
422

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Superposition of Rectangles with Visibility Requirement: A Qualitative Approach

Takako Konishi
Graduate School of Science & Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, 669-1337, JAPAN

Email: t.konishi@kwansei.ac.jp

Kazuko Takahashi
School of Science & Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, 669-1337, JAPAN

Email: ktaka@kwansei.ac.jp

Abstract—This paper discusses the superposition of qualita-
tive rectangles so that some parts are visible and other parts are
hidden based on the user’s requirements. Qualitative rectangles
are rectangles whose size and edge ratios are not fixed. We
propose a symbolic representation of the target objects and
discuss superposition on this representation. The operations of
superposing two rectangles can be defined either by superpos-
ing some specified parts of rectangles or by embedding one
rectangle into part of the other rectangle. We investigate the
conditions under which such a superposition succeeds as well as
the manner in which such superposition occurs. We developed
an algorithm for superposing multiple qualitative rectangles
and implemented it.

Keywords-qualitative knowledge representation; superposition;
rectangle packing; spatial database

I. INTRODUCTION

Personal computer users commonly open multiple win-
dows. When many windows are opened on a narrow screen,
the most newly opened window usually appears in the
foreground, sometimes hiding important parts of previously
opened windows. Users must frequently resize windows or
move a window to the foreground to ensure that important
parts are visible. Many users find this process annoying;
it would be more convenient if windows were positioned
automatically so that important or necessary parts remain
visible under the condition that these parts are specified in
advance. Moreover, considering the limited screen space, it
would be more efficient if less important parts of windows
are hidden.

In general, researchers have investigated the efficient
placement of objects as a type of packing problem for
which an optimal solution can be determined [1]. They have
focused on several application areas, such as VLSI design [2]
and label-placement problems [3], [4]. The objective of these
studies has been to determine how multiple objects are
located in a two-dimensional plane under circumstances not
involving superposition, which differs from our objective of
determining placement involving superposition. Therefore,
we cannot directly apply the previously developed algo-
rithms for general placement problems. To the best of the
authors’ knowledge, no study has been performed on the
location of objects involving superposition.

In this study, we discuss rectangle placement with super-
position. We treat rectangles using qualitative representation:
their sizes and the ratios of their edges are unfixed. In each
rectangle, the desired visible part is specified. We discuss
a manner of superposing them so that all desired visible
parts are in the foreground and all desired hidden parts are
in the background. Figure 1 illustrates several examples.
Assume that three rectangles A, B, and C are given with
a requirement of visibility specified by a user. The white
indicates the parts that one wants to be visible, and the
black indicates the parts that one wants to be hidden. In
this figure, (a), (b), and (c) are successful cases, whereas
(d) is not. In (c), first reduce B’s width to fit the vertically-
long-size subpart of the black part of A, then C is put on
the black part in the lower left part of the resultant figure.
In (d), visible black parts remain after superposing A and
B cannot be hidden by C in any superposition of A and
B. In this paper, we show how we evaluate the success of
superposition and placement in these cases.

Note that the sizes or ratios of edges can change during
superposing. We take a qualitative approach. One reason
for this is that it enables symbolic handling of objects. In
general, spatial data can be inconveniently large to store
and handle. Symbolic handling reduces this computational
complexity. Another reason is that it is enough to know
the relative positional relationship of objects on a two-
dimensional plane and their foreground/background relation-
ship, ignoring the exact size or position of each object. Such
an idea is considered to be a type of qualitative spatial
reasoning (QSR) in the field of artificial intelligence [5],
[6], [7], [8].

Our goal is not to find an optimal solution to the packing
problem, but to investigate methods for symbolic treatment
of spatial data and to develop possible application areas of
qualitative spatial reasoning. An earlier version of our work
was reported in [9], [10]. The present study expanded on our
previous research, and this paper provides a more detailed
discussion.

In our QSR approach, target rectangles are divided into
nine types depending on the specified visibility pattern. We
define a unique symbolic representation for each type and
investigate superposition operations using these representa-

423

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A B C

C

A

B

B1A1

A1

B1

A B C

C

B1A1

B1

A1

A B C

C

A1 A2

A1 A2
B1

B1

A B C

fail

A1 B1

(a) (b) (c) (d)
Figure 1. Examples of superposing rectangles

tions. Superposition succeeds if any rectangle is not placed
on the desired visible parts of another rectangle.

We focus on two types of superposition. puton is an
operation that corresponds to superposition of specified parts
of two rectangles. embed is an operation that corresponds
to the embedding of a whole part of one rectangle into
the other rectangle. puton is defined as a function for a
pair of symbolic representations. We show the conditions
for success of puton. embed cannot be defined on the
symbolic representation as puton, but it generates a solution
for superposition that cannot be generated by puton. We
explain these two operations, discuss their properties, and
compare them. We also present an algorithm for superposing
multiple rectangles using these two operations.

