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Abstract. This paper discusses how a surface subdivision is formalized
symbolically. We formalize a subdivision of a finite two-dimensional plane
allowing a region with holes. We use a data structure called PLCA. A
PLCA expression is defined using four constructors and represents a sur-
face subdivision without coordinates. We show construction of a configu-
ration for a subdivision and representation of a subdivision using PLCA.
Formalization and proofs are performed within Coq proof assistant.
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1 Introduction

A number of studies have been undertaken previously on symbolic treatment
of geometric or topological properties. Some of these studies used proof assis-
tants to give a computational model representing spatial data, and to certify
its formalization with a mechanical proof. They sometimes find drawbacks or
oversights in pen-and-paper proofs.

Surface subdivision is a basic concept in computational geometry and topol-
ogy. Intuitively, it is an embedding of a surface with a finite number of connected
regions. There are a number of geometric or topological topics related to sur-
face subdivision, for example, graph embedding, four color theorem and Jordan’s
simple curve theorem [1]. Surface subdivision determines locations of regions for
a given set of points, and it commonly uses a region without holes such as De-
launay triangulation [1]. On the other hand, we consider a case in which a region
with holes can be regarded as a subdivision. That is, we admit all configurations
shown in Figure 1 as a subdivision of a plane. Configuration here means that
a representation of a figure showing its geometric or topological characteristics.
In these figures, a red part shows a region with a hole and a green part shows
a region as a hole. When we admit such cases, the border of each region is not
always a Jordan curve, that is, a simple closed curve without a self-loop [10] (e.g,
Figure 1(c)(d)).

There are few symbolic expressions focusing on topological aspects without
the use of coordinates and, to the best of our knowledge, none gives a mechanical
proof of the algorithms for handling disconnected components.
⋆ Currently, JFE Advantech Co., Ltd.
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(a) (b) (c) (d)

Fig. 1. Surface subdivision: (a) triangulation (no holes), (b) a region with holes, (c) a
region with holes which are connected with a point, and (d) a region with a hole which
is connected to itself with a point.

(a) (b)

Fig. 2. Different configurations with a disconnected component.

Disconnected components can be regarded as regions that are embedded into
the holes of another region. Therefore, when we admit disconnected components,
we have to explicitly represent the region with holes in which the component
is located, since no coordinate information is provided. For example, the two
configurations shown in Figure 2 should be considered as being different, which
makes formalization difficult.

In this paper, we describe formalization with PLCA to represent a surface
subdivision that allows disconnected components. PLCA is a data structure in
which all incidence relations between objects are stored [14]. Topological and
geometric aspects can be distinguished in this structure. Previously, we have
described its inductive construction and proved that the obtained class is pla-
nar [15]. We first gave a pen-and-paper proof and then a mechanical proof using
a proof assistant Coq [2]. As a rigorous specification is required in a symbolic
formalization, it was necessary to solve subtle problems that can be ignored in
a pen-and-paper proof [11].

In these studies, “planarity” means not only embedding a PLCA expression
in a two-dimensional plane, but also forming a subdivision of a plane. However,
we did not refer to subdivision explicitly, nor did we explain in detail the mean-
ing of the preconditions of each constructor; nevertheless, those are significant
factors in the symbolic treatment of geometric/topological data. In this paper,
we describe construction of PLCA from the viewpoint of subdivision, and how
conditions for surface subdivision are represented with PLCA.

We consider a surface subdivision as a configuration in which both side of
each line always belong to distinct regions. It means that there are no isolated
points or isolated lines, and no bridges (Figure 3). In addition, a configuration
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Fig. 3. Disallowed configurations of a subdivision

can include a region with holes as a piece of subdivision and regions connected
with a point, which are shown in Figure 1. We represent these conditions in
the form of PLCA planarity. We give a more specific expression for a subdi-
vision and show that a planar PLCA forms a subdivision. Our final goal is to
implement computational geometry algorithms related to surface subdivision in
PLCA, based on the formalization described in this paper.

All the formalization is implemented in Coq. Although we will avoid describ-
ing the messy Coq code here, the entire formalization and proofs have been
uploaded to [12].

The remainder of this paper is organized as follows. In Section 2, we describe
a data structure of PLCA. In Section 3 we show how a surface subdivision is
constructed with PLCA in Coq. In Section 4, we discuss how surface subdivision
is represented in our formalization. In Section 5 we compare our work with
related work, and Section 6 concludes the paper.

