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Abstract. Origami geometry is based on a set of 7 fundamental folding
operations. By applying a well-chosen sequence of the operations, we are
able to solve a variety of geometric problems including those impossible
by using Euclidean tools. In this paper, we examine these operations
from spatial qualitative point of view, i.e. a common-sense knowledge of
the space and the relations between its objects. The qualitative spatial
representation of the origami folds is suitable for human cognition when
practicing origami by hand. We analyze the spatial relations between the
parameters of the folding operations using some existing spatial calculus.
We attempt to divide the set of possible values of the parameters into
disjoint spatial configurations that correspond to a specific number of
fold lines. Our analyses and proofs use the power of a computer algebra
system and in particular the Gröbner basis algorithm.
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1 Introduction

Origami is the art of paper folding and can serve as framework for solving geo-
metric problems. Seven fundamental operations have been defined by Huzita [8]
and Justin [9] to show how to fold the origami and make variety of geometric
objects and in particular objects that require solving cubic equations. Origami
is simple as only hands are involved in the folding process, affordable as paper
is abundant and powerful as it solves problems unsolvable by using straightedge
and compass. These advantages give grounds for incorporating origami in a les-
son of geometry. Are the fundamental operations of origami geometry suitable
for human (or a pupil) cognition?
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Research on the fundamental origami operations focused on their possibilities
or increasing their power [1,10,11]. However, anyone who has ever struggled with
the challenge of making a geometrical origami object by hand, is familiar with
the difficulty of applying the 6th operation. The operation goes as follow (as
originally stated by Huzita).

(6) Given two distinct points and two distinct lines, you can fold super-
posing the first point onto the first line and the second point onto the
second line at the same time.

The 6th operation requires superposing two points on two lines simultane-
ously. We invite the reader to try it with a piece of paper. Martin advised to use
a transparent paper or to fold in front of a lightbulb [12]. Others hinted that
the fold includes sliding a point on a line to bring the other point on the other
line [14].

A diagram in Euclidean geometry or a shape in origami geometry is, in the
first place, a collection of spatial objects such as lines, points, segment lines,
circles, etc. The spatial knowledge is given by relations that describe a common
sense understanding of the space and its objects. Examples of such relations are
on, inside, outside, to the left, to the right, etc. These relations are rudimentary
in the sense they can be described by the naked eye without further calculations
or reasoning and thus suitable for human cognition. We attempt at providing a
qualitative representation of the fundamental fold operations.

In this paper, we build on the first author’s previous work [7]. The paper
[7] analyzes the fundamental fold operations by identifying the degenerate cases,
enumerating the cases where some operations can be derived from others, among
other things. The degenerate cases are configurations of points and lines on the
origami where the fold operation is not well-defined because of infinite possibili-
ties. By excluding these cases, the fold operation has a finite number of solutions
and thus well defined. In this paper, we further develop this analysis. We divide
the origami space into disjoint configurations that give an exact number n of fold
lines, where 0 ≤ n ≤ 3. To that end, we present a mapping of the spatial rela-
tions and the fold operations into algebraic terms. We also present a systematic
proof strategy to show the statements on the number of fold lines.

The rest of the paper is organized as follows. We first introduce origami
geometry based on the fundamental fold operations in Sect. 2. Then, in Sect. 3,
we explain the various qualitative calculi that we use. The spatial configuration
of well definedness are listed in Sect. 4 and the configurations on the number of
solutions are explained in Sects. 5 and 6. Finally, in Sect. 7, we conclude.

2 Origami Spatial Objects and Their Construction

2.1 Origami Shape

We work with a square origami paper. By hand, we can fold the origami paper
and make a crease. A crease leaves a trace on the origami paper, a line segment
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Fig. 1. An origami geometric shape: lines AK and AJ are trisectors of ∠EBA

whose endpoints are on the edges of the origami square paper. The extension of
the line segment of a crease is a line that we call fold line. The intersection of two
non-parallel fold lines is an origami point that can be outside the origami square.

An origami construction is a sequence of folds (and unfolds). When the collec-
tion of points and lines, constructed by folds, have a geometric meaning, we say
that we constructed an origami geometric shape. For instance, the origami geo-
metric shape in Fig. 1 depicts two line trisectors AK and AJ of angle ∠EAB.
The remaining points and line segments on the origami, e.g. F , G, H, I, are
constructed during the intermediate steps and used to make the trisectors.

