make it
more powerful.

For the first point, SRCC can treat propagation of a se-
mantic property for a specific region, but it cannot handle
a general propagation rule for an arbitrary region, since the
logic of SRCC is propositional. For example, assume that
an event that occurred in the upper portion of a river affects
the downstream portion. In this case, it is more natural to re-
gard these two portions as an arbitrary pair of regions related
to the relation governing where the river-water flows from
and to, rather than as a specific pair of regions. In this paper,
we introduce meta-variables to describe a general propaga-
tion rule over an arbitrary pair of regions.

For the second point, we present an algorithm that can
derive the necessary spatial constraints placed on a pair of
regions if the set is satisfiable that simultaneously checks
for the unsatisfiability of a given set of formulas.

We can use the algorithm to determine where a new region
is introduced. The algorithm finds which relation should
hold between the new region and the existing ones. In addi-
tion, a relation that holds for the existing regions can also be
extracted even if it is not specified.

For example, assume that you are going to move to a new
house and you have to determine where to live next. This
might be involve several considerations. If you have a child,
you might decide to move to an area near a good school.
If you have information about polluted areas, you probably
want to live far from such areas. Our framework based on
SRCC can incorporate these considerations in the follow-
ing manner. It represents the existing properties and spatial
conditions using SRCC formulas, it introduces a new re-
gion that corresponds to the desired features of your new
residents to the existing relations, and it examines what re-
lation should be satisfied between the new and existing ar-



eas. We demonstrate this procedure by considering where to
place a filtration plant along a the polluted river.

This paper is organized as follows. First, we explain
SRCC, and define the description language and its seman-
tics in section 2. Then, we present the revised algorithm in
section 3, and show an application in section 4. We discuss
our approach in section 5, and finally we conclude in section
6.

2. SRCC
Region Connection Calculus (RCC) is one of the represen-
tatives of theories that consider a space as a set of regions,
paying attention only to their relative positions, and that pro-
vide qualitative spatial representation and reasoning. It orig-
inated in Clark’s theory (Clark 1981). Figure 1 shows the
basic relations of RCC-51, a variant of RCC. These relations
are jointly exhaustive and pairwise disjoint. We propose a
system called SRCC that extends RCC-5 so that it can han-
dle the spatial data incorporated with semantic data.

Description Language

The description language of SRCC is defined as follows.

1. region term

(a) A region variable (denoted X,Y, Z, . . .) is a term.
(b) f(α) is a region term, where f is a function symbol and

α is a region term2.

2. formula

(a) spatial formula
DR(α, β), PO(α, β), EQ(α, β), PP (α, β) and
PPi(α, β) are spatial formulas, where α and β are re-
gion terms. The formulas constructed from these using
Boolean operators in the usual way are spatial formu-
las.

(b) property formula
[�α,G] and [�α,G] are property formulas, where α is
a region term and G is a literal (of propositional logic).
The formulas constructed from these using Boolean op-
erators in the usual way are property formulas.

(c) propagation formula
i. [∗α,G]∧θ⇒ [∗β,H] is a propagation formula, where
G andH are literals (of propositional logic), θ (some-
times not appear) is a spatial formula on α and β (∗α
denotes either �α or �α, and we use this notation
hereafter).

ii. A formula is a propagation formula if it is obtained by
substituting the meta-variable Mα for all the occur-
rences of a region variable in a propagation formula.

1RCC-5 is defined on a coarser level of cognitive granularity
than RCC-8, another variant of RCC. RCC-5 does not distinguish
the relation in which regions are connected at a point and the re-
lation in which regions are disconnected while RCC-8 makes this
distinction.

2For simplicity, we use unary function symbols here, but we
can extend the language by allowing n-ary function symbols.

We use the spatial formula P (α, β) to denote the part-of
relation defined by PP (α, β) ∨EQ(α, β), and Pi(α, β) to
denote PP (β, α).

[�α,G] indicates that G holds everywhere in α, whereas
[�α,G] indicates that G holds somewhere in α.

Spatial formulas show relations over regions. Property
formulas show the properties that hold in a region. Prop-
agation formulas show the relation between the properties
of some regions those of other regions. Propagation occurs
only when condition θ is satisfied. If G = H, then it shows
that a property that holds in α is propagated to β, otherwise,
the property is changed. If a propagation formula contains
meta-variables, it holds for any pair of regions that satisfies
θ.

There are two types of propagation: functional propaga-
tion and positional propagation.