This paper is organized as follows. In Section II, we
briefly explain qualitative spatial reasoning, which is the
foundation of our approach. In Section III, we define the
target object and describe its qualitative representation. In
the following two sections, we describe the operations for
superposing a pair of qualitative rectangles, and discuss our
reasoning regarding superposition. In Section IV, we discuss
the puton operation, and in Section V, we discuss the
embed operation. In Section VI, we describe an algorithm
for superposing multiple rectangles and show a behavior of
an implemented system. Finally, in Section VII, we present
our conclusions.

II. QUALITATIVE SPATIAL REASONING
Qualitative spatial reasoning (QSR) is a method for

representing an objective spatial entity qualitatively, rather
than using exact numeral data, and for reasoning about the
properties that hold on these data [6], [7]. It extracts only the
necessary aspects of the objective spatial data and represents
them symbolically. For example, quantitative representation
of Figure 2 is as follows: “There are two objects: one is a
rectangle whose nodes at the bottom left are (1,1) and the
length of the two edges are 3 and 5; the other is a circle
whose center is (5,7) and radius is 2.” However, the figure
can also be qualitatively represented as follows: “There are
two objects that have a common part.” This is sufficient
information for a discussion of the positional relationships

Figure 2. Qualitative versus quantitative representation

of objects. Moreover, if these objects are moving in time,
their positional relationships changes. In some applications,
we only need to focus on the instant in which disconnected
objects change to become connected or in which connected
objects change to have a relationship of inclusion, ignoring
the exact distance between them or the exact size of their
intersection part. QSR can provide a simple representation
and reduce computational complexity.

Various QSR calculi or systems are available depending
on what aspects of spatial data are interested, such as
positional relationship, direction, distance, size, orientation
or shape. Several studies have focused on qualitative spatial
databases. For example, Wang and Liu developed a QSR
application for a geospatial semantic web by constructing a
qualitative spatial database that stores objects and their qual-
itative relations instead of coordinates, from the Geography
Markup Language (GML) [11]. Santos and Amaral proposed
an approach to develop a qualitative database by introducing
qualitative identifiers such as direction and relative distance
and applied it to data mining [12]. Although these studies
have shown the effectiveness of qualitative spatial databases,
further studies are required. Applications of QSR include
geographic information systems, robot planning, navigation,
and spatial databases, but few concrete applications have
been developed to date.

424

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b) (c)

Figure 3. Qualitative rectangles

III. DESCRIPTION

First, we give a symbolic representation to the target
objects.

We call a superposing entity a unit. A unit is a rectangle
and is divided into WHITE, which should be visible, and
BLACK, which should be hidden. BLACK is divided into a
core region and a non-core region, which will be defined
later. The outer side of a unit is called GRAY. The length
of edges and the ratios of a unit and of each region are
unfixed. In contrast, the orientation of a unit should be fixed.
We only use rectangles situated in an upright position and
do not consider those in an inclined orientation. This means
that (a) and (b) in Figure 3 are regarded as equivalent, while
(a) and (c) are regarded as different.

Each connected WHITE is called a white region, the
core region and connected non-core regions are called black
regions, and GRAY is called a gray region. White, black,
and gray regions have attribute values related to visibility,
denoted by ’w,’ ’b,’ and ’g.’ ’w’ and ’b’ denote that regions
should be visible and hidden, respectively. ’g’ denotes that
there is no requirement with respect to visibility.

Considering the structure of web page frames or the
style of dividing a window into sub-windows used in many
applications, we restricted the type of unit to those in
Figure 6.

Any unit can be defined as a qualitative rectangle using
the following operation that fits black plates into a white
rectangle. Conversely, a qualitative rectangle obtained by this
operation is only the units shown in Figure 6. Let a ∗ b
represent a size of a unit whose length is a and height is
b. Consider two black plates whose sizes are x ∗ b (0 ≤
x ≤ a) and a ∗ y (0 ≤ y ≤ b). Fit these plates into a white
rectangle while preserving their orientation using either of
the following procedures. Symbols enclosed in parentheses
denote the names of unit types.

(0) No plate is fit (W).
(1) Only one of the plates is fit (B, I1, I2).
(2) Both plates are fit (L1, T1, PLUS).
(3) Extend L1 and T1, respectively, where the white region

is added to the part on which the edge of size a or b is
connected to the outer part (L2, T2).

Definition 1. The unit obtained in this manner is said to be
valid.

The following theorem clearly holds.

Figure 4. Core region and non-core region of straight-plate-unit

Figure 5. Core region and non-core region of cross-plates-unit

Theorem 2. A unit is valid iff (i) the whole shape is
rectangular, (ii) it has one connected BLACK, and (iii) all
its white regions are convex.

