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Abstract. This paper discusses how to make an argumentation frame-
work (AF) with no stable extensions into one with a stable extension
by adding a new argument, which we call ‘repair’. We remove the re-
strictions that were put on the target AFs in our previous work, and
show a simple condition for an arbitrary AF to have no stable exten-
sions. Then, we refine the conditions that an AF should satisfy to be
repaired and identify the position where a new argument is added. We
also discuss other possible repair types. The judgments are simple, easy
to intuitively understand by virtue of the usage of topological features.

Keywords: abstract argumentation framework, computational argumen-
tation, dynamic argumentation, graph topology

1 Introduction

Dung’s abstract Argumentation Framework (AF) is a standard model that for-
malizes argumentations [19]. It is a powerful tool for handling conflict, and has
been applied in various research areas in the field of artificial intelligence, in-
cluding decision making, non-monotonic reasoning, and agent communication.
In an abstract AF, an argumentation is represented as a directed graph ignoring
the contents of arguments and focused on the structure of the argumentation.
Many extended frameworks for the AF and new semantics have been proposed
so far [1, 2, 12, 21].

When an odd number of arguments constitute a cycle, the entire argumen-
tation becomes stuck and no outcome is obtained. This may occur in an actual
argumentation, and the state can be resolved by providing a counter-argument
to a suitable argument.

In semantics of AFs, an AF including an odd-length cycle may not have
a stable extension. Several semantics, e.g., CF2 [3], have been introduced to
solve this problem. However, stable semantics most closely reflects the situation
in the actual argumentation in which all the attendants agree to the accepted
arguments and to the rejection of the other arguments. Particularly, in making
a crucial decision such as a legal judgment on a trial or a policy of medical
treatment of a patient on a tumor board, it is strongly required that at least
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one such outcome is obtained that all the attendants agree to accept, and that
overcomes the other counter-arguments. Stable semantics is most suitable to
treat such cases.

In this paper, we investigate the case when an AF does not have a stable
extension, and how to obtain an AF with a stable extension by adding a new
argument to an appropriate position, which we call repair. However, it is difficult
to quickly identify the position when the AF is large. For example, the AF shown
in Figure 1 has no stable extensions. If we add a new argument attacking the
argument C, then the AF is changed into the one with a stable extension. So far,
a necessary and sufficient condition for the existence of a stable extension was
shown [23, 11]. However, in these studies, the stability is judged using a certain
semantics different from a stable one (for example, a preferred extension), which
means that such an extension should be detected first. It would be desirable to
find a condition without considering the other semantics.

Fig. 1. AF with no stable extensions.

In this paper, we show the condition for a given AF not having a stable ex-
tension, and identify the position where a new argument is added to the reduced
AF using its topological feature.

Previously, we investigated a simple AF consisting of connected cycles and
the length of each cycle is three [25], and then extended our target AFs to those
that allow general odd-length cycles and proposed a reduction approach [24].
A given AF is shrunk to a simple form and its stability and repairability are
discussed. However, the target AFs were still restricted.

In this paper, we treat an arbitrary AF by removing all of these restrictions,
and refine the reduction procedure. First, we clarify the topological condition
of AF for not having a stable extension, which covers a wide range. Next, we
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discuss the repair of a reduced AF. We describe the topological condition for
repairability. Then, we identify the positions where new arguments are added in
several repair types.

This paper is organized as follows. In Section 2, we describe basic concepts.
In Section 3, we formalize a reduction procedure. In Section 4, we show the
condition for an unstable AF. In Section 5, we discuss repair of the reduced
AFs. In Section 6, we compare our approach with related works. Finally, in
Section 7, we present our conclusions and directions for future research.

2 Preliminaries

The abstract AF proposed by Dung [19] is a representation of an argumentation
structure that ignores its content.

Definition 1 (argumentation framework) An argumentation framework (AF)
is defined as a pair 〈A,R〉 where A is a set of arguments and R ⊆ A×A.

A pair (A,B) ∈ R is called an attack, and it is said that A attacks B.
An AF can be represented as a directed graph in which each node corresponds

to an argument, and each edge corresponds to an attack. In this paper, we
consider a finite AF that can be represented as a connected finite directed graph.