Functional propagation is available only for regions sat-
isfying the specified semantic relation. They are explicitly
described in the form: [∗α,G]∧ θ ⇒ [∗f(α), H].

Conversely, positional propagation is available for all re-
gions satisfying some spatial relation. The following prop-
agation formulas show positional propagation that holds for
any α, β and G.

Axiomatic Schema

Ax1 [�α,G]⇔ ¬[�α,¬G]

Ax2 [�α,G]⇒ [�α,G]

Ax3 [�β,G] ∧P (α, β)⇒ [�α,G]

Ax4 [�α,G]∧P (α, β)⇒ [�β,G]

Ax5.a [�α,G]∧ PO(α, β)⇒ [�β,G]

Ax5.b [�β,G]∧ PO(β, α)⇒ [�α,G]

The propagation formula obtained by replacing α, β and
G appearing in an axiom by specific region terms and a spe-
cific proposition, respectively, is said to be an instantiation
of an axiom.

The Model
We call a regular subset of a topological space a region. A
region may be multipiece or may contain a hole, but it must
consist of a universal dimension.

Definition. For a set of spatial formulas, if there exists a
topological space that realizes all the formulas, then the set
is said to be RCC-satisfiable.

The formula obtained by substituting all the occurrences
of a region term t in ϕ for a meta-variable Mα is denoted by
ϕ[Mα/t].

Definition. If a formulaϕ[Mα/t] contains no meta-variable,
then it is said to be a ground formula and [Mα/t] is said to
be a ground substitution.

Definition. We define a structure M = 〈D,Σ,Φ〉 as fol-
lows.
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Figure 1: The basic relations of RCC-5

D is a finite set of regions, Σ is a
set of spatial formulas, and Φ is the set
{[�X1, G1], . . . , [�Xn, Gn]}, where X1, . . . , Xn are
region variables that appear in Σ, and G1, . . . , Gn are
literals of propositional logic. For region variable X that
appears in Σ, we assign an element of D, and for a function
symbol f , we assign the map D → D. Moreover, M
should satisfy the following conditions (i)∼(iii).

(i) There exists a topological space T that realizes all the
formulas in Σ.

(ii) For any X and G, [�X,G] ∈ Φ and [�X,¬G] ∈ Φ
do not hold at the same time.

(iii) If P (α, β) is realized on T and [�β,G] ∈ Φ holds,
then [�α,G] ∈ Φ holds.

If neither [�X,G] ∈ Φ nor [�X,¬G] ∈ Φ holds, then
this means thatG holds in some part of X, and ¬G holds in
another part of X.

When a formula ϕ is true in structureM, we denote this
byM |= ϕ. The semantics is defined as follows.

1. M |= ϕ iff ϕ ∈ Σ where ϕ is a spatial formula.

2. M |= [�Xi, Gi] iff [�Xi, Gi] ∈ Φ

3. M |= ¬ϕ iff not M |= ϕ.

4. M |= ϕ ∧ ψ iffM |= ϕ andM |= ψ

5. M |= ϕ ∨ ψ iffM |= ϕ orM |= ψ

6. M |= ϕ⇒ ψ iff notM |= ϕ orM |= ψ

7. M |= ϕ⇔ ψ iff bothM |= ϕ if and only ifM |= ψ

8. M |= ϕ[Mα] iffM |= ϕ[Mα/X] for all region variable
X in D.

Definition. Let ϕ be a formula. If there exists a structureM
such thatM |= ϕ, then it is said that ϕ is satisfiable, and
M is said to be a model for ϕ. Otherwise, ϕ is said to be
unsatisfiable.

Let Λ = {ϕ1, . . . , ϕn} be a set of formulas and ψ be
a formula. For every model M in which ϕ1 ∧ . . . ∧ ϕn

is satisfiable, if ψ is satisfiable in M, then ψ is said to be
a logical consequence of Λ, and it is denoted by Λ � ψ.

Theorem. Let Λ be a set of formulas and ψ be a formula.
Λ ∪ {¬ψ} is unsatisfiable if and only if Λ � ψ.

Proof)
(⇐) For allM such thatM |= Λ,M |= ¬ϕ does not hold

sinceM |= Λ ∪ {¬ϕ} does not hold. Therefore, M |= ϕ
holds.

(⇒) For all M such that M |= Λ, M |= ϕ holds.
Namely, M |= ¬ϕ does not hold. Therefore, M |=
Λ ∪ {¬ϕ} does not hold.