2.2 Origami Fold

How to obtain a meaningful origami shape such as the one in Fig. 1? We need,
foremost, a rigorous definition of the origami folds in the way Euclid’s Elements
define constructions with a compass and a straightedge. Let O be an origami
square �ABCD. An origami shape is obtained by applying the following funda-
mental fold operations [8,9].

(O1) Given two distinct points P and Q, fold O along the unique line that
passes through P and Q.

(O2) Given two distinct points P and Q, fold O along the unique line to super-
pose P and Q.

(O3) Given two distinct lines m and n, fold O along a line to superpose m and n.
(O4) Given a line m and a point P , fold O along the unique line passing through

P to superpose m onto itself.
(O5) Given a line m, a point P not on m and a point Q, fold O along a line

passing through Q to superpose P and m.
(O6) Given two lines m and n, a point P not on m and a point Q not on n,

where m and n are distinct or P and Q are distinct, fold O along a line to
superpose P and m, and Q and n.
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(O7) Given two lines m and n and a point P not on m, fold O along the unique
line to superpose P and m, and n onto itself.

The fold line described by operation (O1) is the line passing through two
distinct points. The fold line described by operation (O2) is the perpendicular
bisector of the line segment PQ as shown in Fig. 2. Operation (O3) gives rise to
at most two fold lines, which are the interior and exterior bisectors of the angle
formed by the two lines m and n. To perform operation (O4), we drop a line
perpendicular to m and passing through P . The fold line of operation (O5) is
the line tangent to the parabola of focus P and directrix m, denoted by P(P,m),
and passing through point Q. This operation is shown in Fig. 3. The operation
(O6) in Fig. 4 is about finding a common tangent to the parabolas P(P,m) and
P(Q,n). Finally, to perform operation (O7), we fold along the tangent to the
parabola P(P,m) and perpendicular to the line n.

Fig. 2. Operation (O2)

Fig. 3. Operation (O5)

Fig. 4. Operation (O6)
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3 Qualitative Spatial Relations in Origami

The following common sense concepts of connection, orientation and distance
will be used to describe origami folds qualitatively.

3.1 Object Connection

There is a finite number of situations on the way objects are put together. For
instance, whether they are connected and, if true, in which way they are con-
nected. Such situations are described using Region Connection Calculus known
in literature by RCC [3]. RCC defines a set of spatial relations. The commonly
used ones are either 5 or 8 relations depending on the topology of the spatial
objects and the purpose of the representation. Nevertheless, the set of relations
must satisfy an important property: pairwise disjoint and jointly exhaustive,
which means exactly one relation holds between two arbitrary objects.

RCC5 works for an object equal to its topological closure, in other words
its boundary and interior coincide. This is the case of origami points and lines.
Table 1 describes all possible connections between points and lines without ambi-
guities. Note that the 5 spatial relations are equivalent to basic geometric prop-
erties in the 2D plane. For instance, the relation proper-part stands for the
geometric property that a point is on a line, two lines are disjoint when they
are parallel, etc.

Table 1. RCC5 relations between origami points and lines

equal proper-part intersect proper-part−1 disjoint

Point×Point P1, P2 − − − P1

P2

Line×Line m,n −

m
n

−

m

n

Point×Line −
m

P − −

m

P

Line×Point − − −
m

P

m

P

Circles are more complex objects. The RCC5 is limited since we cannot
distinguish between a line tangent to a circle and a line not intersecting a circle,
or when two circles are tangent or disjoint. We use two of RCC8 relations,
namely relations disconnected and externally-connected, to improve the
expressiveness as shown in Fig. 5 [13].
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disjoint

disconnected externally-connected

C

m

C1 C2 C

m

C1 C2

Fig. 5. Two relations of RCC8 to describe
that circles and lines are disjoint

R

P
rightleft

up

bottom

up-left up-right

bottom-left bottom-right

Fig. 6. Relations of relative orien-
tation with (P, R) ∈ up-left

3.2 Relative Orientation

A well-known qualitative description of the positions of objects relative to each
other is Freska’s calculus for points on the 2D plane [6]. To describe the position
of an origami point P with respect to a reference point R, we divide the origami
plane into 8 regions intersecting in R as shown in Fig. 6.

