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Abstract. This paper describes an algorithm for generating a figure in a two-
dimensional plane from a qualitative spatial representation of PLCA. In general,
it is difficult to generate a figure from qualitative spatial representations, since
they contain positional relationships but do not hold quantitative information such
as position and size. Therefore, an algorithm is required to determine the coor-
dinates of the objects while preserving the positional relationships. Moreover, it
is more desirable that the resulting figure meets a user’s requirement. PLCA is a
simple symbolic representation consisting of points, lines, circuits and areas. We
have already proposed one algorithm for drawing, but the resulting figures are far
from a “good” one. In that algorithm, we generate the graph corresponding to a
given PLCA expression, decompose it into connected subgraphs, determine the
coordinates in a unit circle for each subgraph independently, and finally deter-
mine the position and size of each subgraph by locating the circles in appropriate
positions. This paper aims at generating a “good” figure for a PLCA expression.
We use a genetic algorithm to determine the locations and the sizes of circles in
the last step of the algorithm. We have succeeded in producing a figure in which
objects are drawn as large as possible, with complex parts larger than others. This
problem is considered to be a type of “circle packing,” and the method proposed
here is applicable to the other problems in which locating objects in a non-convex
polygon.

1 Introduction

Qualitative Spatial Reasoning (QSR) is a method that treats images or figures quali-
tatively, by extracting the information necessary for a user’s purpose [4,14,15]. It also
offers methods to handle and reason about unspecific information. Numerous appli-
cations use databases of images or figures including Geographic Information Systems
(GIS) and navigation systems. In these applications, responding to queries or frequently
updating the data requires a large amount of computation. QSR is a promising method
that reduces memory and the workspace required for computations that do not involve
strict data. In general, it is easy to transform a figure to a symbolic qualitative represen-
tation, but it is difficult to generate a figure from a symbolic qualitative representation.
The automatic drawing of figures such as Venn diagram from mereological relationships
has been studied in the context of diagrammatic reasoning [1]. However, to the best of
our knowledge, no system exists for automatically drawing a figure from mereotopolog-
ical relationships. Symbolic representation in compact form lends itself to calculation

S. Winter et al. (Eds.): COSIT 2007, LNCS 4736, pp. 337–353, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



338 S. Kumokawa and K. Takahashi

or storage, but drawings are much beter for visualizing the abstract details and context.
It is also interesting to view what shape of a figure is generated from a symbolic repre-
sentation. Drawing a figure from a symbolic representation is applicable to an important
service such as schematic maps.

The difficulty in drawing a figure from a symbolic representation arises from two
factors. First, one has to judge whether the expression can be embedded in a two-
dimensional plane. Second, one must determine the position of each object in the draw-
ing. The latter is necessary since multiple quantitative representations may exist for a
single qualitative expression. Therefore, we cannot determine a unique set of appro-
priate coordinates. Even if a set of coordinates are determined, the resulting complex
figure may not support a user to think or to design.

In this paper, we discuss drawing a figure from a PLCA expression, a qualitative
representation method. A PLCA expression represents spatial data by focusing on con-
nected patterns of objects, using four simple elements: point(P ), line(L)
circuit(C) and area(A) [18,19,20]. In PLCA, no pair of areas has a part in common1.
The entire space is covered with the areas.

A PLCA expression is considered to be a set of mereotopological relationships be-
tween objects including areas. Our goal is to draw a figure for such a representation.
This is different from other studies on visualization in which the goal is to generate a fig-
ure for a set of conceptual relationships to support human cognition and understanding.

In the previous paper, we proved that realizability for a PLCA expression in a two-
dimensional plane is reduced to the planarity of a graph and identified the condition for
realizability [21]. We also proposed an algorithm for drawing a figure for a PLCA ex-
pression that satisfied the realizability condition in a two-dimensional plane. In that al-
gorithm, we decomposed a PLCA expression into several subexpressions each of which
corresponds to a connected graph, determined the position of the objects in a unit cir-
cle for each graph independently and combined the related parts of them. However, the
resulting figure was far from a “good” one. For example, many objects were drawn in
a corner, leaving a large vacant space in the center. The main problem was embedding
circles in part of another circle in the last step when related parts were combined. In
that last step, the challenge was to determine the location and the size of each circle to
produce a “good” figure while preserving the relationships of objects described in the
PLCA expression.