3. Reasoning
We have devised an algorithm for checking whether a given
finite set of formulas Λ is unsatisfiable (Takahashi 2003).
The algorithm checks the consistency of each region, as well
as the spatial consistency, that is, the existence of a topolog-
ical structure that satisfies the spatial part. The consistency
of each region is checked starting from the regions explicitly
described in the property formulas, and then it checks other
regions to which the property is propagated.

Here, we revise the algorithm so that it finds the constraint
on each pair of region variables appearing in Λ when Λ is
satisfiable, simultaneously it examines the unsatisfiability of
Λ.

If Λ is satisfiable, the necessary condition for the satisfia-
bility of Λ is not always given as spatial formulas. That is,
the positional relations for all the pairs of region variables
appearing in Λ are not specified explicitly. For example,
let Λ be {[�α,G], [�β,¬G]}. Then, Λ is satisfiable, since
there exists a topological space that satisfies DR(α, β), and
both formulas in Λ can be realized in the space. How-
ever, both formulas in Λ cannot be realized simultaneously,
on a topological space that satisfies PO(α, β). Therefore,
DR(α, β) should hold for the satisfiability of Λ, even if the
positional relation between α and β is not specified. We
provide the algorithm to find these conditions.

Definition. For sets of spatial formulas Θ = {θ1, . . . , θn}
and Θ′ = {θ′1, . . . , θ′n′}, if θ1 ∧ . . . ∧ θn ⇒ θ′1 ∧ . . . ∧ θ′n′ ,
then it is said that Θ is stronger than Θ ′.

The constraints necessary for the satisfiability of given set
of formulas can be described as a set of basic relations of



RCC-5 on the pairs of region variables. In the algorithm,
new constraints are added as the regions are checked, and
the set of constraints becomes stronger.

The algorithm for checking unsatisfiability and
deriving constraints

Λ : a given set of formulas.
Θ,∆,Γ: the sets of spatial formulas, property formulas

and propagation formulas appearing in Λ, respectively.
SR: a set of regions apprearing in Θ.

1. i← 0, Θ0 ← Θ, ∆0 ← ∆.

2. (RCC-satisfiability check)
If there exists no topological space that realizes all the
formulas of Θ3,

then Λ is unsatisfiable.
Otherwise, continue.

3. (consistency check for each region)
For each α ∈ SR, do the following.

If DR(α, α) ∈ Θ or ¬Pi(α, α) ∈ Θ,
then Λ is unsatisfiable.[terminate]

Otherwise, continue.

4. λi ← { }.
5. For each propagation formulaE ∈ Γ, which is in the form
δ ∧ θ ⇒ δ′, do the following.

If ∆i � δ and Θi � θ,
then λi ← λi ∪ {δ′}, Γ← Γ− {E}.

If there exists a ground substitution σ
such that ∆i � δσ and Θi � θσ,

then λi ← λi ∪ {δ′σ}.
6. For each E ∈ {Ax2, . . . , Ax5}, do the following.

If there exists an instantiation of E, which is in the
form δ ∧ θ ⇒ δ′, such that ∆i � δ and Θi � θ,

then λi ← λi ∪ {δ′}.
7. If λi = {},

then Λ is satisfiable.[terminate]
Otherwise,

∆i+1 = ∆i ∪ λi.

8. (addition of constraints)
For each E ∈ λi, do the following.

If E = [�α,G],
if [�β,¬G] ∈ ∆i+1,

then Θi+1 ← Θi ∪ {DR(α, β)}.
if [�β,¬G] ∈ ∆i+1,

then Θi+1 ← Θi ∪ {¬Pi(α, β)}.
If E = [�α,G],

if [�β,¬G] ∈ ∆i+1,
then Θi+1 ← Θi ∪ {¬P (α, β)}.

Otherwise,
Θi+1 ← Θi.

9. i← i + 1. Go to 3.

This algorithm terminates within a finite time and is com-
plete for the unsatisfiability, if all the formulas in Λ are

3We cannot discuss this procedure here, but it is discussed, for
example, in (Renz & Nebel 1997)(Renz 2002).
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Figure 2: Inspection of the causality of contamination

ground (Takahashi 2003)．Termination is not guaranteed, if
there exists a formula that is not ground in Λ. However, we
can derive several constraints even if the algorithm does not
terminate.

Let Θk be the final set of constraints obtained when the
algorithm for a satisfiable set Λ terminates. Then, it is clear
that Θk is stronger than Θ. Moreover, if you add any con-
straint to Θk either in the form of DR(α, β), ¬Pi(α, β) or
¬P (α, β), the resulting set becomes inconsistent. In this
sense, Θk is the strongest set of constraints.