Types I1 and I2 are called straight-plate-units. Types L1,
L2, T1, T2, and PLUS are called cross-plates-units.

For all units other than the W-type unit, the core region is
defined. For B-type and straight-plate-units, the core region
is defined as the entire BLACK (Figure 4). For cross-plates-
units, the core region is defined as the intersection of the
two plates, and the region not included in the core region is
called the non-core region (Figure 5).

We denote the core region of a unit X by CoreX .
The valid unit can be uniquely represented as a quadruple
of attribute values composed of CoreX ’s upper region,
right region, lower region, and left region. We call this a
representation for a unit. For example, the representation for
the unit in Figure 5 is 〈b, b, g, g〉 because the core region has
black regions in its upper side and right side, whereas it is
connected to the outside in its lower side and left side. Note
that the positional relationships of regions are preserved even
if the size of a unit is changed.

Let V,R (R ⊂ V 4), and T indicate a set of attribute
values, a set of representations for units, and a set of types,
that is:

V = {b, w, g}
R = {〈r1, r2, r3, r4〉 | a representation for a valid unit}
T = {’B’,’W’,’I1’,’I2’,’L1’,’L2’,’T1’,’T2’,’PLUS’}

The function rotate(r), which denotes a π/2 clockwise
rotation of a unit r, and the function symm(r), which
denotes a symmetric transformation of a unit r, are defined
as follows:

Let r be 〈r1, r2, r3, r4〉.
rotate : R → R

rotate(〈r1, r2, r3, r4〉) = 〈r2, r3, r4, r1〉
symm : R → R

symm(〈r1, r2, r3, r4〉) = 〈r1, r4, r3, r2〉

425

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. All valid units

The function type that defines the type for a representation
r ∈ R is defined as follows:

type : R → T
type(〈g, g, g, g〉) = ’B’
type(〈w,w,w,w〉) = ’W’
type(〈w, g, g, g〉) = ’I1’
type(〈w, g, w, g〉) = ’I2’
type(〈b, g, g, b〉) = ’L1’
type(〈b, g, w, b〉) = ’L2’
type(〈b, b, g, b〉) = ’T1’
type(〈b, b, w, b〉) = ’T2’
type(〈b, b, b, b〉) = ’PLUS’

For representations r, r′ ∈ R, if r′ = rotate(r) or r′ =
symm(r) holds, then type(r′) is defined as type(r).

Note that W-type is defined with the assumption that a
tiny core region exists and is surrounded by white regions,
as CoreX does not exist.

The projections from r ∈ R to its elements are defined as
follows:

up/dn/lt/rt : R → V

Let r be 〈r1, r2, r3, r4〉.

up(r) = r1

rt(r) = r2

dn(r) = r3

lt(r) = r4

IV. REASONING ABOUT SUPERPOSITION: PUTON
A. The principle

When n (n ≥ 3) units are given, we consider the manner
of their superposition in which all white regions are visible
and all black regions are hidden.

Here, we place units sequentially. k-th unit (n ≥ k ≥ 2)
should be placed on the figure composed of k − 1 units
so that at least one region of the former is placed on at
least one region of the latter. That is, we do not consider
the placement in which, after two units are placed in a
disconnected manner, a third unit is placed onto the black
region of the two rectangles simultaneously. Thus, there
should be at least one W-type unit. Here, we assume that
there is one W-type unit. When more than one W-type unit
exists, the scenario can be considered similarly. Then, the
only one connected rectangular BLACK should be visible
when superposition of n − 1 units is completed.

There are only two operations, puton and embed. puton
is an operation of superposing the core regions of two valid
units, whereas embed is an operation of superposing the
whole unit onto a part of another unit. We describe these
operations in detail.

B. Superposing the core regions

First, we describe puton operation.

Definition 3. Suppose that a straight-plate-unit Y is put on
a unit X . Let CoreX and CoreY be the core regions of X
and Y , respectively. The superposition in which CoreY is
placed exactly on CoreX is called puton operation.

Let Z be the resultant figure of puton, and let CoreZ be
the superposed region of CoreX and CoreY . We extend a
representation for a unit to be available as a representation
for Z. A representation for Z is a quadruple of the attribute
values of visible regions surrounding CoreZ .