The problem of embedding is reduced to one of circle packing, putting n circles of
different sizes into a non-convex polygon so that they do not intersect. Circle packing is
a well-known optimization problem that is NP-complete in general, and many studies
have been undertaken [22,16,17]. However, no algorithm has been proposed that covers
the conditions in our problem. In this paper, we address the problem using a genetic
algorithm (GA) to determine the location and the size of each circle and produce an
approximate solution to optimization, that gives a “good” figure. A “good” figure here
means one in which the objects are drawn as large as possible, and a complex parts are
drawn larger than the other parts.

1 We use the term area instead of region, since area used in this paper is a different entity
from the region generally used in qualitative spatial reasoning.
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We also discuss another drawing algorithm that does not use a graph-drawing algo-
rithm but generates a figure directly from a PLCA expression. Moreover, we discuss
generation of figures from other qualitative representations.

This paper is organized as follows. In section 2, we briefly describe PLCA expres-
sions, and the conditions for their realizability in a two-dimensional plane. In section 3,
we introduce the drawing algorithm, and show the results of experiment. In section 4,
we present another drawing algorithm for PLCA and discuss drawing for other qualita-
tive representations. And finally, in section 5, we present our conclusions.

2 PLCA Expressions

2.1 Definition of Classes

PLCA has four basic components: points(P ), lines(L), circuits(C) and areas(A).
Point is defined as a primitive class.
Line is defined as a class that satisfies the following condition: for an arbitrary in-

stance l of Line, l.points is a pair [p1, p2] where p1, p2 ∈ Point. A line has an in-
herent orientation. When l.points = [p1, p2], l+ and l− mean [p1, p2] and [p2, p1],
respectively. l∗ denotes either l+ or l−. Intuitively, a line is the edge connecting two
(not always different) points. No two lines are allowed to cross. Note that multiple lines
may have the same pair of points. In Fig. 1(a), the arrows denote the orientation of the
lines. All of the lines l1.points, l2.points and l3.points are defined to be [p1, p2], but
they are distinguished by the circuits to which they belong.
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Fig. 1. Multiple lines with the same definition and the associated circuits

Circuit is defined as a class that satisfies the following condition: for an arbitrary
instance c of Circuit, c.lines is a sequence [l∗1, . . . , l∗n] where l1, . . . , ln ∈ Line(n ≥
1), li.points = [pi, pi+1](1 ≤ i ≤ n) and pn+1 = p1. [l∗1, . . . , l

∗
n] and [l∗j , . . . , l∗n, l∗1 ,

. . . , l∗j−1] denote the same circuit for any j (1 ≤ j ≤ n). In Fig. 1(b), we have three
circuits: c1.lines = {l−1 , l+2 }, c2.lines = {l−2 , l+3 }, c3.lines = {l−3 , l+1 }.

For c1, c2 ∈ Circuit, we introduce two new predicates lc and pc to denote that
two circuits share line(s) and point(s), respectively. lc(c1, c2) is true iff there exists
l ∈ Line such that (l+ ∈ c1.lines)∧ (l− ∈ c2.lines). pc(c1, c2) is true iff there exists
p ∈ Point such that (p ∈ l1.points) ∧ (p ∈ l2.points)∧ (l∗1 ∈ c1.lines) ∧ (l∗2 ∈
c2.lines). A circuit is the boundary between an area and its adjacent areas viewed from
the side of that area.
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Area is defined as a class that satisfies the following condition: for an arbitrary in-
stance a of Area, a.circuits is a set {c1, . . . , cn} where c1, . . . , cn ∈ Circuit(n ≥ 1),
and ∀ci, cj ∈ a.circuits; (i �= j) → (¬pc(ci, cj) ∧ ¬lc(ci, cj)). Intuitively, an area is
a connected region which consists of exactly one piece. No two areas are allowed to
cross. The final condition means that any pair of circuits that belong to the same area
cannot share a point or a line.