3.3 Relative Distance

Several approaches have been defined to compare lengths of intervals which can
be regarded as distance between ending points [4]. However, these approaches do
not make a good use of the possibilities that the space may offer. The origami
plane, for instance, is a dynamic medium. By means of folds, points can be
moved by reflection while preserving the length.

Example. We want to compare the distances d(P,Q) and d(R,S) in Fig. 7(a),
where d is the conventional Euclidean distance. First, we perform an (O3) fold
to bring points R and S on the line PQ as shown in Fig. 7(b). In Fig. 7(c), R1
and S1 are the reflections of R and S by the fold.1 Next, we perform an (O2)
fold to bring R1 onto P . Figures 7(d) and (e) show this operation, where R2 = P
is the reflection of R1 and S2 the reflection of S1. Finally, we perform along the
line that passes through R2 and perpendicular to line PQ, i.e. (O4) fold. The
operation is depicted in Fig. 7(f) and (g) shows a new point S3 obtained by the
reflection of S2 by the fold. Since folding preserves the distance, we have

d(R,S) = d(R1, S1) = d(R2, S2) = d(P, S2) = d(P, S3).

The points P , S3 and Q are aligned consecutive points in a homogeneous distance
system where any given interval is bigger or equal than the previous one [4]. Since
S3 and Q are disjoint, d(P,Q) > d(P, S3) = d(R,S).

Distance between a point and a line, e.g. d(P,m), is in essence a distance
between points. For instance, in the case of d(P,m), we perform (O4) along the
point P and perpendicular to m. Let Q be the intersection of the fold line and
1 The reflection point can be easily obtained by (O1)–(O7) folds. We omit the steps
in Fig. 7.
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Fig. 7. Origami folds to deduce that d(P, Q) ≥ d(R, S)

m. Then, d(P,m) = d(P,Q). Similarly, the distance between two parallel lines,
e.g. d(m,n), is defined as the distance between two points M and N on the lines,
where MN⊥ m.

4 Well-Definedness of Fold Operations

The statements of (O1)–(O7) in Sect. 2.2 include conditions like “two distinct
points P and Q”, “two distinct lines m and n”, “a point P not on m”. These are
the conditions to eliminate degenerate configurations or incidence configurations.
The degenerate situations are configurations of points and lines where there are
infinite possibilities for the fold line. The incidence configurations occurs when
we superpose a point P and a line m and (P,m) ∈ proper-part. The opera-
tion becomes solvable with simpler operations, i.e. operations that solve lower
degree equations. See [7] for a discussion on the configurations of degeneracy
and incidence.

These conditions are intuitive and can be expressed qualitatively. First, we
use the following lemma. Distinct points (respectively distinct lines) means not
equal (respectively lines not equal).

Lemma 1. – (P,Q) �∈ equal if and only if (P,Q) ∈ disjoint.
– (m,n) �∈ equal if and only if (m,n) ∈ intersects ∪ disjoint.
– (P,m) �∈ proper-part if and only if (P,m) ∈ disjoint.

The proof follows from the fact that the RCC5 relations between points and
lines are jointly exhaustive and pairwise distinct.

– The Operation (O1) is well defined when (P,Q) ∈ disjoint.
– The Operation (O2) is well defined when (P,Q) ∈ disjoint.
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– The Operation (O3) is well defined when (m,n) ∈ intersects ∪ disjoint.
– The Operation (O4) is always well defined.
– The Operation (O5) is well defined when (P,m) ∈ disjoint.
– The Operation (O6) is well defined when (P,m) ∈ disjoint and (Q,m) ∈

disjoint and ((m,n) ∈ intersects ∪disjoint or (P,Q) ∈ disjoint.
– The Operation (O7) is well defined when (P,m) ∈ disjoint.

4.1 Spatial Conditions of the Solutions of (O1)–(O4)

Non-degenerate configurations are further processed by identifying the number
of solutions. The solutions of operations (O1), (O2), (O3) and (O4) are straight-
forward. We can easily show that (O1) and (O2) have a unique solution if and
only if the points are not equal, whereas (O4) always has a unique solution inde-
pendently from the spatial configuration of the parameters. Operation (O3) has
two solutions if the lines parameters are in relation intersects and one solution
if the lines are in disjoint.