Definition 2 (path,cycle) Let 〈A,R〉 be an AF and A0, An ∈ A. If there ex-
ists a sequence of attacks (A0, A1), (A1, A2), . . . , (An−1, An) ∈ R where for all
i, j; 0 ≤ i 6= j ≤ n− 1, Ai 6= Aj, then 〈A0, . . . , An〉 is called a path from A0 to
An, and n is called its length. For a path 〈A0, . . . , An〉, if An = A0 then it is
called a cycle from A0 to A0.

Example 1. In an AF in Figure 2, for example, 〈a, b, c〉 is a path of length 2,
〈a, b, e, a〉 is a cycle of length 3, 〈a, a〉 is a cycle of length 1, but 〈a, b, c, d, b, e, a〉
is not a cycle.

Fig. 2. Example of an AF.

For an abstract AF, semantics is defined either by an extension or labeling,
which have a one-to-one relation with each other [1]. In this paper, we adapt
semantics by labeling.

Labeling is a total function from a set of arguments to a set of labels
{in, out , undec}.
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Definition 3 (complete labeling) Let 〈A,R〉 be an AF. A labeling L is called
a complete labeling if the following conditions are satisfied for any argument
A ∈ A.

– L(A) = in iff ∀B ∈ A; (B,A) ∈ R ⇒ L(B) = out.
– L(A) = out iff ∃B ∈ A;L(B) = in ∧ (B,A) ∈ R.
– L(A) = undec, otherwise.

Hereafter, the term “labeling” denotes complete labeling unless otherwise
indicated. The set {A|A ∈ A,L(A) = in} is a set of accepted arguments corre-
sponding to an extension in the extension-based semantics.

Definition 4 (stable labeling) Let 〈A,R〉 be an AF. For a complete labeling
L, if {A|A ∈ A,L(A) = undec} = ∅, then it is called a stable labeling.

There exists an AF that has no stable labelings.

Definition 5 (stable/unstable AF) An AF with a stable labeling is called a
stable AF, and one without it is called an unstable AF.

In addition to these concepts, we introduce several new concepts and termi-
nologies.

Definition 6 (connector) Let F = 〈A,R〉 be an AF. For an argument B ∈ A,
if there exists more than one argument A such that (A,B) ∈ R, then B is said to
be a connector of F ; if there exists a unique argument A such that (A,B) ∈ R,
then B is said to be a non-connector of F .

Note that an argument without an attack is neither a connector nor a non-
connector. For brevity, we call an attack from a non-connector an nc-attack.

Definition 7 (nc-cycle) Let F be an AF. A cycle 〈A0, . . . , An−1, A0〉 in F
where all Ai (0 ≤ i ≤ n− 1) are non-connectors is said to be a nc-cycle of F .

Definition 8 (cpath) Let C,D be (possibly the same) connectors of an AF.
Then, the path 〈C,A1, . . . , An, D〉 where A1, . . . , An (n ≥ 1) are non-connectors
is said to be a cpath from C to D.

Note that there exists an nc-cycle with length 1, i.e., a self-attack, whereas
the length of any cpath is more than 1.

Example 2. In the AF in Figure 3, d and f are the connectors, a cycle 〈a, b, c, a〉
is the nc-cycle, paths 〈d, e, f〉, 〈d, e, h, d〉 and 〈f, g, d〉 are the cpaths.

Definition 9 (annihilator,entrance) Let F = 〈A,R〉 be an AF. A pair of an
argument A 6∈ A and an attack (A,B) to B ∈ A is said to be an annihilator of
F , and B is said to be an entrance of F .

We revise an unstable AF by adding annihilators to obtain a stable AF.
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Fig. 3. Connector, nc-cycle, and cpath.

