
An Argumentation Model with Queries

Yu NAMBU1 and Kazuko TAKAHASHI1

School of Science&Technology, Kwansei Gakuin University,
2-1, Gakuen, Sanda, 669-1337, JAPAN

ktaka@kwansei.ac.jp cdh67289@kwansei.ac.jp

Abstract. An argumentation is generally defined by a set of arguments
and attacks between them. If a pair of arguments attacks each other,
the result of an argumentation may not be decided. We propose an ar-
gumentation model that can resolve such mutual attacks and can reach
an agreement between the participants. In this model, each argument
is assumed to consist of three elements: claim, data, and warrant. The
direction of attack between arguments is syntactically determined based
on the refinement level of each argument. When we cannot determine the
winner of an argumentation because of a mutual attack, a query is made
to urge agents to present more refined arguments about the arguments in
question. Agents can continue a deeper argumentation by obtaining new
information as answers. Deeper argumentation enables an undecided ar-
gumentation to be decided. By incorporating refinement and query, the
model can simulate more practical argumentation.

Keywords: argumentation, preference, query, refined argument, Toulmin
model

1 Introduction

An argumentation is a kind of dialogue, but it differs from ordinary dialogue
because a unit that constructs an argumentation is a statement with grounds,
and each utterance is given with a kind of validity.

To date, most research in argumentation has been undertaken in the field of
law, but recently, researchers in the fields of artificial intelligence and computer
science have focused on its logical properties [13, 6]. Argumentation has many
promising applications, such as decision support in a multi-agent environment,
proofs for statements made in legal judgments, and support for verification of
assurance cases.

Dung proposed an argumentation framework to allow abstract treatment of
argumentation, and showed its relationship with logic programming and non-
monotonic reasoning [7]. Within this framework, when arguments and the rela-
tions of attacks between them are given, an argumentation can be represented
as a graph, ignoring the contents of each argument. This approach has been
adopted by many researchers in artificial intelligence and logic programming,
who have proposed various argumentation models [13]. This technique is sim-
ple and easy to apply because most simulation and semantics problems can be

reduced to those on graphs. In this framework, if a mutual attack exists, if we
want to decide whether an argument is accepted in an argumentation, the re-
sult is different depending on which argument to be admitted that constitutes a
mutual attack. However, in a practical argumentation, agents usually engage in
challenges to resolve this mutual attack and reach the result. The phenomenon is
particularly notable when the arguments that constitute a mutual attack make
different claims based on the same data.

For example, assume that agent a and b want to decide whether they take
umbrellas with them. Suppose that an agent a gives an argument A, “We should
take umbrellas with us because the weather forecast says the chance of rain today
is 30 percent.” If b accepts this argument, they reach an agreement. However, if
agent b gives the following counterargumentB, “We need not take umbrellas with
us because the weather forecast says the chance of rain today is 30 percent,” then
a must add the reason why he/she deduce the conclusion “taking umbrellas with
us” from the probability of rain in the forecast. In practical argumentation, when
a contradictory pair of claims arises from the same fact, each agent usually wants
to know why his/her opponent is making the counterargument. They will ask
“Why do you think so?” If agent a answers, for example, A′, “In my experience,
it has always rained on days when the weather forecast said that the chance of
rain was 30 percent,” as a subsequent argument, b may make a counterargument
to this argument or he/she may give the grounds for his/her reasoning. In any
case, the argumentation can proceed and may reach some result.

In this example, a mutual attack exists between A and B, but A′ is not an
attack on B. Rather, it is an answer to the “Why” question that gives a detailed
explanation for his/her reasoning. However, an attack relation cannot capture
this phenomenon and cannot represent the process of resolving a mutual attack.

In this paper, we propose an argumentation model with two binary relations
over a set of arguments in addition to an attack so that we can manage the
process of resolving mutual attacks. We define an argument not in an abstract
way, but as an entity that has three components, and classify attacks depending
on the target component of each argument. This definition of argument is based
on the Toulmin model [14]. Some types of mutual attack can be resolved by
posing a query. Agents can continue a deeper argumentation by obtaining new
information as answers. More refined arguments can help resolve an undecided
argumentation.