5 Spatial Conditions of the Solutions of (O5)–(O7)

5.1 A Systematic Approach

Objects. To analyze the solutions of (O5)–(O7), we use an algebraic approach.
We consider a Cartesian Coordinate system. Points are defined by pairs of their
coordinates. We denote the coordinates of a point P by (xp, yp). A well defined
line has an equation of the form ax+ by + c = 0, where a �= 0∨ b �= 0. We denote
by am, bm and cm the coefficients of a line m. A circle C(P, r), whose center and
radius are P and r > 0, has the equation

√
(x − xp)2 + (y − yp)2 = r.

The determination of the (exact) domain of the coordinates and coefficients
is tricky. Q is too small since it doesn’t include

√
x numbers and R is too much.

An algebraic extension of Q would be a good candidate since the origami funda-
mental fold operations allow the construction of rational numbers plus numbers
of the form

√
x and 3

√
x [5].

Algebraic Relations and Functions. Table 2 shows the algebraic relations
of the qualitative spatial relations explained in Sect. 3. The algebraic forms are
self-explanatory.

Furthermore, in our analysis of the fold operations, specifically operations
(O5)–(O7), we work with parabolas P(P,m) represented by the following equa-
tion f(x, y).

f(x, y) := (x − xp)2 + (y − yp)2 − (amx + bmy + cm)2

am
2 + bm

2 = 0 (1)

Let t be a tangent to the parabola P(P,m) at a point (x1, y1). Also, let λ be
the slope of t. Then the following equation g(x1, y1) defines the tangent t.

g(x1, y1) :=
∂f

∂x
(x1, y1) + (

∂f

∂y
(x1, y1))λ = 0 (2)
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Table 2. Algebraic forms of the qualitative spatial relations and functions

Spatial relation/function Algebraic relation/function

O
b
je
ct

co
n
n
ec

ti
on

(P,Q) ∈ equal xp = xq ∧ yp = yq

(P,Q) ∈ disjoint xp �= xq ∧ yp �= yq

(m,n) ∈ equal ∃k. an = kam ∧ bn = kbm ∧ cn = kcm

(m,n) ∈ disjoint (anbm − ambn = 0) ∧ ¬((m,n) ∈ equal)

(m,n) ∈ intersects anbm − ambn �= 0

(C(P, r1), C(Q, r2)) ∈ equal (P,Q) ∈ equal ∧ r1 = r2

(C(P, r1), C(Q, r2)) ∈ intersects ((P,Q) ∈ disjoint) ∧ (
√

(xp − xq)2 + (yp − yq)2 < r1 + r2)

(C(P, r1), C(Q, r2)) ∈ externally-connected ((P,Q) ∈ disjoint) ∧ (
√

(xp − xq)2 + (yp − yq)2 = r1 + r2)

(C(P, r1), C(Q, r2)) ∈ disconnected ((P,Q) ∈ disjoint) ∧ (
√

(xp − xq)2 + (yp − yq)2 > r1 + r2)

(Q, C(P, r)) ∈ proper-part
√

(xq − xp)2 + (yq − yp)2 = r

(Q, C(P, r)) ∈ disjoint (
√

(xq − xp)2 + (yq − yp)2 < r) ∨ (
√

(xq − xp)2 + (yq − yp)2 > r)

(m, C(P, r)) ∈ intersects
|amxp+bmyp+cm|√

a2
m+b2m

< r

(m, C(P, r)) ∈ externally-connected
|amxp+bmyp+cm|√

a2
m+b2m

= r

(m, C(P, r)) ∈ disconnected
|amxp+bmyp+cm|√

a2
m+b2m

> r

O
ri
en

ta
ti
on

(P,Q) ∈ left xp < xq ∧ yp = yq

(P,Q) ∈ right xp > xq ∧ yp = yq

(P,Q) ∈ up xp = xq ∧ yp > yq

(P,Q) ∈ bottom xp = xq ∧ yp < yq

(P,Q) ∈ up-left xp < xq ∧ yp > yq

(P,Q) ∈ up-right xp > xq ∧ yp > yq

(P,Q) ∈ bottom-left xp < xq ∧ yp < yq

(P,Q) ∈ bottom-right xp > xq ∧ yp < yq

D
is
ta

n
ce d(P,Q)

√
(xp − xq)2 + (yp − yq)2

d(P,m) |amxp+bmyp+cm|√
a2
m+b2m

d(m,n), where m ‖ n
|cm−cn|√
a2
m+b2m

Proof Strategy. To prove the number of the solutions of (O5)–(O7), we perform
the following steps.

