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Abstract. This paper discusses how to escape a state in which argumen-
tation can reach no conclusion, by offering a new argument. We formalize
our approach based on Dung’s abstract argumentation framework (AF).
When an AF has no stable extension, we have no meaningful conclusion.
We address the problem of whether it is possible to revise this situa-
tion by adding an argument that attacks an existing one. If possible,
how many solutions can we generate and at what position should it be
added? We discuss this problem using an AF consisting of a trilemma
and show conditions depending on the topology of the AF. We also ad-
dress the point that a specific argument can be accepted or not by this
action. We extend the discussion into two possible directions: a general
N-lemma case and a set of AFs, each of which consists of several trilem-
mas. It follows that when a large argumentation becomes stuck in a
practical situation, the position to which a counter-argument should be
added can be detected by a check of the topology of the AF.

Keywords: abstract argumentation, computational argumentation, re-
vision of argumentation, graph topology

1 Introduction

Argumentation appears in many scenes in our daily life and has been studied
from various perspectives. In the field of artificial intelligence and logic program-
ming, the Abstract Argumentation Framework (AF) introduced by Dung [15] has
been regarded as a strong framework to handle inconsistency and has generated
considerable work on computational argumentation [17].

An AF can be represented as a directed graph in which a node corresponds
to an argument, and an edge to an attack relation. When we consider an argu-
mentation as a graph, we find several topological types. One type that attracts
our interest is that including a cycle, which means that arguments are attacked
by each other.

When two arguments A and B are attacked by each other, we cannot arrive
at a unique outcome that each agent can accept. In this case, either A or B is
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Fig. 1. A trilemma in argumentation.

acceptable. Furthermore, consider what happens when three arguments, A,B,
and C, attack in such an order that A attacks B, B attacks C, and C attacks
A. We call this a trilemma. In this case, either one of A,B or C is acceptable.
However, this result is weak in the sense that each single argument does not
attack all of the other arguments. According to Dung’s semantics, such an AF
does not have a stable extension, and no argument is skeptically or credulously
accepted. In practical argumentation, the argumentation becomes stuck, and no
meaningful result is possible. We can escape from this sticky state by providing a
new counter-argument. Moreover, if we want a specific argument to be accepted,
we have to choose an appropriate position.

For example, consider the situation in which three agents give their argu-
ments:

a: We should go to Okinawa; it is cold in Hokkaido.

b: We should go to Tokyo because it costs a lot to go to Okinawa.

c: We should go to Hokkaido because we cannot find beautiful scenery in
Tokyo.

In this case, these arguments constitute a trilemma (Figure 1). If an agent
adds a new argument d, “It is risky to go to Tokyo now because of COVID-19,”
then the argument b is defeated, and as a result, a and d are accepted. Therefore,
if an agent wants her claim a to be accepted, she needs to offer such an argument.

If the entire argumentation is larger, trilemmas may appear in many loca-
tions, and they may interact in complicated ways. In such a case, how can one
agent find a way to persuade the others?

Changes in argumentation systems have been discussed in several works [14].
In these works, the authors consider the properties depending on the patterns
of change in extensions and do not discuss the position to which a new attack is
added. Here, we do not address the problem based on a principle of change in
extension types but in terms of positions where an argument will be added.

In this paper, we consider AFs consisting of trilemmas that share one or two
nodes. We investigate the properties of such an argument graph according to
each topology and formalize them. We focus on stable semantics, since this is
considered most suitable in a practical situation for drawing a plausible conclu-
sion that is admitted by all agents and that attacks every argument against the
conclusion.

More specifically, we discuss the problem of whether we can get an AF with
a stable extension by adding one argument and an attack to the AF without it.
If it is possible, we show the position to be added. We consider such a change
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based on the topology. Starting from a simple trilemma, we discuss extensions
of the result in two directions: the N -lemma case and the meta-AF case.

Our aim is to resolve a stuck argumentation by offering a counter-argument
for a practical situation, rather than to find a general method that can be ap-
plied to any argument graph including the ones that seldom appear in practical
situations.

This paper is organized as follows. In Section 2, we describe basic concepts. In
Section 3 and in Section 4, we consider the stable extension in the case of an AF
including a single trilemma and an AF constructed by more than one trilemma,
respectively, as well as one including the N -lemma. In Section 5, we consider a
case of a meta-AF. In Section 6, we compare our approach with related works.
Finally, in Section 7, we present conclusions and directions for future research.

2 Basic Concepts

The abstract argumentation framework (AF), proposed by Dung [15], is a rep-
resentation of an argumentation structure, ignoring its content.

Definition 1 (argumentation framework (AF)). Argumentation Frame-
work (AF) is defined as a pair 〈A,R〉 where A is a set of arguments and
R ⊆ A×A.

A pair (A,B) ∈ R is called an attack, and it is said that A attacks B.
AF can be represented as a graph in which each node corresponds to an

argument, and each edge corresponds to an attack. In this paper, we consider a
finite AF.

Definition 2 (sub-AF). Let AF1 = 〈A1,R1〉 and AF2 = 〈A2,R2〉 be AFs. An
AF1 is said to be a sub-AF of AF2 if A1 ⊆ A2 and R1 ⊆ R2, and is denoted by
AF1 ⊆ AF2.

