
QUALITATIVE SPATIO-TEMPORAL REPRESENTATION FOR EVENT
EXTRACTION FROM VIDEO DATA OF FOOTBALL GAMES
Masaki Sakaida

School of Science & Technology
Kwansei Gakuin University
2-1, Gakuen, Sanda, JAPAN

email: bfd76635@kwansei.ac.jp

Takanori Kiyose
School of Science & Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, JAPAN

email: takanori0572@kwansei.ac.jp

Kazuko Takahashi
School of Science & Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, JAPAN
email: ktaka@kwansei.ac.jp

ABSTRACT
We describe a qualitative representation of the spatial re-
lations between extracted regions of video data, and dis-
cuss event occurrence based on this representation. We use
video footage of football games and investigate a formal-
ization to determine whether an event has occurred, specif-
ically a pass or shot for a goal. We represent mereologi-
cal and directional relations of regions in each frame based
on extracted regions of objects, and determine event occur-
rence from the sequence of these relations. This qualitative
spatio-temporal method reduces computational complexity
and provides clear semantics defining an event.

KEY WORDS
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1 Introduction

Recent advances in computer performance provide scope
to manage large amounts of dynamic image data. With the
growth in the amount of video data that has accompanied
the rise of websites such as YouTube, there has been grow-
ing interest in the development of efficient search methods
that allow users to find video data of interest and the devel-
opment of systems that can describe the contents of video
images. Regarding sports videos, it may be desirable to au-
tomatically detect highlights or automatically generate an
outline of events. However, the amount of data in such
videos is so large that it is not efficient to directly search
the dataset. In this case, it may be beneficial to give an-
notations that describe objects or events that occur in the
video, and use these metadata to search the footage. Such
tagging is typically performed manually, and events are ex-
tracted from this annotated sequence. Instead of tagging,
there are a number of methods for event extraction directly
from spatial data by tracing the positions of moving ob-
jects. In these studies, the Hidden Markov Model (HMM)
is frequently constructed from temporal changes in the po-
sitions of objects, and probabilistic statistical approaches
are used, where numerical data is used to represent the po-
sitions of objects (e.g., [1]).

In this work, we take a different approach. We pro-
vide a qualitative representation of positional relations be-

tween objects and determine the occurrence of events on
sequences of these representations. The qualitative treat-
ment reduces computational complexity and gives clear se-
mantics, since it uses symbolic data. It is advantageous
in these points compared to approaches that use numerical
data.

Qualitative reasoning or qualitative physics is a
method which has long been studied in artificial intelli-
gence (AI) [2]. It is used to characterize qualitative physi-
cal phenomena, such as the movement of objects. In qual-
itative reasoning, precise values of numerical data are not
used; instead, qualitative data that indicate a change in as-
pects are used.

Qualitative reasoning on spatial data is called Quali-
tative Spatial Reasoning (QSR). It is a method that treats
figures or images qualitatively, by extracting the informa-
tion relevant to a user such as position, size, direction and
so on [3, 4, 5].

A system that incorporates spatial relationships with
dynamics is called a qualitative spatio-temporal reasoning
(QSTR) system. Several frameworks for QSTR have been
proposed [5] and methods for using QSTR frameworks for
event extraction from video data have been studied [6, 7].

In these previous studies, either isolated moving ob-
jects or the camera position were assumed to be stable,
even if there were multiple objects interacting with each
other. Furthermore, objects have generally been extracted
as rectangles. However, video datasets often include multi-
ple moving objects, and the viewpoint of the camera is also
moving. In addition, it may not be suitable to use rectangles
to represent regions or objects, depending on the viewpoint.
The methods reported thus far are not sufficient to handle
such video data.

In this paper, we describe the extraction of video data
of football games using a qualitative representation to char-
acterize events. Specifically, for a given pair of extracted
regions of objects in the 2D image data for each frame,
we represent their relative positions based on two aspects:
mereological relations and directional relations. The for-
mer refers to whether two objects occupy a common por-
tion in a 2D plane, and the latter refers to which direction a
given object is located in with respect to the other one.

Consider video footage of a football player and a ball.
We represent the positional relations as follows: the ball is
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Figure 1. Trajectory of a ball on shooting

to the left of the player, and is separated so that there is
no contact and no overlap between the images to the two
objects. In a subsequent frame, there is some overlap of
the two objects, and then the ball moves to the right of the
player and the two objects are separated. In this case, we
cannot determine whether the player made contact with the
ball only from such a sequence of qualitative representa-
tions.