1. Define a system S of the algebraic relations that describe the fold line. These
relations are (1) and (2) as well as well-established algebraic form of geometric
properties that we will explain when used.

2. Compute Gröbner basis of S. This step attempts to eliminate some of the
variables and obtain one equation in the slope of the fold line.

– If one polynomial is obtained, then compute its discriminant.
– If more than one polynomial are obtained, then solve for some of the

dependent variables.
3. Analyze the obtained polynomial expressions to identify the cases with real

solutions. Specifically, we watch out for the appearance of relations of Table 2.

We use the power of the computer algebra system Mathematica to perform the
computations in the above steps. We use Buchberger’s algorithm to generate
Gröbner bases. The computations are performed symbolically, thus we prove
our results in the general case.
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5.2 Spatial Conditions of the Solutions of (O5)

Theorem 2. Let P , Q and m be on the origami where (P,m) ∈ disjoint. We
perform the (O5) operation along the fold line passing through Q to superpose P
and m.

– If d(Q, P ) = d(Q, m), then there is a unique fold line.
– If d(Q, P ) > d(Q, m), then there are two distinct fold lines.
– If d(Q, P ) < d(Q, m), then there is no fold line.

Proof. Since (P,m) ∈ disjoint, we know that the solutions of (O5) are the lines
passing through Q and tangent to the parabola P(P,m). Let λ be the slope of
the tangent to the parabola P(P,m) at point (x1, y1). Hence, we have the system
of equations S = {f(x1, y1), g(x1, y1), (y1 − yq) − λ(x1 − xq) = 0}. f and g are
given in (1) and (2), respectively. The equation (y1 −yq)−λ(x1 −xq) = 0 means
that the tangent passes through the points (x1, y1) and Q.

We compute the Gröbner basis of S. We obtain a 2nd degree polynomial in
λ whose discriminant is the following.

4(a2
m + b2m)2(cm + amxp + bmyp)2× (3)

(a2
m + b2m)((xp − xq)2 + (yp − yq)2) − (amxq + bmyq + cm)2 (4)

Line m is well defined, then am and bm cannot vanish at the same time and
a2
m + b2m > 0. Also, since (P,m) ∈ disjoint, (cm + amxp + bmyp)2 > 0. Thus,

the factors in (3) are always strictly positive and the sign of the polynomial in
(4) determines the number of solutions of λ. (4) is the expression of d(Q,P )2 −
d(Q,m)2 in algebraic terms. If strictly positive, we have two solutions for λ,
i.e. two fold lines. If strictly negative, then there is no solution. If equal to 0
then there is a unique fold line. 	

From a geometric point of view, a tangent t to a parabola is the perpendicular
bisector of the line segment joining P and a point on m that we name P ′. Since t
passes through Q, the circle whose center is Q and radius QP intersects m in P ′.
In Fig. 8, we show the situation where the circle intersects m in two points and
we have two tangents or two fold lines t1 and t2. If the circle does not intersect
m, then no tangent exists. If the circle is tangent to m (Q is a point on the
parabola) then there is one tangent.

5.3 Spatial Conditions of the Solutions of (O7)

Theorem 3. Let P , m and n be on the origami where (P,m) ∈ disjoint. We
perform operation (O7) along the fold line t perpendicular to n to superpose P
and m.