First, we compute the attribute values of the regions
around CoreZ . We define the function on, which computes
the attribute value of the visible region when the second
region is placed exactly on the first region, from the attribute
values of the two regions.

on : V × V → V ∪ {fail}
on(b, b) = b
on(b, w) = w
on(w,w) = fail
on(w, b) = fail
on(g, v) = v where v ∈ V
on(v, g) = v where v ∈ V

’fail’ means that the operation failed in that case.
When the result is not fail, X’s black regions are

sometimes visible in Z. If they are connected with CoreZ

426

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

merge two regions encircled
 by white dotted line

<w,b,g,g>Z <w,g,g,g>

Y <w,g,g,g>

change the ratio
of edges

superpose
Y on X

X <b,b,g,g>

white region

core region

non-core region

Figure 7. A case in which merge is necessary

by lines, it is necessary to merge them to define the merged
region as a new CoreZ . For example, in Figure 7, X and Y
are represented as 〈b, b, g, g〉 and 〈w, g, g, g〉, respectively.
When we place Y on X such that CoreY is placed on
CoreX , the resultant figure Z is represented as 〈w, b, g, g〉.
X’s non-core region is visible and is connected with CoreZ

by a line. Then, this region is merged with CoreZ . This
function merge is defined as follows:

Let r = 〈r1, r2, r3, r4〉. If r satisfies
∧

i=1,...,4(ri 6= fail),
then merge can be defined.

merge : V 4 → R
merge(r) =

〈g, r2, g, r4〉 if r1 = b ∧ r2 6= b ∧ r3 = b ∧ r4 6= b
〈r1, g, r3, g〉 if r1 6= b ∧ r2 = b ∧ r3 6= b ∧ r4 = b
〈g, r2, r3, r4〉 if r1 = b ∧ r2 6= b ∧ r3 6= b ∧ r4 6= b
〈r1, g, r3, r4〉 if r1 6= b ∧ r2 = b ∧ r3 6= b ∧ r4 6= b
〈r1, r2, g, r4〉 if r1 6= b ∧ r2 6= b ∧ r3 = b ∧ r4 6= b
〈r1, r2, r3, g〉 if r1 6= b ∧ r2 6= b ∧ r3 6= b ∧ r4 = b
〈r1, r2, r3, r4〉 otherwise

Success of puton operation
For valid units X and Y whose representations are

r = 〈r1, r2, r3, r4〉 and r′ = 〈r′1, r′2, r′3, r′4〉, respectively,
the puton operation that puts Y on X is defined as follows
and succeeds if (c1) holds.

puton : R × R → R
puton(r, r′) =
merge(〈on(r1, r

′
1), on(r2, r

′
2), on(r3, r

′
3), on(r4, r

′
4)〉)

(c1)
∧

i=1,...4 on(ri, r
′
i) 6= fail.

When the puton operation succeeds, it results in a super-
position in which no white region or black region is put on
a white region, and the following property clearly holds due
to the definition of puton.

Theorem 4. If the puton operation succeeds, BLACK of the
resultant figure is connected.

When the puton operation succeeds, it produces figures
such as Figure 8. (a) is the result of putting I1-type unit on

Figure 8. Resultant figures when puton succeeds

PLUS-type unit, that is, puton(〈b, b, b, b〉, 〈w, g, g, g〉). The
result is 〈w, b, b, b〉. (b) is the result of putting I2-type unit
on L1-type unit, that is, puton(〈b, g, g, b〉, 〈g, w, g, w〉). The
result is 〈g, w, g, w〉. And (c) is the result of putting I1-type
unit on L1-type unit, that is, puton(〈b, g, g, b〉, 〈g, g, g, w〉).
The result is 〈g, g, g, w〉. When superposing multiple units,
we superpose another rectangle on these figures. In this case,
these figures should satisfy two more conditions for continue
superposition: effectiveness and validity.

Let Z be the resultant figure of superposing X and Y .

Definition 5. Z has only one connected BLACK that is
visible and rectangular, then Z is said to be effective.

Definition 6. If Z’s entire shape is rectangular and all of
its white regions are convex, then Z is said to be valid.

From Theorem 4, if Z is valid, then Z is a valid unit.
When n − 1 units are superposed, the resultant figure

should have only one connected visible BLACK, which is
finally hidden by placing the W-type unit. This explains
why the resultant figure of puton should be effective. For
example, Figure 8(a) is not effective. Moreover, the figure
obtained as intermediate data in the process of superposing
n − 1 units should be valid for the following continu-
ous superposition. For example, Figure 8(b) is not valid.
Figure 8(c) is both effective and valid. The conditions of
effectiveness and validity can be checked using the following
rules.
Effectiveness

Let r be a representation for Z. If r satisfies (c2), then

427

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Z’s BLACK is rectangular.
(c2)

∧
i=1,...,4(ri 6= b),

Validity
Let r = 〈r1, r2, r3, r4〉 r′ = 〈r′1, r′2, r′3, r′4〉 and r′′ =

〈r′′1 , r′′2 , r′′3 , r′′4 〉 be representations for units X , Y and Z,
respectively. For the entire shape of Z to be rectangular, the
white region of Y should not be placed on GRAY of X .
Moreover, all of Z’s white regions are convex. Therefore, if
(c3) and (c4) are satisfied, then Z is valid. In the followings,
ri is regarded as ri−4 when i ≥ 5.