Semantics is defined either by an extension or labeling, which has a one-to-
one relation [2]. In this paper, we consider stable semantics.

Definition 3 (stable extension). Let 〈A,R〉 be an AF. S ⊆ A is said to be
a stable extension if the following two conditions hold.

– ¬∃A,B ∈ S; (A,B) ∈ R (There is no pair of arguments that attacks each
other (conflict-freeness).)

– ∀B ∈ A \ S, ∃A ∈ S; (A,B) ∈ R (Each argument outside the set is attacked
by some argument in the set (stability).)

Definition 4 (labeling, complete labeling). Let 〈A,R〉 be an AF. Labeling
is a total function from a set of arguments to a set {in, out,undec}. Labeling L
is said to be complete if the following conditions are satisfied for any argument
A ∈ A.

– L(A) = in iff ∀B ∈ A; (B,A) ∈ R ⇒ L(B) = out.
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– L(A) = out iff ∃B ∈ A;L(B) = in ∧ (B,A) ∈ R.

Definition 5 (stable labeling). Let 〈A,R〉 be an AF. For a complete labeling
L, if {A|A ∈ A,L(A) = undec} = ∅, then it is called stable labeling.

It has been proven that stable extension and stable labeling coincide, that is,
a stable extension corresponds to exactly one stable labeling and vice versa [2].

In addition to these concepts, we introduce several new concepts and termi-
nology.

An AF with three arguments that constitutes a cycle is called a triangular
unit.

Definition 6 (triangular unit (TU)). An AF of the form
〈{A,B,C}, {(A,B), (B,C), (C,A)}〉 is called a triangular unit (TU), and is de-
noted by t(A,B,C). When a TU is a sub-AF of an AF, then it is said that the
AF includes a triangular unit.

Definition 7 (connector, faucet). Let 〈A,R〉 be an AF that includes a tri-
angular unit T = 〈AT ,RT 〉. If (A,B) ∈ R, A ∈ A\AT , B ∈ AT , then B is said
to be a connector of T ; if (A,B) ∈ R, A ∈ AT , B ∈ A\AT , then A is said to be
a faucet of T .

Example 1. In Figure 2, a is the connector, and b and c are faucets of t(a, b, c),
respectively.

Fig. 2. Example of a triangular unit (TU).

For a TU, a sub-AF connected to C, which includes C itself, from the outside
of the TU is called an input part to C and that connected from F , which includes
F itself, to the outside of the TU is called an output part from F (Figure 2).

Definition 8 (input part, output part). (1) For an AF 〈A,R〉 including TU
〈AT ,RT 〉, its sub-AF 〈A1,R1〉 such that A1 = {A | ∃σ = (A1, . . . , An−1);∀i(1 ≤
i ≤ n − 1)(Ai, Ai+1) ∈ R \ RT , where A1 = A,An = C ∈ AT } ∪ {C}, and
R1 = {(A,B)|A,B ∈ A1}, is called an input part to C.
(2) For an AF 〈A,R〉 including TU 〈AT ,RT 〉, its sub-AF 〈A2,R2〉 such that
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A2 = {B | ∃σ = (A1, . . . , An−1);∀i(1 ≤ i ≤ n−1)(Ai, Ai+1) ∈ R\RT , where A1 =
F ∈ AT , An = B} ∪ {F}, and R2 = {(A,B)|A,B ∈ A2}, is called an output
part from F .

Note that if a node C is not a connector, then input part to C consists of
only C. An AF may have several input parts or output parts.

Definition 9 (start-TU). A triangular unit included by an AF without a con-
nector is said to be a start-TU.

Definition 10 (whisker). For a new argument P and an attack I from P , a
pair 〈P, I〉 is said to be a whisker, and P is said to be a whisker node.

Definition 11 (stable AF, repair1 ). An AF with a stable extension is called
a stable AF, and one without a stable extension is called an unstable AF. For
an unstable AF, the act of revising it by adding a single whisker to get a stable
AF is called a repair.

The node to which a whisker is added is always labeled out when repaired,
from the definition of stable labeling.

Definition 12 (entrance, acceptance set). If we repair an unstable AF by
adding a whisker to a node E, then the node is called an entrance of AF and
their set is denoted by ent(AF ), and the obtained stable extension is called an
acceptance set.

3 AF Including One Triangular Unit

We pick up a triangular unit as the simplest odd-length cycle, and consider a
finite AF that includes at most three TUs sharing their nodes. We assume that
the entire AF has no cycle other than TUs and that it is uncontroversial, that
is, there exists no arguments A and B connected by two different paths of even-
length and odd-length. From this assumption, we have only one stable extension
as a result of repair, and we denote the acceptance set on the entrance E for AF
by acc(AF,E).

We address the following problems:

1. When an AF is unstable, is it possible to repair it?
2. If so, how many solutions are possible, and where are the entrances?

In this section, we discuss the case in which an AF includes TUs sharing
their nodes.

First, we discuss the case in which an AF includes only one TU.
When the TU has a faucet, the output part can be labeled without using

undec if TU can be labeled without using undec. Therefore, we investigate only
the case without a faucet.

