
Correspondence between PLCA and Maptree:
Representations of a Space Configuration

Kazuko Takahashi

Abstract We discuss the correspondence of two qualitative spatial representations:
PLCA and maptree. They can provide a topological configuration of a space with
finer granularity by depicting the construction of a figure using points and lines.
We define conversions between these two representations to show that they have the
same granularity level of expression. We also investigate preservation of planarity
on the conversions.

1 Introduction

In Qualitative Spatial Reasoning (QSR) [1, 3], image data are often represented
using spatial relationships between objects projected in a two-dimensional (2D) Eu-
clidean space. This means that the region occupied by one object may overlap that
of another object. It is usually represented in the form of binary or ternary relations
(e.g., [4]). There are other methods of representation that use incidence relations of
elements, such as points or lines and their inclusions. PLCA was designed to rep-
resent the connection patterns of regions using incidence relations [6]. In PLCA,
an area is defined as an element that does not overlap with each other. A maptree
is a representation that is also based on an incidence relation [8, 9]. Its data struc-
ture is an extension of a combinatorial map corresponding to the embedding of
disconnected graphs. A few studies have compared QSR systems using incidence
relations, which can give a more granular level of representation than systems using
binary relations.

The entire space is regarded as being divided by edges in the representations
based on incidence relations. The treatment of a scene including disconnected com-
ponents is crucial. Specifically, it is regarded as a composition of connected compo-
nents, in which the locations of the components are expressed.
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Fig. 1 Treatment of disconnected components

Consider the representations of the figure in Figure 1(a). There are three compo-
nents: M1,M2, and M3 (Figure 1(b)). In PLCA, these components are considered to
be the areas with the interior. After embedding these on a closed surface, four dis-
joint areas are generated: a1,a2,a3, and a4. Of these, a1 has two holes (Figure 1(c)).
The border of an area may not be a Jordan curve, and one area may have multiple
borders. Each edge in an embedding has two sides that confront the opposite areas,
such as c1 and c2 or c3 and c4. By contrast, in maptree, these components are con-
sidered to be connected graphs, consisting only of strings. After embedding these on
a closed surface, the complement in the surface of a connected graph is a collection
of faces. Each edge in an embedding has two sides that confront the opposite areas,
such as c1 and c2 or c3 and c4. The borders of the graphs are these edges.

This shows that the two representations reflect different recognitions of a scene,
and it is interesting to consider their convertibility. Additionally, PLCA has several
advantages. First, Coq proof assistant gives a constructive definition with its formal
proof, and several properties of planarity are also proved formally [5]. Second, a
transformation method from a PLCA expression to RCC, a representation using a
binary relation, is constructed by adding an attribute to each area [6]. This transfor-
mation method can be extended to another fine-grained expression using a binary
relation [2]. On the other hand, although maptree inherits the theoretical back-
ground of a combinatorial map, its properties have not been clarified sufficiently. It
follows that, if we can convert maptree into PLCA, then the above advantages of
PLCA can be applicable to maptree.

In this paper, we give a specific definition of the planar maptree, then define con-
version rules between PLCA and maptree, and investigate preservation of planarity
on these conversions.

This paper is organized as follows. We describe PLCA and maptree in Section 2
and Section 3, respectively. Then, we describe conversions between these two rep-
resentations in Section 4. Finally, we present our conclusions in Section 5.

2 PLCA

A PLCA expression is defined as a five-tuple, ⟨P,L,C,A,om⟩. In PLCA, there are
four kinds of object: points, lines, circuits, and areas. A point is the most primitive
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object and points are distinguishable from each other. A line represents segments
between two points and is defined as a pair of points. Each line has a direction from
the first to the second element of the pair. The inverse direction of a line l is denoted
by l 1, and l = l. A circuit represents a closed outline and is defined as a list of lines.
Each circuit is closed, that is, the first element of the first element l0 and the second
element of the last element ln are the same. An area represents a region enclosed
with circuits and is defined as a set of circuits. Additionally, we use a specific circuit
in the outermost side of the figure, denoted by outermost (om).