The PLCA expression e is defined as a five tuple e = 〈P, L, C, A, outermost〉
where P, L, C and A are a set of points, lines, circuits and areas, respectively, and
outermost ∈ C. An element of P ∪ L ∪ C ∪ A is called a component of e.

We assume that there exists a circuit in the outermost extremity of the figure called
outermost. This means that the target figure is drawn in a finite space, and the space
can be divided into a number of areas that do not overlap with each other.

In Fig. 2, (a) shows an example of a target figure, and (b) and (c) show the names of
the components. Example 1 shows a PLCA expression corresponding to Fig. 2.

Definition 1. (consistency) A PLCA expression e = 〈P, L, C, A, outermost〉, is said
to be consistent iff the following three constraints are satisfied:

1. constraint on P-L: For any p ∈ Point there exists at least one line l such that
p ∈ l.points.

2. constraint on L-C: For any l ∈ Line, there exist exactly two distinct circuits c1, c2
such that l+ ∈ c1.lines, l− ∈ c2.lines.

3. constraint on C-A: For any c ∈ Circuit other than outermost, there exists exactly
one area a such that c ∈ a.circuits. The outermost is not included in any area.

Due to these constraints, neither isolated lines nor points are allowed.
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Fig. 2. Example of a target figure

Example 1

e.points = {p0, p1, p2, p3, p4} couter.lines = [l+0 ]
e.lines = {l0, l1, l2, l3, l4, l5, l6, l7, l8} c0.lines = [l−0 ]
e.circuits = {couter, c0, c1, c2, c3, c4, c5, c6} c1.lines = [l−1 , l−5 ]
e.areas = {a0, a1, a2, a3, a4, a5} c2.lines = [l−2 , l−6 ]
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e.outermost = couter c3.lines = [l+1 , l+2 , l+3 , l+4 ]
l0.points = [p0, p0] c4.lines = [l−4 , l−8 ]
l1.points = [p4, p1] c5.lines = [l−3 , l−7 ]
l2.points = [p1, p2] c6.lines = [l+5 , l+8 , l+7 , l+6 ]
l3.points = [p2, p3] a0.circuits = {c6, c0}
l4.points = [p3, p4] a1.circuits = {c1}
l5.points = [p1, p4] a2.circuits = {c2}
l6.points = [p2, p1] a3.circuits = {c3}
l7.points = [p3, p2] a4.circuits = {c4}
l8.points = [p4, p3] a5.circuits = {c5}

2.2 Two-Dimensional Realizability

We introduce the concept of connectedness for the components of a PLCA expression.

Definition 2. (d-pcon) Let e = 〈P, L, C, A, outermost〉 be a PLCA expression. For a
pair of components of e, the predicate d-pcon is defined as follows.

1. d-pcon(p, l) iff p ∈ l.points.
2. d-pcon(l, c) iff l∗ ∈ c.lines.
3. d-pcon(c, a) iff c ∈ a.circuits.

Definition 3. (pcon) Let α, β, γ be components of a PLCA expression. pcon is the sym-
metric and transitive closure of d-pcon.

1. If d-pcon(α, β), then pcon(α, β).
2. If pcon(α, β), then pcon(β, α).
3. If pcon(α, β) and pcon(β, γ), then pcon(α, γ).

Definition 4. (PLCA-connected) A PLCA expression e is said to be PLCA-connected
iff pcon(α, β) holds for any pair α and β of components of e.

Intuitively, PLCA-connectedness guarantees that all the components including the
outermost are connected. That is, for any pair of components, there is a trail that
can go from one component to the other by tracing components. The PLCA expression
in Example 1 is consistent and PLCA-connected. For example, pcon(couter , c6) holds
since we can move from couter to c6 by tracing the components couter, l0, c0, a0, c6 in
that order. On the other hand, the PLCA expression in Example 2 is consistent but not
PLCA-connected. It can be divided into two subexpressions: one corresponding to the
plane consisting of p0, l0, couter, c0 and a0, and the other corresponding to a floating
group of other the components. A component of the former is not pcon with that of the
latter. For example, pcon(couter, c1) does not hold.