(c3) If there exists i (1 ≤ i ≤ 4) such that ri = r′i+2 =
g and that satifies one of the followings:
(i) ri+1 = b ∧ r′i+1 6= g ∧ ri+3 = g ∧ r′i+3 = g
(ii) ri+1 = g ∧ r′i+1 = g ∧ ri+3 = b ∧ r′i+3 6= g
(iii) ri+1 = b ∧ r′i+1 6= g ∧ ri+3 = b ∧ r′i+3 6= g
(iv) ri+1 = g ∧ r′i+1 = g ∧ ri+3 = g ∧ r′i+3 = g

(c4) No i (1 ≤ i ≤ 4) exists such that satisfies either of
the followings.
(i) r′′i = r′′i+1 = b
(ii) r′′i = r′′i+1 = r′′i+2 = w
(ii) (r′′i 6= g) ∧ (r′′i+2 6= g) ∧ (r′′i+1 = b)

C. Result of superposition: puton

In Definition 3, we defined the puton operation for the
superposition of a straight-plate-unit and a unit. In this
subsection, we extend this operation to any pair of unit types.
We also discuss the effectiveness and validity of the resulting
figures when puton succeeds.

1) Superposition on B/W type: Assume that we superpose
some unit on the B-type. The resultant figure is effective if
and only if we superpose the straight-plate-unit, and it is
valid for any type.

In contrast, it is impossible to place any unit on the W-
type.

2) Superposition of straight-plate-units: Assume that we
superpose the straight-plate-unit on the straight-plate-unit.
The resultant figure is not always valid because its entire
shape may not be a rectangle. The resultant figure is always
effective.

3) Superposition of the straight-plate-unit on the cross-
plates-unit: In this case, the resultant figure is not always
valid and not always effective.

4) Superposition of the cross-plates-unit on any type:
In this case, the resultant figure is always invald in case
of putting on the straight-plate-unit, but sometimes valid in
case of putting on cross-plates-unit. It is always ineffective.
However, the puton operation succeeds for several cases.

D. Success of extended puton operation

Here, we show the conditions under which the puton
operation succeeds for any pair of units. In general, when the
puton operation is performed on X and Y , WHITE should

Figure 9. Representation of locations of white regions

Figure 10. The regions to be hidden in L1-type

not be placed on X’s white region. When Y is a cross-
plates-unit, we have to consider its white region located in
the inclined orientation from CoreY . The location of the
white region is represented as the occurrence either of b in
adjacent elements or of b and w in adjacent elements in the
representation for Y . For example, a representation for a
unit in Figure 9 is 〈b, b, w, g〉. The sequence b, b represents
the location of white1, the upper left of CoreY , and the
sequence b, w represents that of white2, the lower part of the
unit. Therefore, the condition on WHITE can be represented
as (c5).

(c5) Let 〈r1, r2, r3, r4〉 and 〈r′1, r′2, r′3, r′4〉 be represen-
tations of X and Y , respectively. There exists some
i (1 ≤ i ≤ 4) such that ri = r′i+2 = g, where r′5
and r′6 are regarded as r′1 and r′2, respectively.

Success of extended puton operation
For any pair of units X and Y , if (c1) and (c5) are

satisfied, the puton operation succeeds.
The puton operation is an operation of superposing core

regions. We can consider another operation in the manner
in which specified parts of both units are superposed, for
example, superposing non-core regions. However, no manner
of superposition other than puton operation will yield an
effective solution. We will prove this property.

Theorem 7. When we superpose the straight-plate-unit on
the cross-plates-unit, only the puton operation will yield an
effective solution.

Proof:
Consider the puton operation that places a straight-plate-

unit Y on an L1-type unit X shown in Figure 10. In this
case, BLACK is divided into three regions: one core region
CoreX and two non-core regions β1 and β2. Let CoreY be
Y ’s core region.

428

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Three patterns of embed operation

Figure 12. embedWhole corresponding to embedPart

.

One or two of the CoreX , β1, β2 should be hidden so that
the resultant superposed figure is effective.
(i) Only one region is hidden.

If only CoreX is hidden, β1 and β2, which are discon-
nected, are visible. Therefore, the result is not effective.
If only β1 is hidden, CoreX , β2 and CoreY are visible
in the resultant figure. Considering the relative position of
CoreX , β1 and β2, it is impossible to make a rectangle by
merging CoreX , β2 and CoreY and to hide β1 at the same
time. Therefore, the result is not effective. Similarly, the
result is not effective if only β2 is hidden.
(ii) Two regions are hidden.

Because β1 and β2 are disconnected, they are not simul-
taneously hidden by a single unit. If both CoreX and β1

are hidden, β2 and CoreY are visible. We must place Y ’s
regions onto both CoreX and β1 to hide them. Moreover,
we must make a rectangle by merging β2 and CoreY . The
only place where CoreY may be placed to satisfy both
conditions is CoreX , and this placement is identical to the
puton operation.