Definition 10 (k-repair) Let 〈A,R〉 be an unstable AF. For A1, . . . , Ak 6∈ A
where Ai 6= Aj for any i, j (1 ≤ i 6= j ≤ k), set A′ = A ∪ {A1, . . . , Ak}, and
also set R′ = {(A1, B1), . . . , (Ak, Bk)} where for all i (1 ≤ i ≤ k), Bi ∈ A, and
for all i, j (1 ≤ i 6= j ≤ k) Bi 6= Bj. Then the act of revision from 〈A,R〉 to
〈A′,R′〉 is said to be a k-repair.

Hereafter, in figures, a red node denotes a connector, and in the figures
showing a labeling, a pink node denotes an argument labeled in and a blue
node denotes an argument labeled out ; a rectangle with an arrow denotes an
annihilator.

Example 3. The AF shown in Figure 2 is unstable. Figure 4 shows the result of
1-repair by adding an annihilator to an argument b. This AF is stable (Figure 4).

Fig. 4. Result of 1-repair of an AF shown in Figure 2.

3 Reduction

It is difficult to understand the structure of a large and complicated AF, and it
is computationally intensive to explore its stability or repairability directly. We
introduced the reduced form of a given AF, preserving the labels of connectors,
as the label of the connector is the key to considering stability [24].
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The reduction procedure contains shrinkage of nc-cycles and that of paths.
As a pair of succeeding non-connectors in a path to a connector do not affect the
label of the connector in the path, we shrink a subsequent pair of non-connectors
for each path. In addition, an nc-cycle q is shrunk to one special node called an
‘undec-node’ with a self-attack, denoted by Uq. At the same time, the attacks
from a node in the nc-cycle to its outside node are reconnected to the attacks
from Uq.

[Reduction procedure]1.
Let F = 〈A,R〉 be a given AF. Repeat the following procedure as far as

possible.

1. (shrink nc-cycles)
(a) For each nc-cycle q= 〈Aq1, Aq2, . . . , Aqmq

, Aq1〉 in F , we define four sets:
– Fq = {Aq1, Aq2, . . . , Aqmq},
– Gq = {(Aq1, Aq2), . . . , (Aqmq , Aq1)},
– Hq = {(A,X)|(A,X) ∈ R, A ∈ q,X /∈ q},
– Jq = {(Uq,Uq)} ∪ {(Uq, X)|(A,X) ∈ Hq}.

(b) Set F =
⋃

q Fq, G =
⋃

q Gq, H =
⋃

q Hq, J =
⋃

q Jq and U =
⋃

q{Uq}.
(c) SetA0 = (A\F )∪U ,R0 = (R\(G∪H))∪J . Then, we get F0 = 〈A0,R0〉.

2. (shrink paths)
(a) For each path p = 〈Cp, Ap1, Ap2, . . . , Apkp

, Dp〉 (kp > 1) in F0, where Cp

is a connector or an undec-node, Ap1, Ap2, . . . , Apkp
are non-connectors,

and Dp is a connector, we define three sets:
– Sp = {Ap1, . . . , Apkp

},
– Tp = {(Cp, Ap1), (Ap1, Ap2), . . . , (Apkp

, Dp)},
– Vp = {(Cp, Dp)} if kp is even, Vp = {(Cp, Ep), (Ep, Dp)} where Ep is

a new argument if kp is odd.
(b) Set S =

⋃
p Sp, T =

⋃
p Tp, E =

⋃
p Ep and V =

⋃
p Vp.

(c) Set A1 = (A0 \ S)∪E, R1 = (R0 \ T )∪ V . Then we get F1 = 〈A1,R1〉.
3. Set F = F1.

Example 4. Figure 5 shows an example of shrinkage of an nc-cycle. The nc-cycle
〈a, b, c, a〉 in Figure 5(a) is shrunk to an undec-node U ; the attacks (a, d) and
(b, e) are replaced by (U , d) and (U , e), respectively (Figure 5(b)).

The reduction procedure terminates because AF is finite, and the number of
connectors never increases.

Definition 11 (reduced form of AF) Let F be an AF. The AF finally ob-
tained by the reduction procedure is said to be a reduced form of F .