The goal of our model is twofold: to clarify the reasons for attacks and argu-
mentation flow, and to make it possible to resolve an argumentation that is un-
decided due to mutual attacks between arguments. The first goal can be achieved
by incorporating the contents of an argument; the second can be approached by
encouraging agents to proceed to deeper argumentation by providing queries.

The rest of this paper is organized as follows. Section 2 introduces the con-
cepts on which our work is based. Section 3 formalizes our argumentation model.
Section 4 describes our argumentation procedure with a query phase and Sec-
tion 5 presents an illustrative example. Section 6 compares our approach with
other approaches. Finally, Section 7 presents our conclusions.

2 Basic Concepts

2.1 Toulmin Model

The Toulmin model is a well-known argumentation model [14], on which many
studies have been based [8, 15].

In the model, an argument, which is a unit of an argumentation, consists of
six components: data, claim, warrant, backing, qualifier, and rebuttal. Figure 1
shows one configuration of these components. The claim is an assertion, which is
the core of an argument. Data comprise a set of facts, which act as the grounds
for the claim, and the warrant is a rule that explains why the claim is deduced
from the data. The backing is a universal or legal ground that supports the
warrant. The qualifier shows the degree of force that the data give to the claim
by the warrant. The rebuttal is a condition of exception for the argument. The
relationships among these components can be interpreted as follows: the claim
with the qualifier is deduced from data, based on the warrant and supported by
the backing.

D C

R

Q

W

B

Fig. 1. Toulmin’s argument diagram

Example 1 The following is a sample argument [14].
data (D): Harry was born in Bermuda.
qualifier (Q): presumably
warrant (W): A man born in Bermuda will generally be a British subject.
backing (B): The following status and other legal provisions.
rebuttal (R): Both his parents were aliens and he has become a naturalized

American.
claim (C): Harry is a British subject.

In a practical argumentation, each argument is not always presented with
these six components. An argument often appears without Q,B, and R; these
parts are supplied afterwards when required.

2.2 Dung’s Argumentation Framework

Whereas Toulmin focused on the use of argument to defend a claim by asserting
something, Dung presented an argumentation framework that abstracted the

contents of arguments away and focused mainly on the interaction between ar-
guments and acceptance of arguments. This approach is currently the base of
most argumentation models.

Definition 1 (Dung’s argumentation framework) [7]
An argumentation framework is defined as a pair 〈Args,Atts〉 where Args is a
set of arguments and Atts is a binary relation over Args, representing attacks.

3 Formalization

We formalize our argumentation model.

Definition 2 (consistent) Let Ψ be a set of formulas in propositional logic. If
no ψ exists that satisfies both ψ ∈ Ψ and ¬ψ ∈ Ψ , Ψ is said to be consistent.

The knowledge base Ka for each agent a is a finite, consistent set of propo-
sitional formulas. An agent a participates in argumentation using elements of
Ka. Note that Ka may not be deductively closed, that is, there may be a case
in which φ, φ⇒ ψ ∈ Ka and ψ /∈ Ka hold. Also note that ¬¬ψ is considered to
be ψ.

An argument is defined based on the Toulmin model.

Definition 3 (argument) Let Ka be a knowledge base for an agent a. An argu-
ment of a is a triple (φ, φ⇒ ψ,ψ), where φ, ψ are formulas in Ka, or (⊥,⊥, ψ),
where ψ is a formula in Ka and ⊥ denotes that no element exists. For an ar-
gument A = (D,W,C), D, W , and C are said to be the data, the warrant, and
the claim, and they are denoted by Clm(A), Dat(A), and Wrr(A), respectively.

Definition 4 (support) For an argument A = (D,W,C), if D 6= ⊥, then we
say that A has support, otherwise, we say that A has no support.

Each argument has a level of statement. For example, “the weather forecast
says the probability of rain is 30%, and in my experience, it has always rained
on days when the weather forecast said that the chance of rain was 30%” is
a stronger reason for the same claim “taking an umbrella” than just the fact
“the weather forecast says the probability of rain is 30%.” We define the level
of refinement based on the number of propositions included in the data of an
argument. The level of refinement of an argument without support is defined as
a maximum value, max.