Example 2
e.points = {p0, p1} couter.lines = {l+0 }
e.lines = {l0, l1, l2} c0.lines = {l−0 }
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e.circuits = {couter, c0, c1, c2, c3} c1.lines = {l+1 , l+2 }
e.areas = {a0, a1, a2} c2.lines = {l−2 }
l0.points = [p0, p0] c3.lines = {l−1 }
l1.points = [p1, p1] a0.circuits = {c0}
l2.points = [p1, p1] a1.circuits = {c1}

a2.circuits = {c2, c3}
For a consistent connected PLCA expression, the following theorem holds [21].

Theorem 1. For a consistent connected PLCA expression e=〈P, L, C, A, outermost〉,
e can be realized in a two-dimensional plane iff |P | − |L| − |C| + 2|A| = 0 holds.

This theorem shows that the two-dimensional realizability for a PLCA expression is
judged only by counting the number of the components.

Definition 5. (planar PLCA expression) A consistent connected PLCA expression that
satisfies |P | − |L| − |C| + 2|A| = 0 is said to be planar.

The PLCA expression shown in Example 1 is planar but the expression in Example 2 is
not.

2.3 Orientation of a Circuit

As a preparation, we introduce several concepts from graph theory.
A (non-directed) graph is defined to be G = (V, E), where V is a set of vertices

and E is a set of edges. An edge of E is defined as a pair of vertices of V . For graphs
G = (V, E) and G′ = (V ′, E′), if V ′ ⊂ V and E′ ⊂ E, G′ is said to be a subgraph
of G; if V ∩ V ′ = ∅ and E ∩ E′ = ∅, it is said that G and G′ are disjoint. Here, when
we consider more than one subgraph of G, we assume that they are disjoint. If it is
possible to move between any pair of vertices by moving along the edges of the graph,
the graph is said to be connected; otherwise, it is said to be disconnected. A sequence
(v0, . . . , vn) where (vi, vi+1) for each i (0 ≤ i ≤ n − 1) is an edge and v0 = vn, it
is said to be a cycle. A cycle that is a border of both the graph and the outer infinitely
large region is said to be an outer boundary cycle of g.

Let e = 〈P, L, C, A, outermost〉 be a consistent PLCA expression. We can define
a non-directed graph m(e) = (V, E) by relating P and L to V and E, respectively.
For p ∈ P , m(p) indicates the corresponding vertex, and for l ∈ L, m(l) indicates
the corresponding edge. We extend m so that c is mapped to m(c). For each li(i =
0, . . . , n), l∗i ∈ c.lines, if m(li) is contained in a graph g, then we say that m(c) is
contained in g.

Proposition 1. Let e = 〈P, L, C, A, outermost〉 be a consistent connected PLCA ex-
pression that satisfies |a.circuits| = 1 for any area a ∈ A. Then m(e) is a connected
graph [21].

Each circuit of a planar PLCA expression e has an orientation of inner or outer. If
m(e) is a disconnected graph, then it can be decomposed into connected subgraphs. We
determine the orientation of each circuit by considering the relationships among these
subgraphs, areas and circuits of e.



Drawing a Figure in a Two-Dimensional Plane for a Qualitative Representation 343

[Algorithm: DCO(determine circuit’s orientation)]

1. Make a node Noutermost.
2. setOuterOrientation(outermost, Noutermost).

Procedure. setOuterOrientation(c, Nc)

1. Set the orientation of c to be outer.
2. For the subgraph g such that m(c) is contained in g, make a node Ng and draw an

edge from Nc to Ng .
3. For each m(c′) contained in g such that c′ �= c, do the following:

(a) Make a node Nc′ and draw an edge from Ng to Nc′ .
(b) setInnerOrientation(c′, Nc′).