According to the above analysis, the resultant figure is not
effective by any operation other than the puton operation.

Other cases can be similarly proved.

V. REASONING ABOUT SUPERPOSITION: EMBED

A. Superposition by embedding

We can consider another superposition operation of
embed. This operation embeds the whole of one unit into
the whole or a part of BLACK in the other unit. It is defined
on a pair of types, while the puton operation is defined on
a pair of representations for units.

Three patterns of embedding are possible, depending on
the place of embedding.

1) Embed both into the core region and non-core region.
For example, Figure 11(a) shows embedding of L1-
type unit into L1-type unit.

Figure 13. Solution differences between embedWhole and embedPart

.

2) Embed only into the core region. For example, Fig-
ure 11(b) shows embedding of I1-type unit into I1-type
unit. It is possible only when the background unit is
straight-plate-unit.

3) Embed only into the non-core region. For example,
Figure 11(c) shows embedding of I1-type unit into
L1-type unit.

Remind the concept of a plate that is used in the con-
struction of a valid unit. Two types of embed operation can
be defined using this plate.

Definition 8. Placement of the whole unit in its entirety on a
plate of the other unit is called an embedWhole operation
and placement on part of a plate of the other unit is called
an embedPart operation.

The first case and the second case in the above patterns
are embedWhole operations, while the third case is an
embedPart operation.

B. Result of superposition: embed

Next, we discuss the result of embed operation. The
embed operation always succeeds in the sense that any
region is not put on WHITE of the background unit, and the
entire shape of the resultant figure is a rectangle. Therefore,
we discuss only the validity and effectiveness of the resultant
figure.

1) Superposition on B/W type: Assume that we superpose
some unit on the B-type. The resultant figure is effective if
and only if we superpose the straight-plate-unit, and it is
valid for any type.

In contrast, it is impossible to place any unit on the W-
type.

2) Superposition of straight-plate-units: Assume that we
superpose the straight-plate-unit on the straight-plate-unit.
The resultant figure obtained by the embed operation is not
always valid because the white region may not be convex.
The resultant figure is always effective.

Theorem 9. If the result of embedPart operation on
a pair of straight-plate-units is valid and effective, then

429

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Ineffectiveness of embedPart for a pair of cross-plates-units

an embedWhole operation exists that generates the same
result.

Proof.
Assume that the result of embedPart operation on a

pair of straight-plate-units is valid and effective, shown in
Figure 12, for example. If we extend the BLACK of the
foreground unit to fill the core region of the background
unit, this corresponds to the embedWhole operation, which
generates the same result.

It means that two figures in Figure 12 are regarded
as qualitatively equivalent, and this is a characteristic of
qualitative reasoning.

3) Superposition of the straight-plate-unit on the cross-
plates-unit: In this case, the resultant figure obtained is not
always valid and not always effective. embedWhole and
embedPart may generate different solutions for the same
pair. For example, if an I1-type unit is embedded into a
T1-type unit, T2-type is generated by embedWhole, while
T1-type is generated by embedPart (Figure 13).

4) Superposition of the cross-plates-unit on any type: In
this case, the resultant figure is always ineffective but can
yield valid figures in some cases (See Table I).

Moreover, the following property holds.

Theorem 10. If the result of embed operation on a pair
of cross-plates-units is valid, then it is an embedWhole
operation.

Proof.
Assume that the result of embedPart is valid. In this case,

BLACK portions of at least one plate of the background unit
in the resulting figure are visible (Figure 14). These parts are
the ones in which no unit is embedded. In contrast, BLACK
of the foreground unit is visible and is not rectangular. The
union of these portions of BLACK cannot make a shape of
BLACK for any unit. Therefore, embedPart never generates
a valid solution.

5) Valid solutions: Table I shows a pair of unit types
where embed operation generates a valid solution. In this
table, rows show the unit in the foreground, and columns
show the unit in the background. Only the solutions that
differ from those generated by puton operations are shown.
U means there is no solution. The case of U∗ appears to be
successful at first glance, but there is actually no solution.
For example, Figure 15 shows the resultant figure obtained
by the operation of embed for L2 on T1. It is not valid
because it is impossible to align line (1) and line (2).

(2)
(1)

Figure 15. U∗: Invalid example

Unlike the puton operation, we cannot currently formalize
rules for selecting the proper position for embedding or
orientating units to obtain valid solutions. We can only say
that generally, we place WHITE of a pair of superposing
units on the adjacent position.

C. Comparison with puton operation

Table II compares validity and effectiveness between
puton and embed operations. In the table, s and c indicate
straight-plate-unit and cross-plates-unit, respectively.