Definition 5 (level of refinement) For an argument A, the level of refine-
ment rLevel(A) is defined as the number of propositions in Dat(A), if Dat(A) 6=
⊥, and max if Dat(A) = ⊥. For arguments Aa and Ab, if rLevel(Aa) > rLevel(Ab),
then it is said that Aa is more refined than Ab.

Attack is a binary relation between arguments and it is available from an
argument at a higher level to an argument at a lower or equal level.

Definition 6 (attack) Let Aa and Ab be arguments. An attack from Aa to Ab

is defined as follows.

1. If Clm(Aa) ⇒ ¬Clm(Ab), rLevel(Aa) ≥ rLevel(Ab) and Aa has support,
then (Aa, Ab) is said to be a rebut from Aa to Ab.

2. If Clm(Aa) ⇒ ¬Dat(Ab) or Clm(Aa) ⇒ ¬Wrr(Ab), rLevel(Aa) ≥ rLevel(Ab)
and Aa has support, then (Aa, Ab) is said to be an undercut from Aa to Ab.

3. If Clm(Aa) ⇒ ¬Dat(Ab) or Clm(Aa) ⇒ ¬Wrr(Ab), rLevel(Aa) ≥ rLevel(Ab)
and Aa has no support, then (Aa, Ab) is said to be a force from Aa to Ab.

4. An attack from Aa to Ab is either a rebut, an undercut, or a force from Aa

to Ab.

When (Aa, Ab) is an attack from Aa to Ab, then it is said that Aa attacks Ab.

A rebut is an attack on a claim, whereas an undercut and force are attacks
on the data or the warrant. An attack from an argument without support on
the claim of another argument is not allowed because mutual attacks between
arguments without support generate meaningless repetition.

A force is an attack from an argument without support on the data or the
warrant of another argument. Figure 2 illustrates the effect of a force. Let A1,
A2, and A3 be arguments, and (A2, A1) and (A3, A2) be attacks. If A2 is a force
to A1, A2 has no support. Therefore, an attack to A2 should be a rebut. Because
Clm(A2) is equivalent to ¬Dat(A1), Clm(A3) is equivalent to Dat(A1). This
process means that the force is an attack that requires the agent to present the
grounds of the data.

αclaim

data

warrant

claim

data

warrantclaim

force rebutβ
β α γ β

γ

β

A1

β

A3

A2

Fig. 2. An effect of a force

In addition to the attack, we define two more binary relations on a set of
arguments: complementary pair of arguments and backing. A complementary
pair of arguments is a pair of arguments with the same data and complementary
claims, while backing means that one’s claim is equivalent to the other’s warrant.
These two relationships are essential to represent a practical argumentation.

Definition 7 (complementary pair of arguments) For a pair of arguments
Aa and Ab, if Dat(Aa) ≡ Dat(Ab) and Clm(Aa) ≡ ¬Clm(Ab), then (Aa, Ab) is
a complementary pair of arguments.

Definition 8 (backing) For a pair of arguments Aa and Ab, if Clm(Aa) ≡
Wrr(Ab), then (Aa, Ab) is a backing from Aa to Ab.

4 Argumentation Procedure

In this section, we present our argumentation procedure between agents P and
C. We assume that P and C have their own knowledge bases from which all
possible arguments are constructed.

4.1 Argumentation Framework

Definition 9 (argumentation framework) Let KP and KC be knowledge
bases for agents P and C, respectively. An argumentation framework between
P and C, AF (KP,KC) is defined as a five-tuple 〈ArgP , ArgC , Atts, CPs,BKs〉,
where ArgP and ArgC are sets of all possible arguments of P and C, respectively,
and Atts, CPs, and BKs are the binary relations on ArgP ∪ArgC , which rep-
resent attacks complementary pairs of arguments and backings, respectively.

Let AF be an argumentation framework. Then, from the consistency of
knowledge bases, the following propositions hold.

Proposition 1 (1) For each element (Aa, Ab) ∈ Atts, if Aa ∈ ArgP , then
Ab ∈ ArgC ; and if Aa ∈ ArgC , then Ab ∈ ArgP .
(2) CPs ⊆ Atts.
(3) For each element (Aa, Ab) ∈ BKs, if Aa ∈ ArgP , then Ab ∈ ArgP ; and if
Aa ∈ ArgC , then Ab ∈ ArgC .
(4) There is no cycle of attacks that consists of an odd number of arguments.