1 The meaning of “repair” is not exactly the same as that used in [4].
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Fig. 3. An AF with one TU.

3.1 No connector

If a TU has no connector, it is a start-TU, and it is trivial that a start-TU is
unstable.

Proposition 1. If AF includes only one start-TU, then it is unstable.

In this case, we can repair it.

Proposition 2. If an AF has only one start-TU, then we can repair it by taking
any node as an entrance, yielding three solutions.

Proof. Let AF be a triangular unit t(a, b, c). Assume that we add a whisker node
P to a without losing generality. Then, a becomes a connector of this TU. We
get a labeling L such that L(P ) = in, L(a) = out, L(b) = in, L(c) = out, and
acc(AF, a) = {P, b}. ut

vin
We show three solutions in Figure 3. Hereafter, in the figures, the pink nodes

and blue nodes show the arguments labeled in and out, respectively.

3.2 One connector

When a TU has one connector, the AF has a stable extension depending on the
topology. We divide the AF into the TU and the input part to the connector
(both of which share the connector), and we consider labeling in each sub-AF.
If two labelings can give the same value to the connector, then the AF is stable.

Proposition 3. Let AF be an AF that includes a TU t(a, b, c) with the unique
connector a. Let L and LC be labelings of the AF and the input part to a,
respectively. Then, LC(a) = in iff AF has no stable extension.

Proof. (⇒) Assume that LC(a) = in. Then, L(a) should be in, and L(b) = out,
L(c) = in, which means that (c, a) is an attack from the node labeled in to the
node labeled in. This is a contradiction.

(⇐) Assume that LC(a) = out. Then, L(a) should be out. L(a) is out,
regardless of the value of L(c), from the definition of stable labeling. Therefore,
there exists a labeling L(a) = out, L(b) = in, L(c) = out, which means that
there exists a stable extension. ut
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If we add a whisker to an arbitrary node a in the TU, then that node becomes
a connector. Therefore, if the AF has no stable extension, then we add a whisker
to any node in the TU or any node in the input part so that LC(a) = out holds.

Proposition 4. Let AF be an unstable AF that includes a TU t(a, b, c) with
the unique connector a. Let LC be labelings of the input part to a. If there is no
branch in the input part to a, that is, no node in the input part is attacked by
more than one node, then we can repair it if we take a node in T or any node
x in the input part such that LC(x) = in holds as an entrance, and there are at
least three solutions.

Proof. Let L′ be a labeling of the AF obtained by adding a whisker.
Assume that we add a whisker to a. Then, L′(a) = out, and then, L′(b) = in,

L′(c) = out, which is stable.
Assume that we add a whisker to an arbitrary node x in the input part

such that LC(x) = in holds. Let L′C be a label of the input part to a after the
whisker is added. Then we get L′C(x) = out and L′C(a) = out. Therefore, we
have L′(a) = out, L′(b) = in, L′(c) = out, which is stable. Note that if there is a
branch, then we need more than one whisker to make LC(a) = out, depending on
the number of edges from the connector to the branching point, and there is no
solution by adding only one whisker to the input part other than the connector.

Assume that we add a whisker to b. Then, L′(b) = out, and then, L′(c) = in,
L′(a) = out, which is stable.

Assume that we add a whisker to c. Then, L′(c) = out, and L′(a) = in,
L′(b) = out, which is stable.

Conversely, if we add a whisker to the other nodes, then we cannot repair
the AF.

Therefore, there are at least three solutions. ut

3.3 k connectors

We generalize the case in which the number of connectors is k (k = 0, 1, 2, 3).

Theorem 1. Let AF be an AF that includes a TU t(a, b, c). Let LA, LB and LC

be labelings to input part to a, input part to b, and input part to c, respectively.
Then, LA(a) = LB(b) = LC(c) = in iff AF has no stable extension.

Proof. (⇒) We show that we cannot define a stable labeling L to the AF . Assume
that L(a) = in. As such, L(b) = out, and then, L(c) = in. This indicates an
attack from the node labeled in to the one labeled in, which is a contradiction.
Assume that L(a) = out. Then, L(b) = LB(b) = in, L(c) = out, and L(a) =
LA(a) = in, which is a contradiction. Hence, AF has no stable extension.

(⇐) We prove the contraposition by assuming that LA(a) = out, without
losing generality. Assume that L(a) = out. Then, L(b) = in, and then, L(c) =
out and L(a) = LA(a) = out, which is consistent. Therefore, AF has a stable
extension. ut
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(a) butterfly type (b) diamond type

Fig. 4. AF with two TUs.

If AF has no stable extension, we can repair it.

Theorem 2. Let AF be an AF that includes a TU t(a, b, c). Let LA, LB, and
LC be labelings to input part to a, input part to b, and input part to c, respectively.
If the AF is unstable and each input part has no branch, then we can repair it
iff we take any of the following nodes as an entrance:

1. any node x of input part to a such that LA(x) = in.
2. any node y of input part to b such that LB(y) = in.
3. any node z of input part to c such that LC(z) = in.

There are at least three solutions.

Proof. This can be proven, similarly to Proposition 4. ut

4 Triangular Units Sharing Nodes

4.1 AF including two triangular units

Assume that AF includes two TUs that share their nodes. For simplicity, we
assume that each node in AF is included in at least one TU.