4. Application

We apply the algorithm presented in the previous section to
an example that involves the inspecting the causality of con-
tamination (Figure 2).

Consider a river with a metal manufacturing fac-
tory in an upstream area, and a resident area down-
stream. Since the factory contaminates its en-
vironment, we plan to build the filtration plant
to prevent chemicals from reaching the residents.
Where should we build a filtration plant?

We describe this problem in SRCC. mtl, ur, dr, res and
filter are region variables that denote the metal manufactur-
ing factory, the upstream area of the river, the downstream
area of the river, the residents and filtration plant, respec-
tively. The propositionsContam and Chem show the prop-
erties “being contaminated by the factory” and “chemicals
are detected,” respectively. The function flow maps the re-
gion from the upstream portion of the river to the region to
which the river flows. For simplicity, we assume there are
no effects unless explicitly represented.

Then, the problem is formalized as follows:
ϕ1 : PP (mtl, ur)
ϕ2 : PP (res, dr)
ϕ3 : EQ(flow(ur), filter)
ϕ4 : EQ(flow(filter), dr)
ϕ5 : [�mtl, Contam]
ϕ6 : [�Mα,Contam]∧ ¬EQ(Mα, filter)

⇒ [�flow(Mα), Chem]
ϕ7 : [�filter, Chem]⇒ [�flow(filter),¬Chem]
ϕ8 : [�mtl, Contam]⇒ [�mtl, Chem]



The conclusion is represented as follows:
ψ : [�res,¬Chem]

ϕ6 and ϕ7 are propagation formulas. ϕ6 containing a
meta-variable Mα shows the general property of the prop-
agation of contamination, and ϕ7 shows the property with
respect to a specific region filter. It denotes that the prop-
erty of Chem changes to¬Chem in the region to which the
river flows after passing filter. Note that, no constraint on
the position of filter is specified explicitly.

We apply the algorithm shown in the previous section. In
this case, instead of proving ϕ1 ∧ . . .∧ ϕ8 � ψ directly, we
first prove the unsatisfiability of {ϕ1, . . . , ϕ8}∪{¬ψ}. Sec-
ond, to guarantee that the inference makes sense, we prove
the satisfiability of {ϕ1, . . . , ϕ8}. Simultaneously, we derive
the spatial constraints necessary for satisfiability.

The proof for the unsatisfiability of {ϕ1, . . . , ϕ8} ∪ {¬ψ}
Θ0 = {ϕ1, ϕ2, ϕ3, ϕ4}.
∆0 = {[�mtl, Contam], [�res, Chem]}.
Θ1 = Θ0.
∆1 = ∆0 ∪ {[�mtl, Chem], [�mtl, Contam],

[�dr, Chem]}.
Θ2 = Θ1.
∆2 = ∆1 ∪ {[�mtl, Chem], [�ur, Contam]}.
Θ3 = Θ2.
∆3 = ∆2 ∪ {[�flow(ur), Chem], [�ur, Chem]}.
Θ4 = Θ3.
∆4 = ∆3 ∪ {[�filter, Chem], [�flow(ur), Chem]}.
Θ5 = Θ4.
∆5 = ∆4 ∪ {[�filter, Chem]}.
Θ6 = Θ5 ∪ {DR(mtl, flow(filter)),
¬P (ur, flow(filter)),
DR(flow(ur), flow(filter)),
DR(filter, flow(filter)) }.

∆6 = ∆5 ∪ {[�flow(filter),¬Chem]}.
Θ7 = Θ6 ∪ {DR(mtl, dr), DR(flow(ur), dr),
¬P (ur, dr), D(filter, dr),¬Pi(dr, dr)}.

∆7 = ∆6∪{[�flow(filter),¬Chem], [�dr,¬Chem]}.
As for Θ7, from [�dr,¬Chem] ∈ λ7 and

[�dr, Chem] ∈ ∆6, ¬Pi(dr, dr) is derived as a new
constraint. Therefore, Λ is unsatisfiable.

The proof for the satisfiability of {ϕ1, . . . , ϕ8}
Θ0 = {ϕ1, ϕ2, ϕ3, ϕ4}.
∆0 = {[�mtl, Contam]}.
Θ1 = Θ0.
∆1 = ∆0 ∪ {[�mtl, Chem], [�mtl, Contam]}.
Θ2 = Θ1.
∆2 = ∆1 ∪ {[�mtl, Chem], [�ur, Contam]}.
Θ3 = Θ2.
∆3 = ∆2 ∪ {[�flow(ur), Chem], [�ur, Chem]}.
Θ4 = Θ3.
∆4 = ∆3 ∪ {[�filter, Chem], [�flow(ur), Chem]}.
Θ5 = Θ4.
∆5 = ∆4 ∪ {[�filter, Chem]}.