Moreover, we can determine that a player took a shot
if the ball moves towards the goal area in three-dimensional
(3D) space. This is more difficult using a projection onto
the 2D plane. Consider the region of the goal in a 2D
projection. When a player scores a goal, the region of a
ball and that of a goal have a common spatial part. How-
ever, this is not sufficient in 2D, since the ball may move in
the foreground or background of the goal area. For exam-
ple, consider the 2D representation of the trajectory shown
in Figure 1. From this, we cannot determine whether the
ball entered the region of the goal. Therefore, we must de-
fine the success of a goal using the conditions that the ball
passes through the ground of the goal area or a player han-
dles it in the goal area after the ball enters the goal region.
To achieve this, we extract not only the goal region but the
ground part of the goal region, and represent the relation of
the ground region with that of a player and the ball. In this
case, we have to handle not only shapes of rectangles but
polygons.

In this paper, we describe a qualitative representation
of the spatial relations between the extracted regions and
determine event occurrences. We evaluate our method to
actual video data. Our final goal is to construct a system
that automatically extracts objects from video data, gener-
ates a qualitative representation of their relations, and de-
termines the occurrence of events from a sequence of these
representations.

To identify moving objects, we use techniques
commonly used in image-processing tools and pattern-
recognition methods (e.g., [8]); we do not describe this in
detail as it is outside the scope of this paper.

This paper is organized as follows. In Section 2, we
describe the theories on which our representation is based.
In Section 3, we present the spatio-temporal representation
of the relations between objects and the definition of an
event. In Section 4, we evaluated our method using video
data and discuss the limitations of our method. In Sec-
tion 5, we compare it with the related works. In Section 6,
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Figure 2. Fundamental relations of RCC-8

we show conclusions and future works.

2 Basic Theories

We describe the theories Region Connection Calculus
(RCC) [9] and Interval Algebra (IA) [10], which our for-
malization is based on. We represent the relationships be-
tween objects based on RCC and consider the time interval
in which an event occurs with these relationships based on
IA.

Region Connection Calculus (RCC) is the theory of
QSR which abstractly describes regions by their possi-
ble relations to each other. Regions are non-empty reg-
ular, closed subsets of a topological space, and can con-
sist of more than one piece. Several versions of RCC ex-
ist depending on the granularity of classification of rela-
tions. RCC-8, for example, has eight fundamental rela-
tions is one of them. Figure 2 shows the relations of RCC-
8: disconnected (DC), externally connected (EC), equal
(EQ), partially overlapping (PO), tangential proper part
(TPP), tangential proper part inverse (TPPi), non-tangential
proper part (NTPP), and non-tangential proper part inverse
(NTPPi). These relations are pairwise disjoint and jointly
exhaustive.

Interval Algebra (IA) is a calculus for temporal rea-
soning. Relations between intervals are formalized as
sets of basic relations: before, meets, overlaps, starts,
during,finishes and equals (Figure 3). For a pair of time
intervals I1 and I2, exactly one of these relations holds.
The expressions begin(I) and end(I) denote the beginning
and end of a time interval I . The symbol ’=’ denotes that
two events occur at the same time. Let I1 and I2 be time in-
tervals where meets(I1, I2). We can create an interval I =
I1 + I2 where begin(I) = begin(I1), end(I) = end(I2).

3 Qualitative Representation

We describe the spatio-temporal representation of the rela-
tions between objects and the definition of an event. The
ball and players are dynamic objects, whereas the goals are
static objects. We describe the positional relations between
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each player and the ball, the goal and the ball, and the goal
and each player.

3.1 Universe division

Let universe be a closed region corresponding to the entire
image data in the video at an instant. The regions of the ball
and the players are taken to be upright rectangles. For each
player, we divide the universe into nine areas, regarding the
player as a main center M . The surrounding eight areas are
T , TR, R, BR, B, BL, L, and TL, clockwise from the top
(Figure 4). We represent the relative position of each player
and the ball using the areas that the ball occupies.

Let SP = {T, TR,R,BR,B,BL,L, TL}. We de-
fine four subsets of SP so that the areas in the same di-
rection are included in that subset: Tp = {TR, T, TL},
Rt = {TR,R,BR}, Lt = {TL, T,BL} and Bt =
{BR,B,BL}. We call these subsets the classes of direc-
tion.