2 PLCA

2.1 PLCA Expression

A PLCA data structure was originally designed to give a qualitative representa-
tion of a spatial object. The term “qualitative” implies no use of numerical data
such as coordinates, sizes or ratios etc.; instead, we perform reasoning focusing
on certain characteristics of a spatial object. So far, several qualitative spatial
representations have been proposed [13, 4]. Among them, PLCA is designed to
distinguish connection patterns of regions [14].

Definition 1 (PLCA expression). A PLCA expression is defined as a five-
tuple, ⟨P,L,C,A, o⟩, where P is a set of points, L ⊆ P 2, C ⊆ Ln (n ≥ 3),
A ⊆ Cm (m ≥ 1), o ∈ C.

In PLCA, there are four kinds of object: points, lines, circuits, and areas.

– Points are the most primitive objects. Points are distinguishable from each
other. We use p as a variable for points.

– A line represents segments between two points. It is defined as a pair of
distinct points, like (p0, p1)

1. We use l as a variable for lines. Each line has

1 The original PLCA allows curved lines. Our definition does not allow (p, p) as a line.
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p4

p0 p1 p2

p3 p5

p6

p7 p8

P = {p0, p1, p2, p3, p4, p5, p6, p7, p8}
L = {l0, l1, l2, l3, l4, l5, l6, l7, l8, l9}
C = {o, c0, c1, c2, c3}
A = {a0, a1, a2}

l0 = (p0, p1)
l1 = (p1, p2)
l2 = (p0, p3)
l3 = (p1, p4)
l4 = (p2, p5)
l5 = (p3, p4)
l6 = (p4, p5)
l7 = (p6, p7)
l8 = (p7, p8)
l9 = (p8, p6)

c0 = [l+2 , l
+
5 , l

−
3 , l−0 ]

c1 = [l+3 , l
+
6 , l

−
4 , l−1 ]

c2 = [l−9 , l−8 , l−7 ]
c3 = [l+7 , l

+
8 , l

+
9 ]

o = [l+0 , l
+
1 , l

+
4 , l

−
6 , l−5 , l−2 ]

a0 = {c0, c2}
a1 = {c1}
a2 = {c3}

Fig. 4. An example of a PLCA expression.

a direction from the first to the second element of the pair. The direction of
a line l is denoted by l+, and its inverse direction by l−.

– A circuit represents a closed outline. It is defined as a list of lines, like
[l0, l1, . . . , ln]. Each circuit is closed, i.e., the first element of the first element
l0 and the second element of the last element ln are the same. We use c as
a variable for circuits.

– An area represents a region enclosed with circuits. It is defined as a set of
circuits, like {c0, c1, . . . , cn}. We use a as a variable for areas.

Additionally, we use a specific circuit in the outermost side of the figure denoted
by outermost. We use o as a variable for outermost.

We show an example of a PLCA expression and an instance of its corre-
sponding configuration in a two-dimensional plane in Figure 4. Note that this
expression has three areas: area a1 is an area without a hole, area a0 is an area
with a hole and area a2 fits in that hole.

2.2 Equivalence on objects

We use a list as a data type to implement P,L,C,A, each line, circuit and area,
as our first implementation in Coq. It causes us to define the equivalence relation
on lists 2.

2 If we use data type from a Coq library, for example, MSet, then we may omit these
definitions.
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(a) (b)

Fig. 5. Same subdivision, different data structures.

Hereafter, the symbol ‘+’ denotes an operation of list contcatenation. For
example, when V = [v, w], [u] + V returns [u, v, w].

Two symbolic expressions that are not identical may stand for the same
configuration. For example, circuits [l1, l2, l3] and [l2, l3, l1] represent the same
circuit, and areas [c1, c2, c3] and [c3, c2, c1] represent the same area. This is due
to the cyclic structure of a circuit, and the data structure of a list for an area.
In this case, we should regard them as equivalent.

On the other hand, we have to distinguish between two expressions when they
stand for the same subdivision but have different configurations. For example, the
expressions for the two configurations shown in Figure 5 should be distinguished,
since the number of points and lines are different.

Considering the above points, we define an equivalence relation over PLCA
expressions.

As P,L,C and A are defined as lists, they are equivalent to permutations of
themselves. Each element of L is equivalent to its inverse, and each element of
C is equivalent to its rotation.

Definition 2 (PLCA-equivalence). Two expressions are PLCA-equivalent
iff the pair of them is in the transitive closure of the following binary relation
Req.