There are two topologies, depending on the number of nodes shared with the
two TUs. If only one node is shared, we call it the Butterfly type (B-type), and if
two nodes are shared, the Diamond type (D-type) (Figure 4). In both types, TUs
have only one common connector. In B-type (Figure 4(a)), both TUs have the
common connector c, and in D-type (Figure 4(b)), both TUs have the common
connector b. The connectors are shown as red nodes in the figures. A node that
is not a connector is attacked by exactly one node. Neither of these AFs has a
stable extension, and we can repair them. We have three solutions in the case of
B-type (Figure 5) and two solutions in the case of D-type (Figure 6).

4.2 AF including three triangular units

Assume that AF includes three TUs that share their nodes. For simplicity, we
assume that each node in the AF is included in at least one TU. There are
three types of topology: BB-type (Figure 7), BD-type (Figure 10), and DD-type
(Figure 14), depending on the types sharing nodes. None of these AFs have a
stable extension, and we can repair them.
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Fig. 5. Solutions of B-type: ent(AF ) = {a, c, e}.

Fig. 6. Solutions of D-type: ent(AF ) = {b, c}.

In this case, there exist one or two connectors. If two connectors exist, the
position of the entrance is determined depending on the direction of an attack
between the connectors. For each topology, we show that we can repair it by
adding a whisker so that all the connectors are labeled out.

In the BB-type, each pair of TUs shares a single node. There are two topolo-
gies of the BB-type (Figure 7).

(a) BB1 (b) BB2

Fig. 7. BB-type.

For the BB1-type, there are four solutions: ent(AF ) = {c, d, a, g} (Figure 8),
and for BB2-type, there are two solutions: ent(AF ) = {d, f} (Figure 9).

In the BD-type, a pair of TUs share a single node, and another pair of TUs
share an edge. There are three BD-type topologies (Figure 10).

For the BD1-type, there are three solutions: ent(AF ) = {b, c, e} (Figure 11),
for the BD2-type, there are two solutions: ent(AF ) = {c, e} (Figure 12), and for
the BD3-type, there is one solution: ent(AF ) = {b} (Figure 13).

In the DD-type, two pairs of TUs share an edge. There are three DD-type
topologies (Figure 14).
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Fig. 8. Solutions of BB1: ent(AF ) = {c, d, a, g}.

Fig. 9. Solutions of BB2: ent(AF ) = {d, f}.

For DD1-type, there are two solutions: ent(AF ) = {b, c} (Figure 15), for
DD2-type, there is one solution: ent(AF ) = {b} (Figure 16), and for DD3-type,
there is one solution: ent(AF ) = {c} (Figure 17).

4.3 AF including k triangular units

From the investigation in Subsection 4.1 and Subsection 4.2, we show that the
positions of the entrances can be determined generally for any topology presented
in these previous sections.

We restrict the target AF to the one that satisfies the following conditions,
since we want to clarify the properties of a trilemma itself, avoiding the AF that
does not frequently appear in a practical argumentation from our target.

Definition 13 (module). We call the AF that satisfies the following conditions
Cond a module.

[Cond]

1. The AF consists of at most three TUs sharing their nodes.
2. Each node in the AF is included in at least one TU.
3. It has no cycle other than TUs.
4. It is uncontroversial.

Theorem 3. 1. A module AF has no stable extension.
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(a) BD1 (b) BD2 (c) BD3

Fig. 10. BD-type.

Fig. 11. Solutions of BD1: ent(AF ) = {b, c, e}.

2. When AF = 〈A,R〉 has one connector C, it can be repaired iff the common
connector C or any node A that satisfies (C,A) ∈ R is taken as an entrance.

3. When AF = 〈A,R〉 has two connectors CA and CB such that (CA, CB) ∈ R,
it can be repaired iff CB or any node B that satisfies (CB , B) ∈ R and
(B,CA) 6∈ R is taken as an entrance.

Proof. 1. Since any TU included in AF is unstable, AF is unstable.
2. Assume that AF has one connector C. Let an arbitrary TU in AF be
t(A,B,C).

(a) If we add a whisker to the node C, then C is labeled out. Node A is
attacked only by C in AF . Therefore, if C is labeled out, then A is
labeled in. Then, B, which is attacked by A, should be labeled out. All
TUs can be labeled similarly, since the connector is common. Therefore,
AF can be repaired.

(b) If we add a whisker to the node A such that (C,A) ∈ R, then A is labeled
out, B attacked only by A is labeled in and as a result, C is labeled out.
Therefore, AF can be repaired.

(c) In contrast, assume that we add a whisker to B. Then B is labeled out.
Let t′(C,A′, B′) be another TU that shares the connector C. If C is
labeled out, then A′ is labeled in, since A′ is attacked only by C; B′ is
labeled out, since B′ is attacked only by A′; and C is labeled in, since
both its attackers B and B′ are labeled out, which is a contradiction. If
C is labeled in, then A′ is labeled out and B′ is labeled in, and then C
should be out, which is a contradiction.
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Fig. 12. Solutions of BD2: ent(AF ) =
{c, e}.