Example 5. Figure 6 shows an example of reduction. Figure 6(a) is a given AF.
The cpath from D to C contains the subsequent non-connectors that are deleted
and the path is shrunk to a direct edge from D to C. Two cpaths from C

1 The definition of the reduction is modified from that described in [24].
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(a) nc-cycle (b) shrunk form

Fig. 5. Shrinkage of nc-cycles.

to D do not change since both contain only one intermediate node between
the connectors, respectively. Both of the two cpaths from C to C have four
intermediate non-connectors, respectively, therefore, these paths are shrunk to
self-attacks of C, which are merged to the single self-attack. As a result, we have
the reduced AF shown in Figure 6(b). In this case, both connectors of F remain
as connectors in the reduced AF.

(a) Given AF (b) Reduced AF

Fig. 6. Reduction: both connectors remain.

Example 6. Figure 7 shows another example of reduction. There are two cpaths
from C to D (Figure 7(a)), both of which are shrunk and merged to the single
edge from C to D. Similarly, two cpaths from C to C are shrunk and merged to
the single self-attack of C (Figure 7(b)). As a result, D is no longer a connector,
and there appears a new cpath 〈C, a, b, C〉 from C to C (Figure 7(b)). Then,
repeat the procedure. This cpath is shrunk to a self-attack and merged with the
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existing self-attack, and we obtain the single node with the self-attack which
is no more a connector (Figure 7(c)). Then, repeat the procedure again. This
nc-cycle is reduced to U (Figure 7(d)). Finally, the reduced AF consists of only
one undec-node with a self-attack. In this case, both connectors of F disappear
in the reduced form.

(a) Given AF (b) First turn (c) Second turn (d) Reduced AF

Fig. 7. Reduction: both connectors disappear.

The nodes in the reduced form are classified into three types: connector,
non-connector, and undec-node depending on the number of their attackers.

The reduced AF has the following properties.

Proposition 1 1. Each cpath (in the reduced AF) includes exactly one non-
connector.

2. Each path from an undec-node to a connector in which no connector appears
includes at most one non-connector.

3. An undec-node has no attacker except for itself.

Proof. 1. The length of each cpath in the original AF is more than one, and
subsequent non-connectors in the cpath are deleted by a pair at the step
2 in the reduction procedure. Therefore, the number of the remaining non-
connectors in a cpath is one.

2. Let p be a path from an undec-node to a connector in which no connector
appears in the original AF. Subsequent non-connectors in p are deleted by a
pair at the step 2 in the reduction procedure. Therefore, the number of the
remaining non-connectors in p is at most one.

3. An undec-node is added with a self-attack only at the step 1(c), and no other
attacks are added to it.
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4 Judgment for Unstability

It is possible to easily judge unstability only by checking its topology if an AF
has some topological property. We first show the class of such AFs and how to
repair them in the next section.

Definition 12 (alternate-io-path) Let F be an AF with a stable labeling L.
A path p = 〈A0, . . . , An〉 (n > 0), in which L(A0), . . . ,L(An) are assigned in
and out in turn is said to be an alternate-io-path w.r.t. L.

Theorem 1 (unstability of AF) If an AF satisfies the following two condi-
tions, then it is unstable.
[COND1]

1. There exists no even-length cycle.
2. Each argument is attacked by at least one argument (including itself).

Proof. Assume that F = 〈A,R〉 has a stable labeling L.
For an arbitrary argument A ∈ A, let p be the longest alternate-io-path w.r.t.

L which starts from A. Then, there exists an argument B ∈ A that attacks A
from the second condition.

We show that contradiction occurs, by splitting cases.
(1) B 6∈ p.

(1.1) If L(A) = in, then L(B) = out . It follows that there exists an alternate-
io-path longer than p; it is a contradiction.

(1.2) If L(A) = out and L(B) = in, then there also exists an alternate-io-path
longer than p; it is a contradiction.