For example, a PLCA expression for Figure 1(c) is shown below.
⟨P,L,C,A,c1⟩ l1 = (p1, p1) c1 = [l1] a1 = {c2,c3,c6}
P = {p1, p2, p3, p4} l2 = (p2, p3) c2 = [l1] a2 = {c4}
C = {c1,c2,c3,c4,c5,c6,c7} l3 = (p3, p2) c3 = [l2, l4] a3 = {c5}
L = {l1, l2, l3, l4, l5} l4 = (p2, p3) c4 = [l2, l3] a4 = {c7}
A = {a1,a2,a3,a4} l5 = (p4, p4) c5 = [l3, l4]

c6 = [l5] c7 = [l5]
A PLCA expression is too permissive to find a corresponding topological space.

For example, if there exists more than one area that contains the same circuit, such
an expression does not make sense. Thus, we set a restriction on this data structure
and define a consistent PLCA. We consider planarity only for a consistent PLCA.

Definition 1 (planar PLCA). If a consistent PLCA satisfies PLCA-constraints,
PLCA-connectedness, and PLCA-euler, then it is said to be a planar PLCA.

PLCA-constraint is a condition stipulating that only straight lines are allowed and
that there is no isolated point, no bridge between points nor isolated lines. PLCA-
connectedness guarantees that no objects are separated, including the outermost.
That is, each object is traceable from the outermost. Without this condition, some
elements may be independent from the others, and we would not know where to
embed them. PLCA-euler guarantees that a PLCA expression can be embedded in
a 2D space so that the orientation of each circuit can be defined correctly.

A planar PLCA expression provides a surface subdivision of a 2D space. Here,
we consider a surface subdivision as a configuration in which both sides of each line
always belong to distinct areas.

3 Maptree

A combinatorial map is a representation of an embedding of a connected graph.
In a combinatorial map, a dart (or a half-line), is defined as a primitive, and other
elements are defined as a permutation of a set of darts.

Let A be a finite set. We call any bijective function ϕ : A → A a permutation of A.
For a1, . . . ,an ∈ A and a permutation ϕ , if a2 = ϕa1, a3 = ϕa2, . . . a1 = ϕan, we call

1 We use this notation to coincide with the one in maptree. Although, in PLCA, l+ and l− are used
to show the directions of a line.
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(a1 · · ·an) a cycle. Then, any permutation is written as a collection of cycles. Let Φ
be a collection of permutations of A. Φ is transitive if for any elements x,y ∈ A, we
can transform x to y by a sequence of permutations from Φ . For a dart δ , we call a
pair of δ and δ a complementary pair, and δ = δ .

Definition 2 (combinatorial map). A combinatorial map M⟨S,α,τ⟩ consists of:

1. A finite set S = {δ1, . . . ,δn,δ1, . . . ,δn} of complementary pairs of darts.
2. A permutation α of S where α = ϕ1 · · ·ϕm. (ϕ1, . . . ,ϕm are called α-cycles.)
3. A permutation τ of S where τ = (δ1δ1)(δ2δ2) · · ·(δnδn).

subject to the constraint that the collection of permutations {τ,α} is transitive.

Given a combinatorial map M with α-cycles ϕ1, . . . ,ϕm, p-star associated with M
is an edge-labelled tree with a central black node from which edges connect to white
nodes, the i-th edge being labelled with ϕi (1 ≤ i ≤ m). A bw-tree is a colored tree
with the nodes colored black or white, subject to the condition that no two adjacent
nodes have the same color. White nodes correspond to faces (regions).

Definition 3 (maptree). Let M be a finite collection of combinatorial maps. A map-
tree TM is an edge-labelled bw-tree formed by the merging of p-stars at white nodes.

Here, we introduce a formal definition of a planar maptree, which is not explicitly
described in [9].

Let TM be a maptree for M = (M1, . . . ,Mk) (1 ≤ i ≤ k) where Mi⟨Si,αi,τi⟩. We
consider the region assignment function reg from a set of α-cycles in M to a set of
regions. That is, for each α-cycle ϕ , we associate the region ∆ denoted by reg(ϕ) =
∆ . For α-cycles ϕi of αi and ϕ j of α j, if reg(ϕi) = reg(ϕ j), then it is said that Mi and
M j share a region. Henceforth, the term ‘maptree’ denotes the maptree associated
with a region assignment function.