– ⟨P, [l+] + L,C,A, o⟩ Req ⟨P, [l−] + L,C,A, o⟩.
– ⟨P,L, [c] +C, [[c] + a] +A, o⟩ Req ⟨P,L, [c′] +C, [[c′] + a] +A, o⟩, where c′ is

a rotated circuit of c.
– ⟨P,L,C,A, o⟩ Req ⟨P ′, L′, C ′, A′, o⟩, where P ′, L′, C ′ and A′ are permuta-

tions of P , L, C and A, respectively.
– ⟨P,L,C, [a] +A, o⟩ Req ⟨P,L,C, [a′] +A, o⟩, where a′ is a permutation of a.
– ⟨P,L, [o] + C,A, o⟩ Req ⟨P,L, [o′] + C,A, o′⟩, where o′ is a rotated circuit of

o.

We call the above relation PLCA-equivalence.

Note thatReq is reflexive because of the third condition ofReq and the reflex-
ivity of permutations. Therefore, PLCA-equivalence is reflexive and transitive.

2.3 PLCA consistency

A PLCA expression is too permissive to find a corresponding topological space.
For example, if there exists more than one area that contain the same circuit,
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such an expression does not make sense. And we should also avoid duplication
in a list. Therefore, we put consistency on this data structure so that it makes
sense.

Definition 3 (consistent PLCA). Let ⟨P,L,C,A, o⟩ be a PLCA expression.
The PLCA expression is said to be a consistent PLCA expression iff it satisfies
all of the following conditions.

– For each point p ∈ P , there exists l ∈ L such that p ∈ l.
– For each line l ∈ L, all points in l are in P .
– For each line l ∈ L, there exist circuits c, c′ ∈ C such that l+ ∈ c and

l− ∈ c′3.
– For each circuit c ∈ C, each line in c or its inverse line is in L.
– For each circuit c ∈ C except for o, there exists an area a ∈ A such that

c ∈ a.
– For each area a ∈ A, all circuits in a are in C.
– For any area a ∈ A, o ̸∈ a.
– Each point p ∈ P appears only once in P .
– Each line l+ ∈ L appears only once in L and l− ̸∈ L.
– Each circuit c ∈ C appears only once in C and any rotated circuits other

than c do not appear in C.
– Each area a ∈ A appears only once in A and any equivalent area other than

a does not appear in A.

3 Encoding PLCA

We show PLCA specification in Coq.

3.1 Construction of PLCA

We construct PLCA so that its configuration is a subdivision of a finite two-
dimensional plane allowing a region with holes. We use four constructors, and
explain each constructor according to the meaning of their preconditions.

Initially, we make a finite area, then apply constructors sequentially. We
divide an existing area into two areas and as a result, the number of areas is
incremented by exactly one each time a constructor is applied. At this time,
we either add a connected component or a disconnected component depending
on whether we cut an existing circuit or not. We introduce a new object path
to divide an area. As PLCA has no coordinate information, we have to specify
the area in which such a path is added. As a symbolic operation, we delete one
existing area and add two new areas, and also reconfigure all related objects. The
difficulty on re-composition of a circuit is that we have to find the beginning of
a list, since a circuit has a cyclic structure.
3 In the formalization in Coq, we define this condition as “for each line l such that
l+ ∈ L or l− ∈ L, there exists the circuit c such that l ∈ c.” These conditions are
the same.
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3.2 Objects

Objects in PLCA are defined as follows, where nat denotes a natural number
and prod denotes a product of the two specified arguments.

Definition Point := nat.

Definition Line := prod Point Point.

Definition Circuit := list Line.

Definition Area := list Circuit.

3.3 Basics

Here we provide some definitions of basic functions. Functions reverse and
reverse linelist are prepared to make the reverse circuit (lists of lines), i.e.,
reverse linelist([l+1 , l

+
2 , ..., l

+
n ]) = [l−n , ..., l

−
2 , l

−
1 ]). Proposition Rot is defined on a

pair of circuits to check whether one circuit is obtained by rotating the other,
i.e., Rot([l+1 , l

+
2 , ..., l

+
n ], [l

+
2 , l

+
3 , ..., l

+
n , l

+
1 ]) is true, which is used to define PLCA-

equivalence. InL is a proposition that checks whether a line or its inverse is in
L.

Definition reverse(l : Line) := (snd l, fst l).

Definition reverse_linelist(ll : list Line) := rev (map reverse ll).