Fig. 13. Solution of BD3: ent(AF ) = {b}.

(a) DD1 (b) DD2 (c) DD3

Fig. 14. DD-type.

3. Assume that AF has two connectors CA and CB such that (CA, CB) ∈ R.
Let t(A,CA, CB) be an arbitrary TU in AF that has two connectors, and
t(CA, D,E) be an arbitrary TU in AF that has one connector CA.

(a) If we add a whisker to CB , then CB is labeled out. Node A is attacked
only by CB . Therefore, if CB is labeled out, then A is labeled in. Then,
CA which is attacked by A, should be labeled out. As for t(CA, D,E),
node D is labeled in since it is attacked only by CA, and node E is
labeled out since it is attacked only by D. A TU that shares only CB

can be labeled without a contradiction for the same reason as that in
the case of one connector. Therefore, AF can be repaired.

(b) If we add a whisker to the node B that satisfies (CB , B) ∈ R and
(B,CA) 6∈ R, then B is labeled out. Let t(CB , B, F ) be a TU that has
only one connector CB . Then B is labeled out, regardless of the label of
its other attacker. And F , attacked only by B, is labeled in, and CB is
labeled out. Therefore, AF can be repaired.

(c) In contrast, assume that we add a whisker to CA. Then, CA is labeled
out. Let t(CB , B, F ) be another TU that has only one connector CB .
If CB is labeled in, then B is labeled out, and then F is labeled in.
Therefore, CB is labeled out, since CB is attacked by F , which is a
contradiction. If CB is labeled out, then B is labeled in, and then F is
labeled out. Therefore, CB should be in, since CB is attacked by F and
CA, both of which are labeled out, which is a contradiction. When we
add a whisker to the other node, a similar discussion follows. ut

This theorem shows that we can find an entrance by simply checking the
topology of an AF.
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Fig. 15. Solutions of DD1: ent(AF ) = {b, c}.

Fig. 16. Solution of DD2:
ent(AF ) = {b}. Fig. 17. Solution of DD3: ent(AF ) = {c}.

Example 2. The BB2-type AF 〈A,R〉, shown in Figure 7(b), has connectors c
and d such that (c, d) ∈ R, (d, f) ∈ R, and (f, c) 6∈ R hold. Therefore, d and f
are entrances (Figure 9).

In contrast, the BD3-type AF 〈A,R〉, shown in Figure 10(c), has connectors
b and d such that (d, b) ∈ R, (b, c) ∈ R, and (c, d) ∈ R hold. Therefore, b is an
entrance, but c is not (Figure 13).

Theorem 3 does not always hold if the AF consists of more than three TUs.
For example, the AF shown in Figure 18, which has three connectors, c, e and
f , cannot be repaired.

Fig. 18. AF that cannot be repaired.

4.4 Acceptance of a specific argument

We have discussed the entrances to obtain a stable AF. The next question is
whether we can find a solution in which a specific argument can be accepted,
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that is, find an entrance on which an acceptance set includes the argument. The
above investigation shows that it is impossible to make the connector be an
accepted argument in the case of a trilemma. How about the arguments other
than the connector? Unfortunately, it is impossible to ensure that some specific
arguments will be accepted, even if any position is selected as an entrance in
some topology. For example, see the solutions for BB2-type shown in Figure 9.
In this case, ¬∃E; b ∈ acc(AF,E), and we have to add more than one whisker
to the graph to make b accepted.

4.5 N-lemma

Theorem 3 holds not only for a trilemma but also N -lemma for any finite N =
2m+ 1.

Definition 14 (odd-unit). An AF of the form
〈{A1, . . . , A2m+1}, {(A1, A2), (A2, A3), . . . , (A2m, A2m+1), (A2m+1, A1)}〉 is called
an odd-unit and is denoted by t(A1, . . . , A2m+1).

We set the Cond N by replacing the term ‘TU’ in Cond by ‘odd-unit’, and
obtain the following theorem.

Theorem 4. 1. The AF that satisfies Cond N has no stable extension.
2. When AF = 〈A,R〉 has one connector C, it can be repaired iff the common

connector C or any node B such that there exists a sequence of attacks
(Bi, Bi+1) ∈ R (1 ≤ i ≤ 2s− 1) where B1 = C and B2s = B is taken as an
entrance.

3. When AF has two connectors CA and CB such that there exists a sequence
of attacks (Ai, Ai+1) ∈ R (1 ≤ i ≤ 2h − 1) where A1 = CA and A2h =
CB. Then, it can be repaired iff a node B that satisfies one of the following
conditions is taken as an entrance:

(i) B = CB

(ii) B is a node of an odd-unit including both CA and CB and there exists
a sequence of attacks (Bi, Bi+1) ∈ R (1 ≤ i ≤ 2s − 1) where B1 = CA

and B2s = B.
(iii) B is a node of an odd-unit including CB but not CA, and there exists

a sequence of attacks (Bi, Bi+1) ∈ R (1 ≤ i ≤ 2s − 1) where B1 = B
and B2s = CB and each Bi (1 ≤ i ≤ 2s− 1) is not shared with the other
odd-units.

The theorem can be proved using the properties that all the nodes but for
the connectors are attacked only by one node, respectively, and that the label of
the entrance is always out.