– If (m,n) ∈ equal ∪ disjoint, then there is no fold line.
– If (m,n) ∈ intersects, then there is one fold line.
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Fig. 8. d(Q, P ) > d(Q, m): two fold lines t1 and t2 for (O5)

Proof. We solve for x1 and y1 in {f(x1, y1), g(x1, y1), anλ − bn = 0}, where λ
is the slope of the fold line, and f and g are defined in (1) and (2). The former
equation anλ − bn = 0 states that n and the tangent are perpendicular. We
obtain one solution of the following form:

x1 → some polynomial expression of am, bm, cm, an, bn, cn, xp and yp
2(anbm − ambn)2

y1 → some polynomial expression of am, bm, cm, an, bn, cn, xp and yp
2(anbm − ambn)2

However, the solutions are undefined when the denominator is null, i.e. anbm −
ambn = 0. This is the algebraic relations of two lines that are disjoint or
equal according to Table 2. 	


5.4 Spatial Conditions of the Solutions of (O6) with Disjoint Lines

Theorem 4. Let points P and Q and disjoint lines m and n be on origami,
where (P,m) ∈ disjoint and (Q,m) ∈ disjoint. We perform operation (O6)
to superpose P and m and Q and n.

– If d(m,n) > d(P,Q), then there is no fold line.
– If d(m,n) = d(P,Q), then there is a unique fold line.
– If d(m,n) < d(P,Q), then there are two fold lines.

Proof. We proceed similarly to the proof of Theorem2. We know that the fold
line is a common tangent to parabolas P(P,m) and P(Q,n). We compute the
Gröbner basis of {f1(x1, y1), g1(x1, y1), f2(x2, y2), g2(x2, y2), (y1 − y2) − (x1 −
x2)λ = 0, anbm − ambn = 0}, where λ is the slope of the common tangent of
P(P,m) and P(Q,n) at (x1, y1) and (x2, y2), respectively. Note that f1, g1, f2
and g2 are Eqs. (1) and (2) defined for the first parabola P(P,m) and the second
parabola P(Q,n). The discriminant of the result of Gröbner basis computation
gives

(a2
m + b2m)((xp − xq)2 + (yp − yq)2 − (cm − cn)2),

which stands for the algebraic form of d(P,Q)2 − d(m,n)2. 	
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6 Analysis of (O6) with Intersecting Lines

6.1 Simplification Without Loss of Generality

Operation (O6) contributes to geometry by solving problems that are impossible
by classical Euclidean tools. The operation has the merits of solving any cubic
equation of the general form ax3 + bx2 + cx + d = 0. Coefficients a, b, c and d
are in the field of origami constructible numbers, i.e. an algebraic extension of
Q with square root and cubic square root [5].

To simplify our analysis of operation (O6), we use lines parallel to xy-axes.
This reduces the number of parameters that come from the lines m and n and
simplifies the Gröbner basis computation, which is, in the worst case, double
exponential in the number of variables [2].

Lemma 5. Any cubic equation ax3 + bx2 + cx + d = 0, where a �= 0, can be
solved with lines m and n perpendicular and parallel to xy-axes, respectively.

Proof. We apply (O6) to superpose P and m, and Q and n, simultaneously. The
fold line is a common tangent to the parabolas P(P,m) and P(Q,n). Let λ be
the slope of the common tangent. We take m and n to be of equations x+cm = 0
and y + cn = 0. We compute the Gröbner basis of

{f1(x1, y1), f2(x2, y2), g1(x1, y1), g2(x2, y2), (y2 − y1) − λ(x2 − x1) = 0},

where the former equation (y2 − y1) − λ(x2 − x1) = 0 states that the tangent
passes through the points (x1, y1) and (x2, y2) on the parabolas. The result is a
cubic polynomial in λ.

(cn + yq)λ3 + (cm − xp + 2xq)λ2 + (cn + 2yp − xq)λ + cm + xp (5)

We match the coefficient of the above polynomial with a, b, c and d. We solve
for the coordinates of P and Q and obtain:

{xp → −cm + d, yp → (a + c − 2cn)/2, xq → (b − 2cm + d)/2, yq → a − cn} (6)

	

We can further simplify by taking cm = cn = 0. In that case, solutions in (6)
gives rise to P (d, (a + c)/2) and Q((b + d)/2, a). For instance, to solve the cubic
x3 − 3x2 + 27

8 = 0 with (O6), we can take the lines m : x = 0 and n : y = 0 and
the points P ( 278 , 1

2 ) and Q( 3
16 , 1).

6.2 The Discriminant Function

Lemma 6. Let Δ be the discriminant of the polynomial (5). We have the fol-
lowing result about the number of real roots.