Example 2 Let P and C be agents, and let KP = {α, β, γ, δ, β ⇒ α, γ ⇒ β, δ ⇒
(γ ⇒ β)} and KC = {¬β, γ, γ ⇒ ¬β} where α, β, γ, and δ are propositions.
Then, three arguments P1 = (β, β ⇒ α, α), P2 = (γ, γ ⇒ β, β) and P3 = (δ, δ ⇒
(γ ⇒ β)) are generated from KP, and one argument C1 = (γ, γ ⇒ ¬β,¬β) is
generated from KC. rLevel(P1) = rLevel(P2) = rLevel(P3) = rLevel(C1) =
1. In this case, AF0 = 〈ArgP , ArgC , Atts, CPs,BKs〉 is defined as follows:
ArgP = {P1, P2, P3}, ArgC = {C1}, Atts = {(C1, P1), (P2, C1), (C1, P2)},
CPs = {(C1, P2)}, BKs = {(P3, P2)} as shown in Figure 3.

Definition 10 (related complementary pair)
Let AF = 〈ArgP , ArgC , Atts, CPs,BKs〉 be an argumentation framework. For
an argument A and complementary pair of arguments (A′, A′′) ∈ CPs, if there
exists a sequence of arguments A0, . . . , An, where A0 = A, An = A′, and
(Ai, Ai−1) ∈ Atts for each i (1 ≤ i ≤ n), then this complementary pair of argu-
ments is related to A. Additionally, a set of complementary pairs of arguments
that are related to A is denoted by CPs(A).

Example 3 (Cont’d) For the argumentation framework AF0,
CPs(P1) = {(C1, P2)} and CPs(P3) = ∅.

γ γ β

C1 β

α
β β α

P1

β
γ γ β

P2

γ β
δ δ (γ β)

P3

Fig. 3. Example of an argumentation framework AF0

4.2 Extensions

Here, we introduce the notion of using an extension defined by Dung [7], to
determine win or loss of an argumentation. An extension is an acceptable set of
arguments within a given argumentation framework.

Definition 11 (conflict-free, admissible) Let 〈ArgP , ArgC , Atts, CPs,BKs〉
be an argumentation framework. For A,B ∈ ArgP∪ArgC , and S ⊆ ArgP∪ArgC ,
(1) S is conflict-free iff there are no elements A,B ∈ S such that A attacks B.
(2) S defends A iff S attacks each argument that attacks A.
(3) S is admissible iff S is conflict-free and defends all of the elements.

There are several definitions of acceptability, and different extensions are
possible for each acceptability. Here, we adopt a preferred extension.

Definition 12 (preferred extension) A maximal admissible set with respect
to ⊆ is a preferred extension.

Example 4 (Cont’d) For the argumentation framework AF0, its preferred ex-
tensions are {P1, P2, P3} and {C1, P3}.

4.3 Argumentation Procedure with A Query Phase

In an argumentation procedure, we want to decide whether an agent proposing
some issue wins or loses an argumentation.

Definition 13 (acceptance) For an argumentation framework
AF = 〈ArgP , ArgC , Atts, CPs,BKs〉 and an argument A ∈ ArgP ∪ ArgC , if
CPs(A) = ∅ and all preferred extensions include A, then A is accepted in AF ;
if CPs(A) = ∅ and if there exists a preferred extension that does not include A,
then A is non-accepted in AF ; and if CPs(A) 6= ∅, A is undecided in AF . The
acceptance of A in AF is denoted by judgeAcc(A,AF).

Example 5 (Cont’d) For the argumentation framework AF0,
judgeAcc(P1, AF) = undecided, judgeAcc(C1, AF) = undecided and
judgeAcc(P3, AF) = accepted.

For an argumentation framework AF = 〈ArgP , ArgC , Atts, CPs,BKs〉 and
an argument A ∈ ArgP ∪ArgC , an argumentation procedure with a query phase
proceeds as follows.