We define three binary relations and two ternary re-
lations over SP as follows: these are used to determine
whether a player has made contact with the ball.

• For a pair of a, a′ ∈ SP , if they are included in
the same class of direction, then a and a′ are in the
same direction and are denoted by same(a, a′) (Fig-
ure 5(a)).

• Opposite = {(T,B), (R,L), (TR,BL), (TL,BR)}.

(a)same (b)opposite (c)diagonal (d)knight (e)corner

Figure 5. Relations over areas

For a pair of a, a′ ∈ SP , if (a, a′) ∈ Opposite, then
they are in the opposite direction and are denoted by
opposite(a, a′) (Figure 5(b)).

• Diagonal = {(T,R), (R,B), (B,L), (L, T )}. For
a pair of a, a′ ∈ SP , if (a, a′) ∈ Diagonal, then
they are in the diagonal direction and denoted by
diagonal(a, a′) (Figure 5(c)).

• Knight = {(TL,R,B), (TR,B,L), (BR,L, T ),
(BL,R, T )}. For areas a, a′, a′′ ∈ SP , if (a, a′, a′′) ∈
Knight, then they are in the knight direction and de-
noted by knight(a, a′, a′′) (Figure 5(d)).

• Corner = {(TL,L, T ), (TR, T,R), (BR,R,B),
(BL,B,L)}. For areas a, a′, a′′ ∈ SP , if (a, a′, a′′) ∈
Corner, then they are in the corner direction and de-
noted by corner(a, a′, a′′) (Figure 5(e)).

For any a, a′, a′′ ∈ SP the following properties hold.
(P1) same(a, a′) → same(a′, a)
(P2) same(a, a′) ∧ same(a′, a′′) → same(a, a′′)
(P3) opposite(a, a′) → opposite(a′, a)
(P4) diagonal(a, a′) → diagonal(a′, a)
(P5) diagonal(a, a′) ∧ diagonal(a′, a′′)

→ opposite(a, a′′)
(P6) knight(a, a′, a′′) → knight(a, a′′, a′)
(P7) knight(a, a′, a′′) → diagonal(a′, a′′)
(P8) corner(a, a′, a′′) → corner(a, a′′, a′)
(P9) corner(a, a′, a′′) → diagonal(a′, a′′)

We also define a relationship between sets of areas.
Let A,A′ and A′′ be subsets of SP ∪ {M}.

• If ∀a, a′ ∈ A∪A′ s.t. same(a, a′), then A and A′ are
in the same direction and denoted by same(A,A′).

• If ∃a ∈ A,∃a′ ∈ A′ s.t. opposite(a, a′), then A
and A′ are in the opposite direction and denoted by
opposite(A,A′).

• If ∃a ∈ A,∃a′ ∈ A′ s.t. diagonal(a, a′), then A
and A′ are in the diagonal direction and denoted by
diagonal(A,A′).

• If ∃a ∈ A, ∃a′ ∈ A′, ∃a′′ ∈ A′′ s.t. knight(a, a′, a′′),
then (A,A′, A′′) is in the knight direction and denoted
by knight(A,A′, A′′).

• If ∃a ∈ A, ∃a′ ∈ A′, ∃a′′ ∈ A′′ s.t. corner(a, a′, a′′),
then (A,A′, A′′) is in the corner direction and denoted
by corner(A,A′, A′′).
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3.2 Relation between player and ball

Let Players be a set of players. A player is represented by
a pair of a team and his/her ID, (Team, ID).

Mereological relations between a player and the ball
are represented using three predicates: DC (disconnected),
EC (externally connected), and O (overlapped). We use
C (connected) if either DC or EC holds. In contrast to
RCC-8, we do not have to use EQ, TPPi, or NTPPi
relations, since the ball is much smaller than the players.
Let Areas ⊆ SP ∪ {M} be a set of areas in which the
inner part of the ball exists.

• If the region corresponding to the ball does not have a
common part with the area M with respect to a player
P , then we denote DC(P,Areas).

• If the region corresponding to the ball is touched either
by a line or a point to the area M with respect to a
player P , then we denote EC(P,Areas).

• If the region corresponding to the ball has a common
part with the area M with respect to a player P , then
we denote O(P,Areas).

Note that if DC(P,Areas) or EC(P,Areas) holds,
then |Areas| ≤ 2; if O(P,Areas) holds, then |Areas| = 1
or 3.

For the ball and each player, we represent the mere-
ological relations using these predicates, and represent di-
rectional relations using the above notion of areas.