Theorem 11. (1) If there is a valid solution for the puton
operation, then there is a valid solution by the embedWhole
operation that generates the same solution.
(2) Even if there is no valid solution for the puton oper-
ation, there may be a valid solution by the embedWhole
operation.

Proof.
(1) We cannot obtain a valid solution in the case applying

the puton operation for cross-plates-unit on straight-plate-
unit. Therefore, we consider the remaining three cases.

(i) superposing cross-plates-unit on cross-plates-unit
As both core regions are superposed, a plate of the

foreground unit is put on a plate of the background unit.
Let A be a visible part of a background unit and B be its
invisible part. Moreover, let A′ be a part of the foreground
unit that is placed on the background unit and B′ be its
remaining part. Then, A′ is a foreground of B by puton
operation. If we extend B so that it is a background of both
A′ and B′, it is a solution of embed operation. Since B
corresponds to a single plate, its extention is qualitatively
equivalent to the original one (Figure 16).

(ii) superposing straight-plate-unit on straight-plate-unit
This is proved in a similar way to the case (i).
(iii) superposing straight-plate-unit on cross-plates-unit
It is trivial due to the validity of the resultant figure.
(2) Only the solutions that differ from those generated by

puton operations are shown in Table I.
embed is an operation that is as essential as puton. When

we superpose multiple units using both operations, we can
sometimes obtain solutions that are not obtained only by
a single operation. We can illustrate this using example of
superposition of four units.

Consider superposition of four units X,Y, Z and W
shown in Figure 17. The representations for X,Y, Z and
W are 〈b, b, g, b〉, 〈b, b, g, b〉, 〈w, g, w, g〉, and 〈w,w,w,w〉,

430

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fg\ bk I1 I2 L1 L2 T1 T2 PLUS
I1 I1 I2 T1 L1 L2 T2 L2 T1 T2 T2 U∗

I2 I2 I2 T1 T2 T1 T2 U
L1 L2 U L1 L2 T2 T1 T2 U∗

L2 L2 U L2 L2 U∗ U∗ U
T1 T2 U T1 T2 T1 T2 PLUS
T2 T2 U U U T2 T2 U

PLUS U U U U PLUS U PLUS

Table I
VALID SOLUTIONS FOR THE embed OPERATION

Figure 17. Solution by using puton and embed operations together

Figure 16. Superposing cross-plates-unit on cross-plates-unit

puton embed

validity effectiveness validity effectiveness
s on s some always some always
s on c some some some some
c on c some never some never
c on s never never some never

Table II
COMPARISON BETWEEN puton AND embed

respectively. First, an effective solution for X,Y and Z
should be generated. puton operation succeeds only for
X and Z, that is, puton(X,Z) = 〈w, g, w, g〉, but the
resultant figure is not valid. Therefore, we cannot continue
the operation. In contrast, embed X into Y generates a valid
solution X ′. Next, put Z on this result X ′ using the puton
operation. This yields an effective solution X ′′. Finally, by
putting W on this result X ′′ using the puton operation we
obtain the solution for superposing the four units.

Let Ω be a finite set of valid units that does not include
a W-type unit, where |Ω| ≥ 2, and ω is a W-type unit.

(1) Extract an arbitrary pair of X and Y from Ω.
(2) If superposing Y on X generates a valid and

effective solution,
let Z be the resulting figure.

Otherwise, go back (1) to find another pair.
(3) If |Ω| = 2,

if Z is effective, then Z is a solution.
else go back (1) to find another pair.

else continue.
(4) Set Ω = Ω − {X,Y } ∪ {Z}, and go to (1).

If a solution is generated, then the superposition of
Ω ∪ {w} succeeds.
If it fails in all cases, then there is no solution.

Figure 18. Algorithm for superposing multiple units

VI. RECTANGLE REASONING SYSTEM

A. Algorithm for multiple unit superposition

We explain an algorithm for superposing multiple units.
Here, superposition means either puton or embed operation.
Selecting a unit from a given set of valid units, and perform
superposition operation repeatedly to find a solution. The
algorithm is shown in Figure 18.

B. Reasoning system

We implemented this algorithm using Prolog to code the
main reasoning part and Java for the interface part.

431

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We explain the behavior of the system.
1) Initial state

When the system is invoked, a basic frame is displayed
that shows nine types of units (Figure 19).

2) Selecting the set of units
First, determine the first unit for superposing in the
following manner: select the unit type by pushing the
”select” button from ”action” on the menu bar. Deter-
mine its orientation by pushing the ”rotation” button.
Repeat this procedure until n units are determined.
Multiple units of the same type may be selected. The
selected units are shown on the lower part of the frame
(Figure 20).

3) Superposition
Next, judge if superposition succeeds and generate
the solution if one is available. Find the superposing
manner by pushing the ”start” button from ”file” on
the menu bar. This opens a new window display-
ing the result. If superposition succeeds, the order
of superposition and the positions of each unit are
displayed (Figure 21). Otherwise, the window displays
”No solution.” If more than one solution is possible,
only the first one found is shown.