First, we check whether A is accepted. When it is undecided, then a comple-
mentary pair of arguments exists in AF . We assume that different reasons are
used in the processes through which a complementary pair of claims is deduced
from the same data. In this case, we want to urge each agent to present the
reason why his/her claim is deduced, that is, the grounds of his/her warrant.
This can be done by invoking an additional argumentation in the query phase.
The additional argumentation starts with the argument of which the claim is
such a warrant.

The purpose of a query phase is to eliminate mutual attacks in the main
argumentation. We feed the results back to the main argumentation so that it
proceeds with the newly obtained information. If an agent can give a sufficient
explanation against which the opponent cannot give any more counterargument,
this means that the agent’s warrant has sufficiently strong grounds, that is the
backing. In this case, no more detailed explanation is expected and that warrant
remains. Otherwise, the grounds are insufficient to make the warrant, so we
withdraw that warrant from the knowledge base. It follows that a mutual attack
is eliminated.

From this process, we can change an undecided argumentation into a decided
one.

We present the procedure for argumentation with a query phase.

Argumentation procedure with a query phase
Let AF = 〈ArgP , ArgC , Atts, CPs,BKs〉 be an argumentation framework,

and Ais be an issue argument. Let player be an agent who gives Ais. The
following procedure judgeArg(Ais, AF) determines if player wins or loses AF .

1. If judgeAcc(Ais, AF) = accepted,
then terminate with the result judgeArg(Ais, AF) = win,
which means player wins AF .

If judgeAcc(Ais, AF) = non-accepted,
then terminate with the result judgeArg(Ais, AF) = lose,
which means player loses AF .

If judgeAcc(Ais, AF) = undecided,
then for (AP , Ac) ∈ CPs,
do the existBacking for AP and AC , respectively.

2. If existBacking(AP , AF) = true and existBacking(AC , AF) = true,
then set AF ′ = 〈ArgP , ArgC , Atts, CPs− {(AP , AC)}, BKs〉,
and go to 6.

3. If existBacking(AP , AF) = false,
then set KP

′ to be KP − {Wrr(AP)}.
4. If existBacking(AC , AF) = false,

then set KC
′ to be KC − {Wrr(AC)}.

5. Set AF ′ to be AF (KP
′,KC

′) = 〈Arg′P , Arg′C , Atts′, CPs′, BKs′〉.

6. Set AF = AF ′ and go to 1.

existBacking is invoked as a query phase and defined as follows.
existBacking(A,AF) is true if there exists an argument A′ such that

(A′, A) ∈ BKs and judgeArg(A′, AF) = win, otherwise it is false.

Note that this argumentation procedure terminates because the number of
the arguments is finite and the number of CPs decreases every cycle.

Proposition 2
For an argumentation framework AF = 〈ArgP , ArgC , Atts, CPs,BKs〉 and an
argument A, judgeArg(Ais, AF) terminates with the result that the player that
proposes A wins or loses AF .

Example 6 (Cont’d) The argumentation procedure with a query phase for AF0

and the issue node P1 is shown below. First, judgeAcc(P1, AF) = undecided,
and (C1, P2) ∈ CPs(P1). Then, go to the query phase. As existBacking(C1, AF)
= false and existsBacking(P2, AF) = true, delete Wrr(C1) from KC and re-
construct the argumentation framework to get AF ′ = 〈{P1, P3}, ∅, ∅, ∅, {(P1, P3)}〉.
Next, judgeAcc(P1, AF

′) = accepted, because there is no complementary pair of
arguments and its preferred extension is {P1, P3}. Therefore, P wins AF ′.

5 Illustrative Dialogue

The following section illustrates how our argumentation procedure with a query
phase works using a case study of the history of chemistry.

Example 7 Some scientists in the 17th century believed that an entity called
“phlogiston” was the cause of combustion. According to this theory, phlogiston
was a substance contained in combustible bodies and released during combustion.
The existence of phlogiston was disproven when Lavoisier showed that combustion
requires a gas that has weight (i.e., oxygen) and could be measured.

The following illustrates the argumentation between scientists in the phlo-
giston school (P) and those in the non-phlogiston school (C). This is a typical
example in which a complementary pair of claims is deduced from the same data
in different knowledge bases, and where the mutual attack is ultimately resolved
by a query phase.