We represent a state in each instant (i.e., frame
of video) by r(P,Areas, T ) where r ∈ {DC,EC,O},
P ∈ Players, Areas ⊆ SA ∪ {M} is a set of
areas with respect to P where the inner part of the
ball exists, and T is an instant at which r(P,Areas)
holds. For any P and T , three relations DC, EC,
and O are jointly exhaustive and pairwise disjoint.
that is, DC(P,A1, T ) ∨ EC(P,A2, T ) ∨ O(P,A3, T ),
¬(DC(P,A1, T ) ∧ EC(P,A2, T )), ¬(EC(P,A1, T ) ∧
O(P,A2, T )) and ¬(O(P,A1, T ) ∧DC(P,A2, T )) hold.

Let T0, T1, . . . , Tn+1 be a successive time se-
quence. Consider a sequence of relations on a player
P , r0(P,A0, T0), . . . , rn+1(P,An+1, Tn+1). If both ri =
ri+1 and Ai = Ai+1 hold for any i (1 ≤ i ≤ n−1), but not
hold for i = 0, n, then we take T1, . . . , Tn as one interval
I . For an interval I , r(P,A, I) indicates that r(P,A) holds
during I .

3.3 Contact with the ball

If P makes contact with the ball in time interval I , we
denote this by contact(P, I). When DC(P,A, I) holds,
¬contact(P, I) obviously holds; when C(P,A, I) holds,
we can determine whether or not contact(P, I) holds in
most cases by considering the change in the direction of
the motion of the ball as follows.

(a) (b) (c) (d) (e)

Figure 6. Contact conditions

[Event of contact]
Consider the following sequence of spatial relations

of player and ball: DC(P,A1, I1), C(P,A2, I2),
. . ., C(P,An−1, In−1), DC(P,An, In), where
meets(Ii, Ii+1) (1 ≤ i ≤ n − 1) holds. We call
this sequence P ’s sequence on contact, and a sum of
intervals I2 + . . . + In−1, P ’s holding time. We have the
following conditions for determining the occurrences of
the event of contact for a sequence of a player’s contact,
that are formalized as follows.

Let I be a P ’s holding time.

• If same(A1, An), then contact(P, I). (Figure 6(a)).

• If A1 is a singleton, and there exists i(1 < i < n) such
that O(P,Ai, Ii) is satisfied and one of the following
conditions holds, then contact(P, I) holds.

– opposite(A1, An) ∧ diagonal(A1, Ai) (Fig-
ure 6(b))

– (diagonal(A1, Ai) ∧ opposite(Ai, An)) ∨
(diagonal(An, Ai) ∧ opposite(Ai, A1))
(Figure 6(c))

– knight(An, Ai, A1) ∨ knight(A1, Ai, An)
(Figure 6(d))

• If A1 is a singleton, ( DC(P,An+1, In+1) ∧
meets(In, In+1) ∧ corner(An+1, A1, An) )
∨ ( DC(P,A0, I0) ∧ meets(I0, I1) ∧
corner(A1, A0, An) ), then contact(P, I) holds
(Figure 6(e)).

• If any of the above conditions is not satisfied and
opposite(A1, An) holds, then ¬contact(P, I) holds.

• Otherwise, we cannot determine whether or not
contact(P, I) holds.

[Event of transfer]
Let I1 be an interval in which contact(P1, I1) holds.

If conditions (i) and (ii) hold, then the event of transfer
from P1 to P2 occurs during I1 + I2 + I3.
(i) meets(I1, I2) ∧ meets(I2, I3) and |begin(I3) −
end(I1)| is the minimum for all P2 ∈ Players.

(ii) contact(P1, I1) ∧ ¬contact(P2, I1) ∧
¬contact(P1, I2) ∧ ¬contact(P2, I2) ∧
¬contact(P1, I3) ∧ ¬contact(P2, I3)

[Event of pass]
If the event that transfer from P1 to P2 occurs

during interval I , and P1 = (Team1, ID1) ∧ P2 =
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Figure 8. Relation between P and goal areas

(Team2, ID2) ∧ Team1 = Team2 ∧ ID1 ̸= ID2, then
we consider that event of pass from P1 to P2 has occurred.
[Event of intercept]

If the event of transfer from P1 to P2 occurs dur-
ing I , and P1 = (Team1, ID1) ∧ P2 = (Team2, ID2) ∧
Team1 ̸= Team2, then we consider that event of
intercept by P2 against P1 has occurred.