VII. CONCLUSION AND FUTURE WORK

A. Conclusions

We have discussed superposition of a pair of units and
investigated the conditions that satisfy the result where all
white regions are visible while all black regions are hidden
in the resultant figure when visibility is specified by a user.

• A pair of straight-plate-units always produces an effec-
tive solution either by the puton operation or by the
embed operation.

• The straight-plate-unit on cross-plates-unit can produce
an effective solution in some cases either by the puton
operation or by the embed operation. If a solution
generated by the puton operation is valid, then it is
also generated by the embed operation.

• The cross-plates-unit on any type can produce no
effective solution.

As for the last case, we have shown which pairs can
generate valid solutions.

We also presented an algorithm for superposing a set of
units and implemented this system.

This work is the first study to focus on object placement
with superposition and demonstrates a new application of
QSR.

B. Future Works

We admit only units constructed using two specific plates.
As a result, we have constraints both on BLACK and WHITE
of a unit: BLACK should be one connected and all white
regions are rectangles.

Figure 22. A unit constructed using three plates

Figure 23. Allowing a non-rectangular white region

Assume that we admit a unit obtained by packing three
plates (Figure 22). The above constraint on BLACK still
exists. In this case, there are two core regions.

Next, consider that we weaken the constraint on WHITE.
Assume that we can admit a white region that is not
rectangular (Figure 23). In this case, a white region exists
at the position over the black region viewed from the core
region, whereas in the current definition, a white region can
exist either on the adjacent or inclined orientation of the core
region.

Currently, we can represent each unit uniquely by a
representation using four directions of the core region.
However, if we weaken the constraints and extend the target
objects, we must change this representation, as the above
consideration shows. This process is not straightforward, but
we hope to weaken these constraints in future.

REFERENCES

[1] G. Birgin, R. D. Lobato, and R. Morabito, “An effective
recursive partitioning approach for the packing of identical
rectangles in a rectangle,” Journal of the Operational Re-
search Society, vol. 61, pp. 306-320, 2010.

[2] A. S. Lapaugh, “Layout algorithm for VLSI design,” ACM
Computing Surveys, vol. 28, no. 1, pp. 59-61, 1996.

[3] H. Freeman, “Computer name placement,” in Geographical
Information Systems 1, D. J. Maguire, M. F. Goodchild, and
D. W. Rhind, Eds. John Wiley, 1991, pp. 449-460.

[4] J. Li, C. Plaisant, and B. Shneriderman, “Data object and
label placement for information abundant visualizations,” in
Proceedings of the Workshop of New Paradigms Information
Visualization and Manipulation (NPIV98), 1998, pp. 41-48.

[5] M. Aliello, I. E. Pratt-Hartmann, and J. F. A. K.Van Benthem,
Eds., Handbook of Spatial Logics. Springer-Verlag, 2007.

[6] A. Cohn and S. Hazarika, “Qualitative spatial representa-
tion and reasoning: an overview,” Fundamental Informaticae,
vol. 46, no. 1, pp. 1-29, 2001.

[7] A. Cohn and J. Renz, “Qualitative spatial representation
and reasoning,” Handbook of Knowledge Representation,
Chapt. 13, pp. 551-596, F. van Harmelen, V. Lifschitz, and
B. Porter, Eds., Elsevier, 2008.

[8] M. Egenhofer and R. Franzosa, “On the equivalence of
topological relations,” International Journal of Geographical
Information Systems, vol. 9, no. 2, pp. 133-152, 1995.

[9] S. Kumokawa and K. Takahashi, “Rectangle reasoning: a
qualitative spatial reasoning with superposition,” in Proceed-
ings of 23rd Florida Artificial Intelligence Research Society
Conference (FLAIRS23), 2010, pp. 150-151.

432

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 19. Screenshot of the system: 1. Initial state

Figure 20. Screenshot of the system: 2. Selecting the set of units

Figure 21. Screenshot of the system: 3. Superposition

433

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] T. Konishi, and K. Takahashi, “Symbolic Representation and
Reasoning for Rectangles with Superposition,” The Third
International Conference on Advances in Databases, Knowl-
edge, and Data Applications (DBKDA 2011), pp. 71-76,
January, 2011.

[11] S. Wang and D. Liu, “Qualitative spatial relation database
for semantic web,” in First Asian Semantic Web Conference
(ASWC), 2006, pp. 387-399.

[12] M. Santos and L. Amaral, “Geo-spatial data mining in the
analysis of a demographic database,” Soft Computing - A Fu-
sion of Foundations, Methodologies and Applications, vol. 9,
no. 5, pp. 374-384, 2005.