Sketch of Proof.
Due to space constraints, here we discuss the case in which AF has one

connector. Let t(A1, . . . , A2m+1) be an arbitrary odd-unit.
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Assume that it shares an odd number of nodes A1, A2, . . . , A2t−1 where
(Ai, Ai+1) ∈ R (∀i; 1 ≤ i ≤ 2t, t ≤ m). Then, A1, A3, . . . , A2t−1 have the
same label, since each of them is attacked only by one node. Thus, we can
consider labeling by reducing A1, A2, . . . , A2t−1 to one node. Then, the num-
ber of shared nodes can be considered as one. Similarly, since non-shared nodes
A2t, A2t+2, . . . , A2m have the same label, we can consider labeling by reducing
A2t, A2t+1, . . . , A2m to one node. Then, the number of the non-shared nodes can
be considered as two. As a result, the problem is reduced to the one in the case
of a trilemma.

If an odd-unit t(A1, . . . , A2m+1) shares an even number of nodesA1, A2, . . . , A2t,
the problem is reduced to the one of a trilemma consisting of two shared nodes
and one non-shared node. ut

Note that different from the case of a trilemma, the connector is not neces-
sarily labeled out when repaired (Figure 19).

(a) unstable AF including 5-lemmas (b) labeling when a whisker is added

Fig. 19. Repaired AF in which the connector is not labeled in.

5 Connected Modules

In this section, we consider an AF consisting of modules connected by edges that
are not included in any TU.

Definition 15 (meta-AF). Let M be a set of modules {M1, . . . ,Mk}, where

Mi = 〈Ai,Ri〉. Let AF (M) be an AF 〈A,R〉 where A =
⋃k

i=1Ai,R =
⋃k

i=1Ri∪
{(Ai, Bj)|Ai ∈ Ai, Bj ∈ Aj(1 ≤ i 6= j ≤ k)}. Then, AF (M) is said to be a meta-
AF of M.

We define the terms connector, faucet, and start-module for meta-AF, simi-
larly with the case of a single triangular unit.

Definition 16 (connector, faucet, start-module). Let M be a set of mod-
ules {M1, . . . ,Mk}, where Mi = 〈Ai,Ri〉. Let AF (M) be a meta-AF of M.

If (A,B) ∈ R, A ∈ A \ Ai, B ∈ Ai, then B is said to be a connector of
Mi; if (A,B) ∈ R, A ∈ Ai, B ∈ A \ Ai, then A is said to be a faucet of Mi.
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conn(Mi) and faucet(Mi) denote the set of connectors and that of faucets of
Mi, respectively. A module without a connector is said to be a start-module.

For simplicity, we assume that no module is isolated and that each pair of
modules is connected by at most one edge. Note that {M1, . . . ,Mk} is not nec-
essarily connected linearly. Each Mi may have more than one connector and/or
faucet.

Example 3. Figure 20 shows an AF that consists of four modules. M1 is a
start-module. The connector and faucets of these modules are: conn(M1) = {},
faucet(M1) = {d, f}, conn(M2) = {h}, faucet(M2) = {j}, conn(M3) = {p},
faucet(M3) = {q}, and conn(M4) = {k,m}, faucet(M4) = {}.

Fig. 20. Connected modules without a meta-cycle.

AF (M) is unstable since each module is unstable.

Proposition 5. AF (M) is unstable.

LetM be a set of modules {M1, . . . ,Mk}, where Mi = 〈Ai,Ri〉. Let AF (M)
be a meta-AF of M. In the following, we discuss its repair.

If there exists more than one start-module, then we have no solution since we
have to add a whisker to each start-module so that each of them is stable. If there
is one start-module, a configuration of modules should satisfy some condition so
that it is possible to be repaired.

Proposition 6. Let M = {M1, . . . ,Mk} and AF (M) = 〈A,R〉. Assume that
AF (M) has exactly one start-module.

We can repair AF (M) by setting the connector E of the start-module as an
entrance iff the following three conditions hold for each Mi ∈M:

1. If Mi is a start-module, then ∃E,F ; (E ∈ ent(M) ∧ F ∈ acc(Mi, E)).
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2. If Mi is not a start-module, let (Fl, Ci) ∈ R (1 ≤ l 6= i ≤ k) where Fl ∈
faucet(Ml),
then ∃Ci; (Ci ∈ conn(Mi)⇒ Ci ∈ ent(Mi) ∧ Fl ∈ acc(Ml, Cl)).

3. If Mi is not a start-module and if ∃Di;Di 6= Ci, Di ∈ conn(Mi), let (Fj , Ci) ∈
R (1 ≤ j 6= i, l ≤ k) where Fj ∈ faucet(Mj),
then Di ∈ acc(Mi, Ci)⇔ Fj 6∈ acc(Mj , Cj).

Sketch of Proof.
First, let M be a start-module. If we add a whisker to an entrance E of M ,

then we can repair M .
Next, let M not be a start-module. Then, it has a connector.
Assume that Mi (1 ≤ i ≤ k) has only one connector Ci. From the second

condition, Ci is labeled out since the faucet Fl is labeled in, and it is an entrance
of Mi. Therefore, Mi has a stable labeling. Let L be this labeling.