(1.3) If L(A) = out and L(B) = out , then there should be an argument
C ∈ A that attacks A and L(C) = in. If C 6∈ p, then there exists an alternate-io-
path longer than p; it is a contradiction. If C ∈ p, there exists a cycle from A to A
that consists of the alternate-io-path from A to C followed by an attack (C,A).
It is a cyclic alternate-io-path of which the length is even; which contradicts the
first condition.
(2) B ∈ p

(2.1) If L(A) = in, then L(B) = out , there exists a cycle from A to A that
consists of the alternate-io-path from A to B followed by an attack (B,A). It is
a cyclic alternate-io-path of which the length is even; which contradicts the first
condition.

(2.2) If L(A) = out and L(B) = in, contradiction by the same reason with
the case (2.1).

(2.3) If L(A) = out and L(B) = out , then there should be a non-connector
C ∈ A that attacks A. If C 6∈ p, then there exists an alternate-io-path longer
than p; it is a contradiction. If C ∈ p, there exists a cycle from A to A that
consists of the alternate-io-path from A to C followed by an attack (C,A). It is
a cyclic alternate-io-path of which the length is even; which contradicts the first
condition.

Therefore, contradiction occurs in all cases. Thus, F is unstable. ut
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Corollary 1 Let F be an AF and F ′ be its reduced form. If F ′ satisfies [COND1],
then F is unstable.

Proof. F includes no even-length cycle if and only if F ′ includes no even-length
cycle, and each argument is attacked by at least one argument in F if and only
if each argument is attacked by at least one argument in F ′, since a subsequent
non-connectors are deleted by a pair in the reduction procedure. Therefore, F
satisfies [COND1] if and only if F ′ satisfies [COND1]. Therefore, if F ′ satisfies
[COND1], then F is unstable. ut

This result shows that we can judge unstability of an AF by checking the
topology of the reduced AF, and we can also discuss repairability on the reduced
AF, assuming [COND1].

5 Repair of Reduced AF

5.1 1-repair with out-labeled connector

Next, we show how to identify an entrance on 1-repair on the reduced AF.
An undec-node is an argument without an nc-attack. Therefore, we treat

undec-node and connectors without nc-attacks alike when identifying an en-
trance.

For a reduced AF F ′, we denote CF ′ a set of connectors without nc-attacks
and undec-nodes of F ′.

Theorem 2 (1-repairability of reduced AF) Let F ′ be a reduced AF that
satisfies [COND1]. If CF ′ = {C}, then it is 1-repairable by taking C as an
entrance, and each connector is labeled out in the repaired AF.

Proof. F ′ is unstable from Theorem 1. Let L be a labeling of the resulting AF
that gives all non-connectors including an annihilator in and the others out . An
annihilator is labeled in since it has no attacker. Each connector including C has
an nc-attack in the resulting AF, and thus it is labeled out . Each non-connector
is labeled in since it is attacked only by the connector which is labeled out .
Therefore, L is stable, and each connector is labeled out in the repaired AF. ut

Example 7. Figure 8(a) is the reduced form of the AF shown in Figure 1. In this
AF, the node C is the only connector that has no nc-attack, which is identified
as an entrance and so the resulting AF is stable (Figure 8(b)).

The condition shown in this theorem provides a simple intuitional method
for repair: checking the attacks of each connector. This matches the definition
of stable extension, i.e., the set of arguments labeled in is conflict-free and at-
tacks all the arguments outside of the set. The computational complexity of the
judgment of 1-repairability and identification of an entrance is linear.

We can derive the following theorem regarding this type of repair from the
propositions shown in [24].
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(a) The reduced AF (b) Labeling to the repaired AF

Fig. 8. Repair of the reduced AF.

Theorem 3 (1-repairability of AF) Let F be an AF without an nc-cycle,
and F ′ be its reduced form that satisfies [COND1].
(1) F is 1-repairable if and only if F ′ is 1-repairable.
(2) When all the connectors in F remain in F ′ and if F ′ is 1-repairable by
taking an argument E as an entrance, then F is 1-repairable by taking E as an
entrance.

5.2 k-repair with out-labeled connector

Next, we discuss k-repair.

Theorem 4 (k-repairability of reduced AF) Let F ′ be a reduced AF that
satisfies [COND1]. If |CF ′ | = k, then it is k-repairable by taking all the arguments
in CF ′ as entrances, and each connector is labeled out in the repaired AF.