P1 ”Phlogiston exists because it is contained in every combustible resource.”
C1 ”I don’t think that it is contained in every combustible resource.”
P2 ”It is contained because it is released during combustion.”
C2 ”I don’t think that it is released during combustion.”
P3 ”The fact that a material can burn means that phlogiston is released.”
C3 ”When a material burns, it gets weight. Thus, it is unlikely that anything is

released. So, phlogiston is not released.”
P4 ”No. The fact that ”a material gets weight on burning” itself proves that

phlogiston is released.”

In C3 and P4, a complementary pair of claims “phlogiston is released” and
“phlogiston is NOT released” from the same data ”a material gets weight when
burning.” Then, queries are generated to ask both agents to justify their argu-
ments.

The query from C to P is as follows.

QC→P ”Why do you think that the phlogiston is released, given that a material gets
weight when burning?”

P5 ”Due to the fact that phlogiston has a negative weight.”
C5 ”There is no material that has a negative weight. Therefore, phlogiston does

not have a negative weight.”

In this case, P5 is an answer to the question, and C makes a counterargument
to P’s answer. Then, there are no more arguments. Therefore, the warrant for
P4 is not justified.

On the other hand, the query from P to C is as follows.

QP→C ”Why do you think that phlogiston is NOT released, given that a material
gets weight when burning?”

C4 ”Because the fact that a material burns means that it gets oxygen.”

In this case, C4 answers the question and P makes no additional counterar-
gument1. Therefore, the warrant for C3 is justified.

Overall, C is the winner of this argumentation.

Here is the process of argumentation with a query phase.

Let KP and KC be knowledge bases of P and C, respectively, as shown in
Figure 4.

First, we make an initial argumentation framework AF
= 〈ArgP , ArgC , Atts, CPs,BKs〉 fromKP andKC (Figure 5). Note that (C1, P1)
and (C2, P2) are the forces. (C3, P4) is the only complementary pair of argu-
ments. (P5, P4) and (C4, C3) are backings. In this figure, for each node that
corresponds to an argument A, Clm(A) appears in the upper column of the
node, Dat(A) appears in the lower left of the node, and Wrr(A) appears in
the lower right of the node. For example, Clm(C3), Dat(C3), and Wrr(C3) are
¬relP , burn⇒ getWeigt and (burn⇒ getWeight) ⇒ ¬relP , respectively. Note
that C2 cannot attack P3, since C2 which has no support is not allowed to attack
P3’s claim, and that P3 cannot attack C3, since C3 is more refined than P3.

We start argumentation on AF and the issue argument P1.
judgeAcc(P1, AF) = undecided, because (C3, P4) ∈ CPs(P1).

Then, a query phase starts for (C3, P4), which invokes additional argumen-
tation (Figure 6).

First, we explain a query phase for P4.

1 Historically, this answer took place several years after the question was presented.

phlogiston includeP ⇒ phlogiston
includeP relP ⇒ includeP
relP burn ⇒ relP
burn burn ⇒ getWeight
minus (burn ⇒ getWeight) ⇒ relP
minus ⇒ ((burn ⇒ getWeight) ⇒ relP)

KP

¬includeP burn ⇒ getWeight
¬relP (burn ⇒ getWeight) ⇒ ¬relP
¬minus ¬observeMinus ⇒ ¬minus
getOxy
¬observeMinus
getOxy ⇒ ((burn ⇒ getWeight) ⇒ ¬relP)

KC

Fig. 4. Agents’ knowledge bases

Because P5 is the backing for P4, a query is a bridge between P4 and P5. In
this figure, [Q]((burn ⇒ getWeight) ⇒ relP) denotes the question correspond-
ing to QC→P , and [A]minus ⇒ ((burn ⇒ getWeight) ⇒ relP) denotes the
answer. We examine whether P5 is accepted in AF . Because CPs(P5) = ∅, and
P5 is not included by any preferred extension of AF , judgeAcc(P5, AF) = non-
accepted. Therefore, existBacking(P4, AF) = false.

The query phase for C3 is performed using a similar procedure. Because C4 is
the backing for C3, a query is a bridge between C4 and C3. Because CPs(C4) =
∅ and C4 is included by all preferred extensions of AF , judgeAcc(C4, AF) =
accepted, Therefore, existBacking(C4, AF) = true.