3.4 Relation between goal and objects

Let G be a polygon corresponding to the goal region shown
in Figure 7(a), and let GG be a region of the ground part
of a goal in the image projected in a 2D plane shown in
Figure 7(b). We consider the relative positional relation be-
tween a player P and GG. Although GG is a parallelogram
rather than a rectangle, the division of nine areas are similar
to the case of a player. We represent the relation between
P and GG by r(A, I) where r ∈ {DC,EC,O}, A ∈
SP ∪ {M} and I is an interval. Let Tp = {TR, T, TL},
Rt = {TR,R,BR}, Lt = {TL, T,BL} and Bt =
{BR,B,BL}. The fact that a player P ’s feet are located
on GG, denoted by in(P,GG, I), is described as follows.

• O(A, I) and either A = {M} or A ∩ Bt ̸= ∅ ∧ A ∩
Lt ̸= ∅ holds, if a goal is taken from the viewpoint in
the left foreground (Figure 8(a)).

• O(A, I) and either A = {M} or A ∩ Bt ̸= ∅ ∧ A ∩
Rt ̸= ∅ holds, if a goal is taken from the viewpoint in
the right foreground (Figure 8(b)).

In contrast to the players, we cannot determine the
central region of the goal, since G is neither a rectangle nor
a parallelogram. In this case, it is not necessary to consider
the direction of the ball. If the region of the ball has a com-
mon part with G and GG during interval I , this is denoted
as in(ball, G, I) and in(ball, GG, I), respectively.

P

(a) case 1 (b) case 2

(c) case 3

Figure 9. Shoot trajectories of success patterns

Since GG is contained in G, in(P,GG, I) →
in(P,G, I) and in(ball, GG, I) → in(ball, G, I) hold.

3.5 Scored goal

Assume that a complete scene of a shot for a goal has been
captured in the video without changing the scene. It means
that the scene includes the beginning of an action of kicking
or heading and the result of shooting, that is, a player makes
contact with the ball, or the ball leaves the region G.

If a goal has been scored, then the ball must be
located in G. In addition, we have to add the condi-
tions considering the trajectory of the ball. Let I1 be
an interval in which in(ball, G, I1) holds. Let I0 and
I ′ be intervals such that meets(I0, I1) ∧ meets(I1, I

′) ∧
¬in(ball, G, I0) ∧ ¬in(ball, G, I ′) holds. We call the se-
quence ¬in(ball, G, I0), in(ball, G, I1),¬in(ball, G, I ′),
a sequence on shooting. We have three different cases for
determining the occurrence of the event of successful goal
for a sequence on shooting, that are formalized as follows.
[Event of successful goal 1]

The ball passes through GG both on entering and on
outgoing from G (Figure 9(a)).
(i) starts(I1, I2) ∧meets(I2, I3) ∧meets(I3, I4)

(ii) in(ball, G, I1)∧in(ball, GG, I2)∧¬in(ball, GG, I3)∧
in(ball, GG, I4)

[Event of successful goal 2]
A player P contacts the ball in the goal area while a

ball is in G (Figure 9(b)).
(i) finishes(I1, I2)
(ii) in(ball, G, I1) ∧ in(P,GG, I2) ∧ contact(P, I2)

[Event of successful goal 3]
A ball coming from the side of the goal hits the goal

net after rebounding on GG (Figure 9(c)).
(i) starts(I1, I2) ∧meets(I2, I3) ∧meets(I3, I4)

(ii) in(ball, G, I1)∧¬in(ball, GG, I2)∧in(ball, GG, I3)∧
¬in(ball, GG, I4)
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I1 I2

I3 I4

I5 I6

I7

Figure 10. Time sequence of frames (passing)

3.6 Examples

(1) pass
The following is an example of a sequence of qualita-

tive spatio-temporal representations where meets(Ii, Ii+1)
holds for each i (1 ≤ i ≤ 6). Figure 10 shows the cor-
responding images. P1 and P2 correspond to the players
enclosed by the two rectangles shown in the right and left
in each frame, respectively. For example, in interval I5, the
ball is to the left of player P1 with no intersection, and in
the area occupied by P2.