α \ β ur mtl dr res filter

ur EQ PPi ¬ P ¬ P ANY
mtl PP EQ DR DR DR
dr ¬ Pi DR EQ PPi DR
res ¬ Pi DR PP EQ DR
filter ANY DR DR DR EQ

Table 1: The specified relationR(α, β) between regions

Θ6 = Θ5 ∪ {DR(mtl, flow(filter)),
¬P (ur, flow(filter)),
DR(flow(ur), flow(filter)),
DR(filter, flow(filter)) }.

∆6 = ∆5 ∪ {[�flow(filter),¬Chem]}.
Θ7 = Θ6 ∪ {DR(mtl, dr), DR(flow(ur), dr),
¬P (ur, dr), D(filter, dr)}.

∆7 = ∆6∪{[�flow(filter),¬Chem], [�dr,¬Chem]}.
Θ8 = Θ7.
∆8 = ∆7 ∪ {[�dr,¬Chem]}.

The algorithm terminates. Simultaneously, we obtain the
constraints:
Θ8 = Θ0 ∪ {DR(mtl, flow(filter)),
¬P (ur, flow(filter)), DR(flow(ur), flow(filter)),
DR(filter, flow(filter)),
DR(flow(ur), dr), DR(filter, dr),
DR(mtl, dr), ¬P (ur, dr) }
The resulting relations are shown in Table 1. This is the

necessary condition for the satisfiability of Λ. The bold face
letters show the derived constraints. For simplicity, we re-
gard flow(ur) and flow(filter) as filter and dr, respec-
tively, in the table.

As a result, the following can be deduced, for example.

1. FromDR(filter, flow(filter)), a filtration plant should
be built somewhere far from the downriver area.

2. From DR(mtl, dr), we found that if mtl and dr share
a common part, then construction of a filtration plant is
meaningless.

3. As there are no spatial constraints between ur and filter,
a filtration plant can be built in the upper part of the river.

5. Discussion
Although many studies have examined formal methods of
spatial reasoning, few have integrated spatial and semantic
data.

Eschenbach proposed predication calculus (Eschenbach
1999) that can handle the semantic properties of regions in
addition to their mereological and topological properties by
introducing predicators that mean “somewhere in a region”
and “everywhere in a region.”

Although their paper discussed the representation of se-
mantic properties, no inference system was described. They
presented a composition table for reasoning spatial relations,
but did not describe any procedures to check the validity or
unsatisfiability of a set of formulas. On the other hand, we



present here an algorithm that checks unsatisfiability and de-
rives the constraints.

An attempt to incorporate size with a spatial relation was
presented in (Gerevini & Renz 1998), which introduced the
binary operators <,=, > to handle the size of regions qual-
itatively. The idea of utilizing relative size as a constraint to
determine the spatial relations between disconnected regions
is analogous to our approach, although the method that they
adopted cannot be applied to SRCC directly.

Viewing a property that holds everywhere or somewhere
in a region is a way of indicating that a region consists of
points. From this viewpoint, the specific property is satisfied
in some part and it is not in another part of a single region.
The idea that two counter properties may hold in the same
region is similar to the egg-york model (Cohn & Gotts 1996)
and scrambled egg (Guesgen 2002). Both of these models
are introduced for treating vague boundaries, while in our
model, we do not know whether every point in a region may
or may not satisfies a specific property. In this sense, our
model can be regarded as an extension of the scrambled-egg
model.

6. Conclusion
In this paper, we have proposed a system that extends
SRCC by introducing meta-variables and shown that it can
handle both the propagation of semantic properties of a spe-
cific region and general propagation rule for an arbitrary re-
gion.

We have also presented an algorithm that derives the nec-
essary spatial constraints for satisfiability if the set is satis-
fiable that simultaneously checks for the unsatisfiability of a
given set of formulas. The constraint is in the form of ba-
sic relations of RCC-5 on the pairs of region variables. We
have applied the algorithm to an example of contamination
problem and shown that it can derive spatial constraints that
should be satisfied. We can use it to determine where a new
region is introduced.

In future, we will explore the theoretical aspects of
SRCC more deeply, and discuss the limits of its expressive
power. We will also consider integrating temporal reasoning
into SRCC.
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