Assume that Mi (1 ≤ i ≤ k) has a connector Di different from Ci. From the
third condition, L(Di) = in iff L(Fj) = out, and L is a consistent labeling to
Mi.

Therefore, AF (M) can be repaired. ut

Example 4. Consider the AF shown in Figure 20.
For a start-module M1, it is a BB2-type module where ent(M1) = {a, c} and

acc(M1, c) = {a, d, f}. Since c ∈ ent(M1) and d ∈ acc(M1, c), the first condition
is satisfied.

For M2, ent(M2) = {h, i, j} and acc(M2, h) = {i}. For the connector h of
M2 where (d, h) ∈ R, h ∈ ent(M2) ∧ d ∈ acc(M1, c) holds. For M3, ent(M3) =
{p, q, r} and acc(M3, p) = {q}. For the connector p of M3 where (f, p) ∈ R, p ∈
ent(M3)∧f ∈ acc(M1, c) holds. For M4, ent(M4) = {k,m, n} and acc(M4,m) =
{k, o}. For the connector m of M4 where (q,m) ∈ R, m ∈ ent(M4) ∧ q ∈
acc(M3, p) holds. Therefore, the second condition is satisfied.

M4 has one more connector k where (j, k) ∈ R, j ∈ faucet(M2). j 6∈
acc(M2, h) ∧ k ∈ acc(M4,m) holds. Therefore, the third condition is satisfied.

Hence, we can repair it by adding a whisker node P to c, and the obtained
stable extension is {P, a, d, f, i, k, o, q}.

Example 5. For the AF in Figure 20, assume that an attack (f, p) is replaced by
(f, r).

For M3, conn(M3) is changed to {r}, and acc(M3, r) = {p}. As a result, in
M4, q 6∈ acc(M3, r), which breaks the second condition.

Therefore, we cannot repair it.

Proposition 6 can be extended for an AF (M) that has a meta-cycle. In this
case, we must consider the connections between modules.

Example 6. Figure 21 presents an AF consisting of four modules that constitute
a meta-cycle. In this case, we regard an arbitrary module as a start-module.

We take M1 as a start-module where ent(M1) = {a, c} and acc(M1, a) =
{b, d, f}. Since a ∈ ent(M1) ∧ d ∈ acc(M1, a), the first condition is satisfied.
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It can be checked that the second condition is satisfied for each module.
In this case, it can be considered that M1 has a connector f in addition to a,

where (p, f) ∈ R, p ∈ faucet(M4). And p 6∈ acc(M4, q) ∧ f ∈ acc(M1, a) holds.
Therefore, the third condition is satisfied.

Therefore, we can repair it by adding a whisker node P to a, and the obtained
stable extension is {P, b, d, f, i, l,m, r}.

Fig. 21. Connected modules with a meta-cycle.

6 Related Works

In general, the main issue in changing an argumentation framework is the possi-
bility of modification so that a set of arguments becomes a subset of an extension.
This issue was introduced as an enforcing problem and was first discussed in [4].
Subsequently, considerable work has been done on this problem [14].

Boella et al. discussed the change in grounded semantics if we add or re-
move an attack relation [8, 9]. They investigated the properties of the grounded
extensions, such as expansive change or narrowing change.

Cayrol et al. expanded this discussion to several kinds of semantics including
stable semantics. They investigated the properties of the change in extensions
with regard to the addition and removal of an argument with an attack. They
first investigated a single attack and then extended the procedure to addition
and removal of multiple attacks [11, 10, 12]. They showed that some propositions
depend on the changing type of extensions, but they did not address the classi-
fication of topological features, and not all topological patterns were covered.

Coste-Marquis et al. addressed the revision of extension on changing an at-
tack relation between existing arguments as well as adding an argument with an
attack [13].

Alfono et al. developed an efficient algorithm to compute the extension of
the revised AF by adding an attack between existing arguments [1].
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Baumann et al. showed the minimal change required in an extension to ac-
cept a given set of arguments [4], specifically, the change in extensions under
several semantics for addition and removal of arguments and attacks [6, 7]. They
investigated the change in extensions in various cases. The complexity for the
revision was also discussed [5, 19].

These works focused mainly on how to find a solution to realize a minimal
change in an extension and the type of properties involved in changes in exten-
sions. In contrast, we did not focus on the properties of changes in extensions.
Instead, we investigated the position to which an attack from a new argument
is added. Specifically, we considered the AF consisting of TUs that has no sta-
ble extension and discussed the problem of how to modify it, depending on the
topology. We also attempted to resolve the case of general odd-length cycles.

Some works have utilized the topological features of an argument graph for
the treatment of dynamic argumentation frameworks [16, 3]. They used simple
topological features such as symmetry and similarity to reduce the complexity
of computing changes in extensions, whereas we investigated the relationship of
the topological feature and the possibility of repair.

A repair shown in our work can be regarded as an abduction in logic pro-
gramming, in the sense of finding a minimal change in the knowledge base by
adding a fact and a rule. Šefránek described the relationship between a dynamic
argumentation framework and revision of logic programming [18]. It would be
interesting to relate our approach to an abduction of logic programming.