Next, we update the knowledge bases and reconstruct an argumentation
framework. Because existBacking(P4) = false, formula (burn⇒ getWeight) ⇒
relP is eliminated from KP. The resulting corresponding graph for the re-
constructed argumentation framework is shown in Figure 7. It has only one
preferred extension {C1, C2, C3, C4, C5} and a set of complementary pairs of
arguments CPs′ = ∅. Therefore, judgeAcc(P1, AF

′) = lose, meaning that P
loses the main argumentation.

6 Discussion

6.1 Relationship with the Toulmin Model

In our model, the argument structure is based on the Toulmin model. Initially,
an argumentation proceeds without backing in our model. However, when the
judgment for an argumentation is not decided because of a mutual attack, a
more detailed explanation is required. Our model requires both agents to present

legend

Claim

Data Warrant

phlogiston

includeP

ncludeP

relP

relP relP

P1

P4

P3

P2

C1

C4

C2

C3

C5

minus

relP
relP
includeP

burn
relP

burn

includeP
includeP

(burn getweight) relP

getOxy getOxy

((burn getweight) relP)

burn
getWeight

(burn getWeight)

relP

burn

getWeight

(burn getWeight)

relP

observeMinus

minus
observeMinus

burn getWeight) relP

((burn getWeight) relP)
minus

minus

Fig. 5. Argumentation for the phlogiston example

relP

burn

getWeight
(burn getWeight)

relP

QC P

P4

[A]

minus

((burn getweight) relP)

[Q]

(burn getweight)

relP

P5

(burn getweight) relP

((burn getweight) relP)
minusminus

relP
C3

[A]
getOxy

[Q]

getOxy
getOxy

relP

C3

burn
getWeight

(burn getWeight) relP

(burn getWeight)

relP

QP C

(burn getWeight)
((burn getWeight) relP)

((burn getWeight) relP)

Fig. 6. Query phase

reasons for their own statements by giving a query. A query can be considered a
trigger to encourage an agent to give backing to the warrant of an argument in a
mutual-attack relation. This invokes an additional argumentation. Winning an
additional argumentation means that the backing is given. An argument with
backing is stronger than one without. This is reflected in the judgment on the
reconstructed argumentation.

Another important point of comparison is the treatment of rebuttal. In the
Toulmin model, attack is possible as a rebuttal. However, it is not clear which
element of an argument a rebuttal is attacking. In contrast, in our model, the
target element of attack is obvious.

6.2 Preference-Based Argumentation

According to Dung’s abstract argumentation framework, if an argumentation
framework includes a mutual attack between arguments, then an agent’s win or
loss is usually undecided. This makes the framework unsuitable for applications
of persuasion, agreement, or legal judgment. Several extensions of this framework
have been proposed to avoid mutual attacks; most have proposed a certain order
over arguments such as preference [11, 1, 3] or value [4]. In these extended frame-
works, preferences or values are assigned depending on the strength, certainty,
or stability of formulas or the reliability of agents, so that attack is effective in
a unique direction. However, this approach is unnatural because preference or
value is set by a user arbitrarily. In our model, although the direction of attack
relation is also determined uniquely based on the level of statement, it can be de-
fined syntactically without user intervention. Additionally, almost all arguments
have the same level of statement, and mutual attacks are not strictly prohibited.
This means that mutual attacks may appear in the initial argumentation. Our

phlogiston

includeP

ncludeP

relP

relP relP

P1

P3

P2

C1

C4

C2

C3

C5

minus

relP
relP
includeP

burn
relP

burn

includeP
includeP

(burn getweight) relP

getOxy getOxy

((burn getweight) relP)

burn

getWeight

(burn getWeight)

relP

observeMinus

minus
observeMinus

Fig. 7. Reconstructed argumentation

goal is to eliminate them based on how the argumentation proceeds by changing
the knowledge bases of agents.