Proof. F ′ is unstable from Theorem 1. If we add annihilators to all the arguments
in CF ′ , all the entrances are labeled out , and the resulting AF has a stable
labeling by which all the connectors are labeled out and all the non-connectors
are labeled in, by the same reason with that of Theorem 2. ut

Example 8. The reduced AF shown in Figure 9(a) has two connectors d and f
that have no nc-attacks. It is repaired by taking these two connectors as entrances
(Figure 9(b)). It is 2-repair.

We may have another result of k-repair where k is less than the number of
the arguments in CF ′ . In this case, some connectors are labeled in. We will show
an example in the next subsection.
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(a) The reduced AF (b) Labeling to the k-repaired AF

Fig. 9. Example of 2-repair.

5.3 1-repair with in-labeled connector

All the connectors are labeled out in the repaired AF by the type of repair
mentioned in subsections 5.1 and 5.2. Then, can we make a connector labeled
in? And if possible, where is an entrance? Are there any topological constraints
on an AF? These are the next issues to be discussed.

A connector can be considered as an argument corresponding to one of sig-
nificant claims in the entire argumentation, since it is attacked by several argu-
ments. Therefore, it is meaningful to make a connector to be labeled in, that is,
accepted. Such a repair gives a strategy to persuade the other agents to accept
an agent’s main claim.

We can make a specific connector labeled in if all its attackers are labeled
out . But to realize it by adding only one annihilator, the entrance should be
taken in the shared part of all the paths in which these attackers are, respec-
tively. Moreover, an additional condition is required. If there exists a subsequent
connectors in a path from the entrance to the attacker of the specified connec-
tor, the former connector should have a self-attack. Since a connector with a
self-attack cannot be labeled in by any labeling, it is labeled out . Therefore, the
latter connector cannot be labeled out . It may cause a conflict. Not all AFs can
avoid this conflict, but AFs with some topology can. In the followings we show
two topological conditions on this type of repairability.

[COND2]
Let F ′ be a reduced AF that satisfies [COND1].

1. CF ′ = {C}.
2. C does not have a self-attack.
3. The cycles included in F ′ are only those from C to C, all of which share the

path 〈C,A1, A2〉.
4. In each cycle 〈C,A1, A2, A3, . . . , Ak, C〉, Aj is a non-connector if j is odd

and a connector if j is even (3 ≤ j ≤ k). (The length of the shared path may
be more than two.)
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Proposition 2 Let F ′ be a reduced AF that satisfies [COND1]. If F ′ satisfies
[COND2], then it is 1-repairable by taking A2 as an entrance, in this case C is
labeled in, in the repaired AF.

Proof. F ′ is unstable from Theorem 1. Let L be a labeling to the resulting
AF that for each path 〈C,A1, A2, A3, . . . , Ak, C〉, L(Aj) = in if j is odd and
L(Aj) = out if j is even (3 ≤ j ≤ k). Then L(A2) = out , since A2 is an
entrance. For each path 〈A3, . . . , Ak〉, if j is odd, L(Aj) = in should hold since
Aj is a non-connector which is attacked by only Aj−1 labeled out ; if j is even,
L(Aj) = out should hold since Aj is a connector which is attacked by Aj−1
labeled in. Then L(Ak) = out , since k is even. Therefore, L(C) = in, since all
the arguments that attack C in all paths are labeled out and C does not have a
self-attack. Then L(A1) = out , since A1 is attacked by C. It is consistent with
the labeling L(A2) = out . Therefore, L is a stable labeling. ut

Example 9. Figure 10(a) shows an AF that satisfies [COND2]. We get a stable
AF by taking b as an entrance; in this case, C is labeled in, in the repaired AF
(Figure 10(b)). It is 1-repair.

(a) An AF (b) Repaired AF

Fig. 10. Example of 1-repair with connector labeled in.

The next proposition shows another condition to get a stable AF with a
labeling which gives in to multiple connectors by 1-repair.

We consider the case in which CF ′ has more than one argument and focus
on cycles of one of these arguments. It is required that the entrance is shared
by all the paths between the arguments in CF ′ , and that all the attackers of the
focused argument are labeled out in the repaired AF.