Procedure. setInnerOrientation(c′, Nc′)

1. Set the orientation of c′ to be inner.
2. For an area a such that c′ ∈ a.circuits, make a node Na and draw an edge from

Nc′ to Na.
3. For each c′′ ∈ a.circuits such that c′′ �= c′, do the following:

(a) Make a node Nc′′ and draw an edge from Na to Nc′′ .
(b) setOuterOrientation(c′′, Nc′′).

A diagram constructed in this way is called a DCO diagram. Each path in the diagram
is a sequence of a pattern Nc1 → Ng → Nc2 → Na where c1, c2 are circuits, a is an area
of e, and g is a subgraph of m(e). Fig. 3 is a part of the DCO diagram for Example 1.

inner circuit

outer circuit

couter g0 c0 a0 c6

g1

c1

c2

c3

c4

c5

a1

a2

a3

a4

a5

Fig. 3. A part of the DCO diagram for Example 1

Proposition 2. For a planar PLCA expression e, (i) the orientation of each circuit is
decidable, (ii) there exists the unique inner circuit in a.circuit for each area a, and
(iii) there exists an outer circuit c such that m(c) is contained in g is an outer boundary
cycle of g for each subgraph g [21].

3 Drawing a PLCA Expression

3.1 Drawing Algorithm

We describe the outline of an algorithm for drawing a figure from a planar PLCA ex-
pression in a two-dimensional plane (Fig. 4).
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1. Extract the information of points and lines from the planar PLCA to get the corre-
sponding graph expression.

2. Decompose the graph into disjoint connected subgraphs, and determine the coor-
dinates of nodes and edges in a unit circle for each subgraph independently. We
utilize an existing graph-drawing algorithm using straight lines in this step [12].

3. Determine the location and the size of these subgraphs using the information on
circuits and areas in the PLCA expression.

Fig. 4. A drawing process

Definition 6. (module) Let e be a planar PLCA expression and α be either a point,
a line or a circuit of e. If m(e) is decomposed into n disjoint connected subgraphs
g1, . . . , gn, then we say that e has n modules. If m(α) is contained in gi, then α is
contained in the module corresponding to gi. For an area a of e, a is contained in the
module that contains the inner circuit c in a.circuits.

Note that each component of the PLCA is contained only in one module.

Definition 7. (e-circle) A unit circle in which each module of the PLCA is embedded in
the second step of the algorithm is called an e-circle.

Definition 8. (bridge) An area a such that |a.circuit| ≥ 2 holds is said to be a bridge.

The third step of the algorithm is the most important since the location and the size of
e-circles in a bridge are determined.
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For each bridge a ∈ A, do the following: let a.circuits = {c0, c1, . . . , cn}, where
the orientation of c0 is inner and those of c1, . . . , cn are outer. Let g1, . . . , gn be the
subgraphs whose e-circles are ec1, . . . , ecn, respectively. For each eci (i = 1, . . . , n),
expand or reduce it and draw it in an appropriate location on the inner part of m(c0).

Fig. 5(a) shows a part of the DCO diagram that includes bridge a. Fig. 5(b) is a
realization of this part. A bridge is actually drawn as a polygon.

ec1

ec2

ec3

m(c0)

(a) (b)

g1
g2

g3

inner circuit

outer circuit

c0 a
c1

c2

c3

g1

g2

g3

a
bridge

Fig. 5. Realization of a bridge

3.2 Circle Packing

Circle packing is an arrangement of circles inside a given boundary such that no two of
them overlap and some, or all, of them are mutually tangent [22,16,17]. This is known
as an NP-complete problem in general, but optimal solutions have been found in several
cases. The studies on circle packing usually treat simple types: the area to be packed is
a simple form such as a circle or a rectangle, and few constraints are imposed on the
circles to be packed.

The realization of a bridge is considered to be a type of circle packing problem which
is formalized as follows:

[Problem ∗] Pack a non-convex polygon with a specified number n of circles
with the constraints: (1) all the circles used for packing are as large as possible,
and (2) the corresponding circle increases in size with the increasing number
of areas in a module.