6.3 Extended Argumentation Framework

Modgil extended Dung’s framework by introducing the meta-attack, an attack on
an attack, and proposed the Extended Argumentation Framework (EAF) [9, 10].
In this framework, the relative strength of attacks is determined by the existence
of meta-attacks without applying any preference. Because a meta-attack is an
attack on the reason that the target attack is possible, it corresponds to an
attack on the warrant in our framework. EAF differs in several ways from our
framework. First, EAF ignores the contents of arguments, and it is not clear
which element of an argument is being attacked. In contrast, in our framework,
an argument is composed of three elements and the target element of an attack
is clear. Second, in EAF, the strength of attacks in the loop can be determined
by the existence of meta-attacks. In contrast, in our model, win or loss of an
argumentation is decided by eliminating the loop.

6.4 Dynamic Argumentation Framework

In our model, the knowledge bases of agents change as the argumentation pro-
ceeds. Most argumentation frameworks do not take the change of knowledge
bases into account, but several researchers have considered this point. Amgoud
considered the knowledge base of each agent separately, as well as its revision
during the exchange of arguments, for handling negotiation processes [2]. Cayrol
discussed the revision of argumentation theory and investigated how acceptable
arguments change when an argument is added at an abstract level [5]. Okuno
proposed a dynamic argumentation framework in which agents’ knowledge bases
are changed during the execution of an argumentation [12]. His model explained
the process of the generation of a new argument considering the contents of an
argument. However, he also used preference to avoid mutual attacks, and did
not discuss their elimination during an argumentation.

7 Conclusions

In this paper, we proposed a new argumentation model that includes queries to
handle a practical argumentation.

In this model, an argument consists of three elements: the data, the claim,
and the warrant that connects the data and the claim. An attack is classified
depending on the target element. We developed an argumentation procedure
based on this model. When we cannot determine the winner of an argumentation
because of the existence of a pair of arguments that attack each other, a query
is made to encourage agents to present detailed reasons for the warrants of the
arguments in question. This model can explain why arguments occur and can also
determine the winner of an argumentation when it includes mutual attacks. It is

particularly useful for handling argumentations that include a pair of arguments
with the same data and complementary claims.

In future research, we plan to extend the procedure to enable it to handle
complementary pairs of arguments with different data and a complementary pair
of claims. We are currently working to implement the system.

References

1. L.Amgoud and C.Cayrol: A reasoning model based on the production of acceptable
arguments, Annals of Mathematics and Artificial Intelligence, 34(1-3), pp. 197-215,
2002.

2. L.Amgoud, Y.Dimopolos and P.Moraitis: A general framework for argumentation-
based negotiation, ArgMAS2007, pp. 1-17, 2007.

3. L.Amgoud and S.Vesic: Repairing preference-based argumentation frameworks, IJ-
CAI2009, pp. 665-670, 2009.

4. T.Bench-Capon: Persuasion in practice argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13(3), pp. 429-448, 2003.

5. C.Cayrol, F.de St-Cyr and M-C Lagasquie-Shiex: Change in abstract argumentation
frameworks: adding an argument. Journal of Artificial Intelligence Research, 38, pp.
49-84, 2010.

6. C.Chesñevar, A.Maguitman and R.Loui: Logical models of argument. ACM Com-
puting Surveys, 32(4), pp. 337-383, 2005.

7. P.M.Dung: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77,
pp. 321-357, 1995.

8. D.Hitchcock and B.Verheiji (eds.): Arguing on the Toulmin Model, Springer, 2006.
9. S.Modgil and T.Bench-Capon: Integrating object meta-level value based argumenta-

tion. In Proc. of 2nd Int. Conf. on Computational Models of Argument, pp. 240-251,
2008.

10. S.Modgil: Reasoning about preferences in argumentation frameworks, Artificial
Intelligence, 173(9-10), pp. 901-1040, 2009.

11. H.Prakken and G.Sartor: Argument-based extended logic programming with de-
feasible priorities. Journal of Applied Non-Classical Logics, 7, pp. 25-75, 1993.

12. K.Okuno and K.Takahashi: Argumentation system with changes of an agent’s
knowledge base, IJCAI2009, pp. 226-232, 2009.

13. I.Rahwan and G.Simari (eds.): Argumentation in Artificial Intelligence, Springer,
2009.

14. S.Toulmin: The Use of Argument, Cambridge University Press, 1958.
15. B.Verheiji: The Toulmin Argument Model in Artificial Intelligence. In [13], 2009.