[COND3]
Let F ′ be a reduced AF that satisfies [COND1].



14 Kazuko Takahashi and Hiroyoshi Miwa

1. CF ′ = {C0, C1, . . . , Cn} (n > 0).
2. C0, C1, . . . , Cn do not have self-attacks.
3. The cycles appearing in F ′ are only those from C0 to C0, each of that does

not include Ci( 6= C0) ∈ CF ′ .
4. All the paths from C0 to Ci (0 ≤ i ≤ n) share the path 〈C0, A1, A2〉.
5. In each path 〈C0, Ai

1, A
i
2, A

i
3, . . . , A

i
ki
, Ci〉 from C0 to Ci (0 ≤ i ≤ n), ki is

even, Ai
j is a non-connector if j is odd and a connector if j is even (3 ≤ j ≤

ki). (The length of the shared part may be more than two.)

Lemma 1 Let F ′ be a reduced AF that satisfies [COND1]. If F ′ satisfies [COND3],
then for each t; 1 ≤ t ≤ n, there is no path from Ct to Ci for each i (0 ≤ i ≤ n).

Proof. F ′ is unstable from Theorem 1. For each t; 1 ≤ t ≤ n, there exists a path
from C0 to Ct, since Ct has an attack except for itself from the second condition.

Assume that there exists a path from Ct to C0. Then there exists a cycle
from C0 to C0 including Ct(6= C0) ∈ CF ′ , which contradicts the third condition.
Therefore, there exists no path from Ct to C0.

Assume that there exists a path from Ct to Ci (1 ≤ i 6= t ≤ n). If A attacks
Ct, then A should be a connector from the first condition. It follows that A
and Ct are succeeding connectors in the path 〈C0, Ai

1, A
i
2, A

i
3, . . . , A

i
ki
, Ci〉. Let

Ct = Ai
h, then h ≥ 3, since each cycle from C0 to C0 does not include Ct from

the fourth condition. If h = 3, then Ct should be a non-connector from the
fifth condition, which is a contradiction; if h ≥ 4, then A and Ct are succeeding
connectors, which contradicts the fifth condition.

Therefore, for each t; 1 ≤ t ≤ n, there is no path from Ct to Ci for each i
(0 ≤ i ≤ n). ut

Proposition 3 Let F ′ be a reduced AF that satisfies [COND1]. If F ′ satisfies
[COND3], then it is 1-repairable by taking A2 or C0 as an entrance. In both
cases, Ci is labeled in for all i (1 ≤ i ≤ n); and C0 is labeled in, in the former
case whereas labeled out, in the latter case, in the repaired AFs, respectively.

Proof. F ′ is unstable from Theorem 1.
(1) A2 is taken as an entrance.

Let L1 be a labeling to the resulting AF such that for each path
〈C0, Ai

1, A
i
2, A

i
3, . . . , A

i
ki
, Ci〉, L1(Ai

j) = in if j is odd and L1(Ai
j) = out if j

is even (3 ≤ j ≤ ki). Then, L1(Ai
ki

) = out , since ki is even. From Lemma 1,

there is no path from the argument Ct ∈ CF ′ (t 6= 0) to Ci (0 ≤ i ≤ n). There-
fore, L1(Ci) = in, since all the arguments that attack Ci in all paths are labeled
out and Ci does not have a self-attack. Then L1(A1) = out , since A1 is attacked
by C0. It is consistent with the labeling L1(A2) = out . Therefore, L1 is a stable
labeling, which gives a label in to C0, C1, . . . , Cn.
(2) C0 is taken as an entrance.

Let L2 be a labeling to the resulting AF. Then L2(C0) = out since C0 is an
entrance. In this case, all the connectors in the cycles from C0 to C0 are labeled
out , by the similar discussion with that in the case of (1). ut
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Example 10. Figure 11(a) shows an AF F ′ that satisfies [COND3]. C and D
are two connectors without nc-attacks. That is, CF ′ = {C,D}. We get a stable
labeling L1 by taking b as an entrance; in this case L1(C) = in and L1(D) = in
(Figure 11(b)). We also get a stable labeling L2 by taking C as an entrance; in
this case L2(C) = out and L2(D) = in (Figure 11(c)).