This problem is a difficult one and none of the existing algorithms can be applied di-
rectly. Therefore, we use a Genetic Algorithm, as a more flexible solution.

3.3 Genetic Algorithm

A Genetic Algorithm (GA) is a search technique to find an optimal solution or an ap-
proximation to an optimal solution [8]. It is inspired by evolutionary biology concept
such as inheritance, mutation, selection and crossover.

In general, after creating the initial populations of chromosomes, each of which is
represented by a bit string, the GA involves repeatedly computing the fitness of each
chromosome, taking pairs of chromosomes and creating their offspring until a suitable
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solution is obtained. In creating offspring, crossover (exchanging selected bits between
chromosome) and mutation (flipping chosen bits with a certain possibility) are used.
Candidate optimal solutions evolve over time.

3.4 Experiment

Gene Encoding. We implemented the above problem [Problem ∗] as follows. Let
(xi, yi) denote a coordinate of the center of an i-th circle (1 ≤ i ≤ n). In addition,
let M1, . . . , Mn be the set of modules obtained by decomposing the graph correspond-
ing to a PLCA expression, and ni be the number of the areas in Mi (1 ≤ i ≤ n).

Each chromosome corresponds to the locations of n circles and it is denoted by an
array of the coordinates of their centers (x1, y1), . . . , (xn, yn). Each coordinate (xi, yi)
is encoded as a sequence ai1, . . . , aiL, bi1, . . . , biL, where each aij (1 ≤ j ≤ L) and
each bij (1 ≤ j ≤ L) is a digit either of 0, . . . , 92, and L is a sufficiently large number.
Let xmax, xmin, ymax and ymin be the coordinates defined as follows:

xmax: the largest x-coordinate of the drawn bridge
xmin: the smallest x-coordinate of the drawn bridge
ymax: the largest y-coordinate y where (xi, y) is in the drawn bridge
ymin: the smallest y-coordinate y where (xi, y) is in the drawn bridge

Then, xi and yi are calculated as follows so that there is no lethal gene3(Fig. 6):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi = (xmax − xmin)
ni∑

j=1

(
1
10

)j

aij + xmin

yi = (ymax − ymin)
ni∑

j=1

(
1
10

)j

bij + ymin

The radius of each circle is determined incrementally using distances between the
centers of the circles and the boundary of the drawn bridge. We show the pseudo code
in the Appendix.

In addition, we use a local search method to compute the fitness for obtaining a better
solution.

Parameter Setting. Let Sij (j = 1, . . . , ni) be the size of an area contained by Mi.
Let Stotal, Ntotal and Sav denote the total size of the areas, the total number of all

the areas, and the average size of an area contained in a PLCA expression, respectively.
They are defined as follows:

Stotal =
n∑

i=1

ni∑

j=1

Sij , Ntotal =
n∑

i=1

ni, Sav =
Stotal

Ntotal

Fitness is evaluated so that the total size of the circles used for packing an area is
as large as possible, and the size of a circle is proportional to the total number of the

2 We used digits here for encoding whereas bits are used in general.
3 This is the basic definition. The actual calculation of yi is more complicated.
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Fig. 6. Calculation of the coordinate

areas that are recursively contained in the corresponding module. Therefore, it can be
calculated as:

fitness = Stotal −
n∑

i=1

1
Ni

·
ni∑

j=1

|Sav − Sij |

where Ni is the total number of the areas that are recursively contained in module Mi.
Crossover takes place at n randomly chosen points, and mutation at randomly chosen

positions which in our case occurs when the digit is changed to any other digit.
We performed the simulation several times to find appropriate values for the

crossover and mutation rates. As a result, the mutation rate is set at the fixed value
1.0, and the crossover rate is set at 0.4 for PLCA expressions with multiple bridges
one inside another, and at 0.9 for PLCA expressions with a bridge in which multiple
modules are embedded.

Experiment and Evaluation. Experiments are performed using three PLCA expres-
sions corresponding to the figures shown in Fig. 7.