7 Conclusion

We investigated the conditions under which an unstable AF consisting of a tri-
angular unit can be revised to be stable by adding a new attack from a new
argument. We have shown the positions to be added and the number of solu-
tions.

The main contribution of our work is showing a uniform treatment of a
trilemma in AFs using its topological features. We also discussed how the result
can be extended in two possible directions. One is an extension from the trilemma
to N -lemma for any odd-number N ≥ 3, and the other is the case in which
multiple triangular units are connected by edges that are not included in any
triangular unit.

The results suggest that we can use topological features, such as connection
patterns and the direction of edges, to obtain a stable AF. It follows that when
a large argumentation falls into a sticky state, the position to which a counter-
argument should be added can be detected by checking the topology of the AF.

Three main problems remain for future research. First, we should investigate
the case in which a module includes more than three trilemmas (or N -lemmas).
Second, we would like to explore other types of topology, such as those including
even-length cycles and other semantics. Third, we plan to discuss the complex-
ity of finding a position. It is not expensive to detect the connectors and the
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entrances for each topology, but a high computational cost may be incurred to
identify its topology.
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Appendix

Proof of Theorem 4.

1. [Unstablility]
Since any odd-unit included in AF is unstable, AF is unstable.

2. [One connector]
Assume that AF has one connector C (Figure 22(a)).
If we add a whisker to the node C, then C is labeled out. Then, it is trivial
that AF has stable labeling, since C is a common connector.
Let t(A1, . . . , A2m+1) be an arbitrary odd-unit. If we add a whisker to one
of A2, A4, . . . , A2m, then A2m+1 is labeled in. Then, C, which is attacked by
A2m+1, is labeled out. As a result, t(A1, . . . , A2m+1) has stable labeling. The
other odd-units have stable labelings, since the connector is common.

3. [Two connectors]
Assume that AF has two connectors CA and CB (Figure 22(b)).

(case1) Adding a whisker to the odd-unit including two connectors. Let
t(A1, . . . , A2m+1) be the odd-unit that includes two connectors.
If we add a whisker to CB , then CB(= A2h) is labeled out. Then, A2m+1

is labeled in, since each of A2h+1, A2h+2, . . . , A2m+1 is attacked only by one
node. Therefore, CA(= A1) attacked by A2m+1 is labeled out. Then, A2h−1 is
labeled in, since A2, A3, . . . , A2h−1 is attacked only by one node. Therefore,
CB attacked by A2h−1 is labeled out, which is consistent. Moreover, CB is
labeled out, regardless of the label of its other attacker, since it is attacked
by A2h−1 which is labeled in. Therefore, the odd-unit that includes only one
connector CB has a stable labeling. Similarly, the odd-unit that includes
only one connector CA has a stable labeling. Thus, the entire AF has stable
labeling.
If we add a whisker to one of A2, A4, . . . , A2m, then CB(= A2h) is labeled
out, since A2h−1 is labeled in. Then, CA is also labeled out, since A2m+1 is
labeled in. In this case, the other odd-units that share only one connector
have stable labelings.
In contrast, if we add a whisker to one of A3, A5, . . . , A2m+1, then A2m+1 is
labeled out. If CA(= A1) is labeled out, then CB(= A2h) should be labeled
in. But it is impossible to give a stable labeling to the odd-unit that includes
only one connector CB . If A2m+1 is labeled out, then another attacking node
to CA should be labeled in. But it is impossible to give a stable labeling to
the odd-unit that includes only one connector CA.

(case2) Adding a whisker to the odd-unit including only one connector CB .
Let such an odd-unit be t(D1 . . . , D2u+1), where D1 = CB . If we add a
whisker to one of D2, D4, . . . , D2u, which are not shared with the other odd-
units, then D2u is labeled out, since each of these nodes is attacked only by
one node. Therefore, D2u+1 is labeled in, and then D1(= CB), attacked by
D2u+1, is labeled out regardless of the label of its other attackers. Then, CA

is labeled out. Thus, AF has a stable labeling.
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In contrast, if we add a whisker to one of D3, D5, . . . , D2u+1, which are not
shared with the other odd-units, D2u+1 that attacks CB is labeled out. If CB

is labeled in, then A2m+1 that attacks A1(= CA) is labeled out. In this case,
it is impossible to give a stable labeling to the odd-unit that includes only
one connector CA. If CB is labeled out, then A2m+1 that attacks A1(= CA)
is labeled in, and CA is labeled out, regardless of the label of the other at-
tacker, and A2h−1 that is the other attacker of CB should be labeled out.
Then A2h(= CB) should be in, since both its attackers are labeled out, which
is a contradiction.

(case3) Adding a whisker to the node in the odd-unit including only one
connector CA.
If we add a whisker to the node so that CA is labeled out, then A2h−1 that
attacks CB is labeled out. In this case, the other unit that has only one
connector CB does not have a stable labeling.
If we add a whisker to the node so that CA is labeled in, then CB is labeled
out. Then, A2m+1 that attacks A1(= CA) is labeled in. Then, CA should be
out, which is a contradiction.

From (case1)–(case3), Theorem 4 holds. ut

(a) one connector (b) two connectors

Fig. 22. Repair of N -lemma.