(a) An AF (b) Repaired AF with L1 (c) Repaired AF with L2

Fig. 11. Example of 1-repair with connector labeled in.

6 Related Works

Dynamic argumentation is currently a focus of much research [18, 8]. Such stud-
ies evaluate changes in argumentation frameworks by adding/removing argu-
ments/attacks, and mainly discuss changes in extensions caused by addition
or removal operations. Earlier works have mainly investigated and compared
changes in extensions in several extension-based semantics when the addition or
removal of arguments/attacks are performed [13–16]. The problem which oper-
ations are required so that a desired set of arguments becomes a subset of an
extension was introduced as an enforcing problem [6], and many studies have
examined this [10, 5, 9, 17, 28].

The repair we discuss here can be considered as an enforcing problem. We
focus on identifying a position by checking the topology of an AF, whereas
most other studies on enforcing have focused on changes in extensions and have
attempted to identify a minimal change by comparing solutions. For example,
Baumann et al. considered a minimal change in AFs on the enforcing problem
by introducing a value function of an AF based on a distance function between
two AFs [7]. The 1-repair that we showed is considered a solution with a minimal
change in a sense.

A necessary and sufficient condition for the existence of a stable extension
are discussed in some works. Baumann et al. proved the condition for a given AF
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with an odd-length cycle [11]. The stability is judged using an admissible exten-
sion. They did not refer to the position to repair. Schulz et al. also investigated
the condition [23]. They proposed two different approaches: labeling based one
and structure based one. In both approaches, they characterized a given AF using
preferred labeling, and showed the condition for stability. The crucial difference
between these two works and ours is as follows: the (un)stability is judged re-
garding a certain semantics different from a stable one in their methods, which
means that the result in the other semantics has to be obtained first; on the
other hand, although it is not a necessary condition for stability, the unstability
is judged just from a topological feature of an AF directly in our method, which
means that if an AF has some specific topology, the judgment is done in a simple
and quick manner. We have clarified the classes of AFs for which a repair can
be found using topological properties.

Some works used the topological properties of an argument graph to treat
dynamic argumentation frameworks [20, 4]. They used simple topological prop-
erties, such as symmetry and similarity, to reduce the complexity of computing
changes in extensions, whereas we investigated the relationships among topolog-
ical properties and the possibility of repair. Other works proposed a reduction
of an AF using shrinking loops [26, 22] but did not discuss repair.

A repair shown in our work can be regarded as an abduction in logic pro-
gramming in the sense of finding a minimal change in the knowledge base by
adding a fact and a rule. Šefránek described the relationship between a dynamic
argumentation framework and the revision of logic programming [27]. It would
be interesting to relate our approach to an abduction of logic programming.

7 Conclusion

In this paper, we have discussed unstability and the repair of an AF using a
reduction. We described the topological conditions of the reduced AF for re-
pairability and identified the entrances. When an argumentation becomes stuck,
we can easily find the position where a counter-argument should be added to
lead to acceptance of an agent’s claim. We have got more generally applicable
results by removing the restrictions on the target AFs presented in our previous
works.

Our main contributions are as follows:

– We have clarified a simple condition on the topological properties of an AF
for its unstability, which covers a wide range.

– We have shown several ways of repair: 1-repair which makes the labels of all
connectors out , 1-repair which makes the labels of some connectors in and
k-repair.

– These judgments are simple, easy to understand intuitively.

It shows that if an AF has some specific topology, we can judge its unstability
and repairability in a simple and quick manner by virtue of topological features
without regarding other semantics.
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We think the range covered by the presented condition for unstability is
enough wide, but there still remains room. In the future, we will consider the
conditions for the stability of an AF or try to identify other conditions for unsta-
bility. We will also investigate more general conditions for 1-repair that makes
the labels of some connectors in, and the repair of an AF including even-loops
and one including arguments without attacks.
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