Data1 Data2 Data3

Fig. 7. Figures corresponding to given PLCA expression

1. Data1:This is a simple PLCA expression with one module and no bridge.
2. Data2: This has multiple bridges, one inside another, and is used to check that

circles are drawn as large as possible.
3. Data3: This has a bridge in which multiple modules with varying numbers of areas

are embedded. This is used to check that the size of a circle is proportional to the
total number of areas recursively contained in the corresponding module.
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mod rad opt rad

80.0 80.0

mod rad opt rad

80.00 80.00

34.98 40.00

22.87 25.51

10.30 11.44

mod size no. of areas

20066.00 18

1219.97 6

1068.04 5

852.78 4

425.42 2

220.72 1

Data1 Data2 Data3

Fig. 8. Results of drawing

We use a 160∗160 rectangle as a drawing field. Fig. 8 shows the result of the drawing.
It shows that all the relationships of the PLCA components are preserved. Above all,
each module is embedded in the correct bridge.

In the tables for Data1 and Data2, mod is the module, rad is the radius of an e-circle
and opt rad is the radius of an inscribed circle of a bridge, that is the biggest size of a
module to be located there. In the table for Data3, mod is the module, size is the total
size of all the areas contained in that module, and no. of areas shows the total number
of areas recursively contained in the corresponding module.

In evaluating the results, we ignore the shape of an outermost, which is always an
inscribed polygon of an e-circle, and discuss the locations and the sizes of the e-circles.

For Data1, the radius is the biggest radius. It follows that a module is drawn as large
as possible.

For Data2, the radii of e-circles are slightly smaller than the optimal ones, since the
circle should not be tangent to the boundary of the bridge. It follows that the modules
are drawn as large as possible.

For Data3, the size of an e-circle is proportional to the number of areas contained in
the corresponding module. It is considered that a module containing the larger number
of areas is more complex. Therefore, it follows that complex objects are drawn larger
than non-complex objects.
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(a) naiive location (b) first generation of GA (c) finally obtained

Fig. 9. Cognition of “goodness”

We showed the three figures in Fig. 9, equivalent according to PLCA, to twenty test
subjects, and asked them to select the “best” figure. Seventeen of them chose (c), the
figure produced by our algorithm.

From these results, we conclude that we have obtained the ”good figure”.

4 Discussion

4.1 Direct Drawing from PLCA

The basic concept of the algorithm used in our experiment was to transform a PLCA
expression into a graph, and then draw that graph.

We have proposed another method for drawing a figure directly from a PLCA ex-
pression [18]. The basic idea of that algorithm was to draw circuits. Starting from the
outermost, draw circuits in the inner area enclosed by the outermost. Draw all the cir-
cuits by repeating this procedure recursively.

For that algorithm, we can prove that a figure that preserves the relationship de-
scribed in the PLCA expression can be drawn, but the method for determining the spe-
cific coordinates is not given. This means that we can draw a figure only if we specify
proper coordinates. If the circuits share lines or points, a subtle problem exists in deter-
mining the size of lines, the location of points, and the shape of circuits. Unfortunately,
the actual figure cannot be drawn by automatically using this algorithm.

For example, consider a PLCA expression corresponding to Fig. 10(a). Fig. 10(b)
shows three processes for drawing a figure according to this algorithm. If we draw
circuits using the process in the right-hand column, then the result is successful. But if
we use in the other processes, the drawing fails.

Information from the other circuits to be drawn is not available at the time of drawing
the first circuit because this algorithm uses recursive processing. Therefore, appropriate
coordinates cannot be determined algorithmically. The algorithm using GA is more
flexible in producing a solution.

4.2 Drawing from Other Qualitative Representations

Region Connection Calculus (RCC) [13] and the 9-intersection model [6] are repre-
sentative frameworks for qualitative spatial reasoning. We examine an algorithm for
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(a) (b)

Fig. 10. Drawing from a PLCA expression directly

Fig. 11. Fundamental relationships of RCC

drawing a figure in a two-dimensional plane based on these representations. Although
the existence of a topological space and planarity for a set of RCC relationships have
been discussed in [9,14,23], an algorithm for drawing has not been reported so far.