DC(P1,{L},I1), DC(P2,{BR},I1)
O(P1,{L},I2), DC(P2,{BR},I2)
DC(P1,{L},I3), DC(P2,{BR},I3)
DC(P1,{L},I4), O(P2,{R},I4)
DC(P1,{L},I5), O(P2,{M},I5)
DC(P1,{L},I6), DC(P2,{B},I6)
DC(P1,{BL},I7), DC(P2,{BL},I7)

We determine contact(P1, I2) from this sequence
since the ball is to the left of P1 at both I1 and I3, and
same(L,L) holds. We also determine contact(P2, I4+I5)
since same(BR,B) holds. Moreover, we find that P1 and
P2 are on the same team, from the colors of their uniforms,
for example. Therefore, we can conclude that a ball is
passed from P1 to P2 in interval I2 + I3 + I4 + I5.
(2) shoot

The following illustrates another example where
meets(Ii, Ii+1) holds for each i (1 ≤ i ≤ 5). Figure 11
shows a corresponding sequence of images. Let P be a

I1 I2

I3 I4

I5 I6

Figure 11. Time sequence of frames (shooting)

player which is enclosed by the rectangles shown in the fig-
ure. For example, in interval I3, the ball is in the direction
between L and BL of P and in the goal region.

DC(P,{L},I1),
DC(P,{L},I2), in(ball,GG,I2),
DC(P,{L,BL},I3), in(ball,G,I3)
DC(P,{L},I4), in(ball,G,I4),

in(P,GG,I4)
DC(P,{BL},I5), in(ball,GG,I5),

in(P,GG,I5)
DC(P,{BL},I6), in(P,GG,I4)

Let I be the interval I2 + I3 + I4 + I5. Then the
following holds: starts(I, I2) ∧ meets(I2, I3 + I4) ∧
meets(I3 + I4, I5)∧ in(ball, G, I) ∧ in(ball, GG, I2) ∧
¬in(ball, GG, I3 + I4) ∧ in(ball, GG, I5). This satisfies
the first condition of a successful shot for a goal, and we
conclude that a goal has been scored in interval I .

4 Evaluation

We applied this method of event extraction to actual video
data using the following process.

1. Use an image-processing tool to obtain the regions
corresponding to the ball, each player, the goals, and
the goal ground regions in each frame.

2. For each frame, create a qualitative representation of
the target regions.

3. Take a series of continuous frames in which the same
relations hold in one interval.
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correct incorrect undetermined
contact 93 10 17
not contact 52 5 25
total 145 15 42

Table 1. Judgment of contact (considering only positional
relationship)

correct incorrect undetermined
contact 106 12 2
not contact 74 8 0
total 180 20 2

Table 2. Judgment of contact (considering the holding
time)

4. Extract an event from the sequence of these qualitative
spatio-temporal representations.

We used ten minutes of footage from the beginning
of the video, including 202 sequences on a player’s con-
tact to evaluate the judgment of event of contact. As only
a few scenes in a game included the scoring of goals, we
used a collection of shooting scenes in addition to the en-
tire 90 minutes video of one game to evaluate the judgment
of success of goals. We checked 29 sequences on shooting
in total. Ambiguous portions were manually revised during
image processing; for example, if a ball moved too rapidly
to extract an object, we pointed to it manually. The frame
rate was 5 frames per second. We compared the results of
the proposed method to manual judgments.

Table 1 shows the results of the evaluation on the
judgment of event of contact. In this table, “contact”
and “not contact” denote the manual judgment, and “cor-
rect,” “incorrect” and “undetermined” mean that correctly
judged, incorrectly judged and undetermined by the sys-
tem, respectively.

These results show that judgments were incorrect for
7.4% and could not be made for 20.8% of the sequences on
a player’s contact. To better judge the undetermined cases,
we added another criterion. For any player P , let I be P ’s
holding time in a sequence on P ’s contact. If the length
of I is one frame, then P is judged as not having made
contact with the ball during that sequence; if the length of
I is more than two frames, then P is judged as having made
contact with the ball during that sequence. The remaining
cases were judged as “undetermined” in terms of whether
P made contact with the ball. When we added this criterion
to the judging process, the number of undetermined cases
was reduced to two (Table 2). Finally, we calculated that
correct judgments on whether a player made contact were
provided in 89.1%.

correct incorrect undetermined
success 11 0 0
fail 18 0 0
total 29 0 0

Table 3. Judgment of successful goal

The most frequent pattern, which occurred on 68 of
106 cases in which a player actually made a contact with
the ball and judged correctly, is the one shown in Fig-
ure 6(a). The second most frequent pattern is the one shown
in Figure 6(b), and other patterns occurred more rarely.
Most of the cases in which event of contact actually oc-
curred but was not judged as occurring involved a player
kicking in the direction opposite to that of the ball’s incom-
ing direction.