Definition 4 (planar maptree). A maptree TM for M = (M1, . . . ,Mk) is said to be a
planar maptree if the following conditions are satisfied:

1. Exactly one root node ∆root for TM exists.
2. For ϕ ,ϕ ′ (ϕ ̸= ϕ ′), if they are in the same permutation α , then reg(ϕ) ̸= reg(ϕ ′).
3. When k ≥ 2, for each Mi (1 ≤ i ≤ k), there exists an α-cycle ϕ such that reg(ϕ) =

∆ (̸= ∆root) and that ∆ is shared with M j (1 ≤ j ≤ k, i ̸= j).
4. When k ≥ 2, for any pair of Mi and M j (1 ≤ i, j ≤ k, i ̸= j), they share at most

one region.

For example, the planar maptree corresponding to an embedding of a discon-
nected graph in Figure 2(a) is represented as follows and depicted in Figure 2(b).

It consists of three combinatorial maps M1,M2, and M3:
M1⟨{a,a},(a)(a),(aa)⟩
M2⟨{b,c,d,b,c,d},(bc)(bd)(dc),(bb)(cc)(dd)⟩
M3⟨{e,e},(e)(e),(ee)⟩
The region assignment function is defined as follows: reg((a)) = 1 = ∆root ,

reg((a)) = reg((bc)) = reg((e)) = 2, reg((bd)) = 3, reg((dc)) = 4 and reg((e)) = 5.
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Fig. 2 An embedding of a disconnected graph and the corresponding maptree.

4 Conversions between PLCA and Maptree

We show the conversion from a planar maptree to a PLCA expression.
Let TM be a planar maptree for M = (M1, . . . ,Mk) (1 ≤ i ≤ k), where Mi⟨Si,αi,τi⟩

is a combinatorial map, and let reg be a region assignment function. First, we cal-
culate βi = τiα−1

i for each i. We bijectively map each dart, α-cycle, β -cycle, and
region in TM to elements in PLCA, and make a set of P, L, C, and A. Then, we
generate their incidence relations.

Let SS,Sα ,Sβ , and SR be sets of darts, α-cycles, β -cycles, and regions ap-
pearing in TM , respectively. The notation x 7→ y denotes that an element x is mapped
to y.

1. Make sets of P, L, C, and A.
We bijectively map each β -cycle to a point, dart to a line, and α-cycle to a circuit
in PLCA. For a dart δ ∈ SS, if δ 7→ l, then δ 7→ l. For a region, ∆root 7→ ⊥,
because the external region of the outermost does not exist in PLCA; otherwise,
it is mapped to an area in PLCA.

2. Generate incidence relations.

• For δ ∈SS, δ 7→ l; if δ is in ρ , δ is in ρ ′, and ρ 7→ p,ρ ′ 7→ p′, then l = (p, p′).
• For ϕ ∈ Sα , ϕ 7→ c; if ϕ = (δ1 · · ·δs) and δ j 7→ l j (1 ≤ j ≤ s), then c =

{l1, . . . , ls}.
• For ∆ ∈ SR, ∆ 7→ a; if reg(ϕ j) = ∆ ,ϕ j 7→ c j, then a = {c1, . . . ,ct}, where t is

the number of ϕ j that satisfies reg(ϕ j) = ∆ .
• For ∆root , if reg(ϕ) = ∆root ,ϕ 7→ c, then om = c.

For the obtained PLCA expression, PLCA-consistency, PLCA-connectedness
and PLCA-euler clearly hold from the planarity of a maptree. However, PLCA-
constraints is not satisfied, because a planar maptree admits isolated lines and
bridges as well as multiple edges connecting the same pair of points. Therefore,
we need a condition so that it provides a surface subdivision of a 2D space.
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Proposition 1. Let TM be a planar maptree. If each α-cycle ϕ in TM satisfies the
following conditions, then TM provides a surface subdivision of a 2D space: (i)
there does not exist δ such that δ and δ are both included in ϕ , and (ii) |ϕ | ≥ 3.

We can similarly define a conversion rule from a planar PLCA expression to a
maptree. In this case, the crucial point is that the mapped data are correctly divided
into a set of combinatorial maps. We have proved that the obtained one is a planar
maptree.

5 Conclusion

We have discussed the correspondence of two qualitative spatial representations
based on incidence relations, PLCA and maptree. We have defined conversions be-
tween these two representations and clarified the condition that a planar maptree
provides a surface subdivision of a 2D space. The main contribution of this pa-
per is to relate the two representations that reflect different recognitions of a scene:
area-based and string-based. We have implemented in Prolog prototypes of the con-
version programs in both directions.

The proofs are done manually, and we will provide a strict proof using proof
assistants in future. We also want to show the relationship between representations
using incidence relations and binary relations.
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