(i) If Δ < 0, then polynomial (5) has a single real root.
(ii) If Δ > 0, then polynomial (5) has three distinct real roots.
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(iii) If Δ = 0, then polynomial (5) has either a triple real root, or one double real
root and one single real root.

Proof. The proof is a result of solving cubic equations with radicals. 	

The description of Δ in term of spatial relations between (O6) parameters

m, n, P and Q is not straightforward. So, we observe how point Q would relate
to P . We fix P to be the point (3, 4), for instance, and take m and n to be the
y-axis and the x-axis, respectively. We plot Δ(xq, yq) = 0. Figure 9(a) depicts
the 3 regions defined by the curve Δ(xq, yq) = 0. If Q is on the blue region then
we are in case (ii), i.e. there are 3 distinct fold lines, if on the white region then
case (i), i.e. one fold line, if on the curve then case (iii), i.e. either one or two
fold lines.

yq

xq

(a)

yq

xq

(b)

Fig. 9. The curve Δ(xq, yq) = 0 (Color figure online)

Hereafter, we give a geometric explanation of the curve Δ(xq, yq). In Fig. 10,
we take two parabolas tangent at point S. Obviously, a possible fold line is the
tangent passing through point S. We move the point S on the parabola P(P,m)
and trace the point Q. The locus of point Q is Δ(xq, yq) = 0. Since the parabolas
are tangent, then 2 or 3 fold lines coincide and thus correspond to double or triple
real roots.

6.3 Spatial Case 1: Q is Equal to the Cusp Point

Lemma 7. If Q is the cusp point of Δ(xq, yq) = 0, then (O6) has a unique fold
line.

Proof. Another useful constant of a cubic ax3+bx2+cx+d = 0 is Δ0 = b2−3ac.
When Δ0 = Δ = 0, there exists a triple real root. In our example Δ0(xq, yq) = 0
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Fig. 10. The locus of Q (blue curve) when P , m and n are fixed and P(P, m), and
P(Q, m) are tangent at a point S (Color figure online)

is shown in Fig. 9(b). The cusp point is an intersection point of the two curves
and correspond to a situation where we have one fold line of multiplicity 3. A
second intersection point is on n excluded by the condition (Q,n) ∈ disjoint of
(O6). 	


Figure 11 shows the circles when Q is the cusp point. We have the following
result based on spatial observation.

Lemma 8. Let point O be the intersection of m and n, and point M be the
middle point of the line segment PQ. Furthermore, let C1 and C2 be the circles
C(M,MP ) and C(O,PQ). If (C1, C2) ∈ externally-connected, then Q is the
cusp point.

Proof. We provide the sketch of the proof. Using Mathematica:

1. Solve for the coordinates xq and yq of the cusp point using

∂Δ(xq, yq)
∂yq

=
∂Δ(xq, yq)

∂xq
= 0.

2. Show that the circles C(M,MP ) and C(O,PQ) are externally-
connectedusing the appropriate relation from Table 2.

	


6.4 Spatial Case 2: P and Q are on Opposite Half-Planes

The origami plane is divided by lines m and n into the 8 regions of relative
orientation (see Sect. 3.2). The curve Δ(xq, yq) = 0 intersects only 3 half-planes.
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Fig. 11. (C1, C2) ∈ externally-connected when Q is the cusp of Δ(xq, yq) = 0

Referring to Fig. 10, for instance, the curve Δ(xq, yq) = 0 intersects the up-left,
up-right and bottom-right half-planes. The remaining bottom-left half-
plane is a subset of the region Δ(xq, yq) > 0. Therefore, if we take Q to be
any point on the bottom-left half-plane, then we have 3 distinct fold lines for
(O6).

7 Conclusion

We analyzed the fundamental folding operations. Based on Gröbner basis and
other computer algebra methods, we proved the conditions on the number of
fold lines. The conditions are described using qualitative relations between points
and lines parameters of the fold operations. This approach worked for operations
(O1)–(O5), (O7) and (O6) with disjoint lines. In the case of (O6) with intersect-
ing lines, the spatial configurations cannot be described in a simple qualitative
language. To tackle this operation, we identified some spatial cases that are easy
to recognize when performing origami by hands.
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