In terms of shooting, all of the patterns of trajectories
in the video data were judged correctly (Table 3). The most
frequent successful goal pattern is depicted in Figure 9(a).

We are unable to discuss the performance of the
method as image-processing techniques are out of our
scope. In principle, qualitative approach should offer
advantages over the usual quantitative one with respect
to computation speed as the latter should handle a large
amount of relatively homogeneous data.

Most studies on the extraction of events from video
data have used a still camera [11] or have focused on spe-
cific events, such as a goal, free throw, or change in zoom,
that can be recognized by incorporating a static object, such
as a goal net, center line, and so on [12] or by includ-
ing additional information such as textual data from we-
bcasts [13]. These studies have not involved events with
multiple dynamic objects, such as transferring a ball be-
tween players. Thus, the conditions considered in our study
are more complex and perhaps challenging.

Our results demonstrate the effectiveness of our
method; however, several problems remain.

Determinations of whether a goal has been scored in-
volve additional factors, such as whether the offside rule
was broken or a foul occurred. These should be consid-
ered, but the current method does not include them.

When a player jumps in front of the goal and blocks
the shot, s/he is considered to occupy the goal ground ac-
cording to the current definition. In this case, we erro-
neously considered a goal to have been scored.

A further problem is that broadcast video data are fre-
quently cut when the ball reaches the goal net, making it
difficult to determine whether a goal has been scored as the
data representing the trajectory of the ball have been trun-
cated. In this case, our current method cannot determine
whether a shot was successful.
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5 Related Works

There are several QSTR frameworks.
Hazarika et al. formalized a method for describ-

ing motion history from local surveys [14]. Weghe et al.
described a trajectory-based theory to handle qualitative
changes between moving objects [15]. Boxer et al. demon-
strated how general physical behavior can be learned from
a sequence of qualitative representations, including veloc-
ity data, using Bayesian networks [16]. However, almost
all of these works handled only two-dimensional (2D) mo-
tion and the targets were not live video footage.

Santos et al. formalized data extraction from a se-
quence of snapshots [17, 18]. They proposed depth pro-
file calculus (DPC) and dynamic depth profile calculus
(DDPC); introduced the relation coalescent, which repre-
sents occlusion; and modified RCC to fit the representative
image data. The main issue was to solve the problem of
occlusion and how to treat a pair of objects.

Sridhar et al. described a framework for unsupervised
learning of event classes from video data aimed at practical
applications. In their approach, convex closures of multi-
ple objects were extracted from video data, and relations
were represented qualitatively. Learning of event classes
was processed based on a probabilistic model [19]. They
also proposed a more efficient method for handling noisy
data [7]. However, the extracted regions were rectangular
and the viewpoint of the camera was stable, which limits
its application.

Recently, a new representation method called Core9
was introduced for extracting events from video data [20].
In Core9, the shape of a unit region is a rectangle, so each
object is represented as a rectangle, and closure is consid-
ered for a pair of objects. The region is divided into nine
cells and the relationships between the objects are repre-
sented by a matrix describing the occupation of objects for
each cell. Core9 can also represent attributes including the
relative size, distance, and orientation of objects, and is ex-
tended to handle leaning rectangles [21, 22]. However, be-
cause all interior angles are right angles, Core9 cannot be
directly applied to event extraction of video data of foot-
ball games where parallelograms or polygons are required
to describe the spatial extent of objects.

6 Conclusion

We have described a qualitative representation for spatial
relations of objects extracted from video data of football
games, and detailed methods to determine event occurrence
from the temporal sequence of these relations.

The qualitative approach differs from ordinal event
extraction, which uses quantitative data. It can reduce com-
putational complexity because it is based on symbolic com-
putation. Moreover, it provides clear semantics for event
extraction.

Our target includes scenes in which multiple objects
are involved and the viewpoint of the camera can move.

Moreover, we demonstrated a method for handling shapes
of polygons such as a 2D projection of the goal area rather
than simple rectangles.

In future work, we plan to apply this method to further
data extraction and to refine the rules of event extraction. In
addition, we will consider the use of information around the
interval in which an event occurs. Finally, we will compare
the results of learning using HMM and statistical methods,
and combine this with our approach.
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