Fig. 11 shows the eight fundamental relationships of RCC. Consider a set of RCC
relationships S = {R1, . . . , Rn} which is realizable in a two-dimensional plane. If each
Ri(i = 1, . . . , n) is either NTPP, NTPPi, DC or EQ, then S is transformed uniquely
into PLCA. In this case, the figure corresponding to S can be drawn using the PLCA
drawing algorithm. Otherwise, there exists multiple PLCA expressions. While we can
draw one of them, it is an open question as to which one. The 9-intersection model,
in which positional relationships between regions are represented in the form of a 3∗3
matrix, results in similar uncertainty.

A major difference between PLCA and the other QSR systems is in the way in which
relationships among objects are represented. In the other QSR systems, the entire fig-
ure is represented in the form of a set of binary relations, while we do not use bi-
nary relations. Moreover, objects in the other QSR systems may share parts with each
other which is prohibited in PLCA. PLCA uses a more refined classification for equiv-
alent figures than the other QSR systems. It may be possible to determine a one-to-one
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mapping to PLCA from the extension of RCC, containing information on the connec-
tion patterns of regions [5], or the extension of the 9-intersection model [7,10].

5 Conclusion

In this paper, we have proposed an algorithm for drawing a figure in a two-dimensional
plane corresponding to a PLCA expression. In general, it is difficult to draw a figure for
a qualitative representation since coordinates are not determined uniquely. We thus have
proposed an algorithm using GA, and succeeded in producing drawings. The resulting
figures not only preserve the relationships in PLCA expressions, but are also “good”
figures in the sense that their objects are drawn as large as possible, and complex parts
are drawn larger size than those less complex.

We used the size and the number of areas as parameters in the GA. If a specific
requirement such as emphasis on a certain object is integrated, we can automatically
draw different figures for the same PLCA expression depending on the application, to
meet specific requirement details. In future, we are considering the reduction of time in
finding a solution in the GA. We will conduct further study on algorithms to draw di-
rectly from PLCA expressions and from other qualitative representations. Furthermore,
the solution to the problem of packing multiple circles in a non-convex polygon given
in this paper could be useful in other applications of packing.
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Appendix Determining the Radii of Circles

C = {c1, c2, . . . , cn} where ci (1 ≤ i ≤ n) is the coordinate of the center.
Decided = {}. % a set of cirlces whose radii are decided
Undecided = {}. % a set of cirlces whose radii are undecided

WHILE (|C| > 0)
Take an arbitrary ci of C.
Set di1 to the shortest distance between ci and the boundary of Area.
Set di2 to the half of the shortest distance between ci and cj for each j (i �= j).
Let ri be the radius of the circle whose center is ci.
IF (di1 < di2)

ri = di1.
Decided = Decided ∪ {ci}.
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IF ((di2 < di1) ∧ (dj2 < dj1))
ri = di2.
Decided = Decided ∪ {ci}.

ELSE
Undecided = Undecided ∪ {ci}.

ENDWHILE
WHILE (|Undecided| > 0)

Take an arbitrary ci of Undecided.
Set di2 to the half the shortest distance between ci and cj ∈ Undecided (i �= j).
Set di3 to the shortest distance between ci and ck ∈ Decided.
IF (di1 = min(di1, di2, di3))

ri = di1.
Decided = Decided ∪ {ci}

IF (di3 = min(di1, di2, di3))
ri = di3.
Decided = Decided ∪ {ci}.

ELSE
Undecided = Undecided ∪ {ci}.

ENDWHILE


	Drawing a Figure in a Two-Dimensional Plane for a Qualitative Representation
	Introduction
	PLCA Expressions
	Definition of Classes
	Two-Dimensional Realizability
	Orientation of a Circuit

	Drawing a PLCA Expression
	Drawing Algorithm
	Circle Packing
	Genetic Algorithm
	Experiment

	Discussion
	Direct Drawing from PLCA
	Drawing from Other Qualitative Representations

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