Inductive Rot : list A -> list A -> Prop :=

| rotSame : forall (l : list A), Rot l l

| rotNext : forall (l l’ : list A) (a : A), Rot l (a :: l’)

-> Rot l (l’ ++ [a]).

Definition InL (l: Line)(L: set Line) : Prop :=

set_In l L \/ set_In (reverse_linelinst l) L.

PLCA-equivalence is defined as a proposition on a pair of lists of points, a
pair of lists of lines, a pair of lists of circuits, a pair of lists of areas, and a
pair of circuits. Each condition of Definition 2 is encoded. For example, the last
condition, showing that the rotated outermost is equivalent to the original one,
is encoded as follows: assume that one PLCA expression has C as a list of circuits
and o as outermost, and the other PLCA expression has C’ as a list of circuits
and o’ as outermost; if o’ is a rotated circuit of o, and C’ also contains o’

instead of o, then these PLCA expressions are equivalent.

rotateOutermost : forall(P : list Point)(L : list Line)

(C : list Circuit)(A : list Area)

(o o’ : Circuit),

Rot o o’

-> PLCAequivalence P L C A o P L (map (replace_circuit o o’) C) A o’
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We define a path as a sequence of lines with non-negative length. A path does
not have a point that appears more than once. We define another object trail
that is allowed to have a point that appears more than once but is not allowed to
have a line that appears more than once. A path is used as a divider of a circuit
to make a new area, while a trail shows a property of a segment of a circuit.
Note that a circuit is not always a Jordan curve. We can make a closed path (or
trail) by adding a line connecting their start and end points, which corresponds
to a circuit.

Definition 4 (path). A list of lines [(p0, p1), (p1, p2), . . . , (pn−1, pn)] (n > 0)
is said to be a path if p0, . . . , pn are distinct.

Definition 5 (trail). A list of lines [(p0, p1), (p1, p2), . . . , (pn−1, pn)] (n > 0) is
said to be a trail, if there exists no i, j (0 < i ̸= j < n) such that (pi−1, pi) =
(pj−1, pj) or (pi−1, pi) = (pj , pj−1).

For example, in Figure 6, a path and a trail are depicted by a red line and
a green line, respectively. Circuits in Figure 6(a) are both closed paths, while
circuits in Figure 6(b)(c) are two closed paths and one closed trail.

(a) (b) (c)

Fig. 6. Circuits constructed by paths (red) and trails (green): (a) two closed paths
(b)(c) two closed paths and one closed trail.

An object trail is inductively defined as follows. The arguments show the
starting point, the ending point, inner points and inner lines. As a base case,
make a nil trail that consists of a single point without lines 4. Make a step trail
by adding a point that is not included in the existing inner points, and a line
connecting to the new point and the ending point of the existing path. The
function also checks that the new line is not included in the existing inner lines.

Inductive trail : Point -> Point -> list Point -> list Line -> Prop :=

| nil_trail : forall(p : Point), trail p (p::nil) nil

| step_trail : forall(p1 p2 p3 : Point)(pl : list Point)(ll : list Line),

4 A data structure [(p, p)] is taken as a base case in this implementation, which is
not allowed in the definition of a trail or path. And when trail or path is used in a
constructor in the implementation, condition on the length is added.
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(a) (b)

rll(c)

C

c

rll(c)

x

y

z

s

e

x

y

z

(c) (d)

Fig. 7. Constructors: (a) single loop, (b) add loop, (c) add inpath, and (d) add inline.
In these figures, ‘rll’ denotes reverse line list.

trail p2 p1 pl ll

-> p3 <> p2

-> ~LIn (p3, p2) ll

-> trail p3 p1 (p3::pl) ((p3, p2)::ll).

3.4 Constructors

We show four constructors together with their preconditions: single loop,
add loop, add inpath and add inline. A path is added in the inner side of the
outermost. In the previous work, we consider another constructor add outpath
that adds a path on the outer side of the outermost [11]. In that case, we allow
a trail as an outermost. We can construct PLCA that admits such a configura-
tion, but when focusing on subdivision, it is not suitable to consider such a case.
Therefore, the definition is little different from the one shown in the previous
work.

single loop: Constructor single loop is an initialization that corresponds to add
a Jordan curve to make outermost. It makes a simple path and adds a new line
that connects its start and end points (Figure 7(a)).

The preconditions are simple. (1) The length of a path is more than two to
make directions of its inner lines deterministic. (2) Points in the path should not
be existing ones.

add loop: Constructor add loop adds a Jordan curve to the specified area. It
makes a simple path and adds a new line that connects its start and end points
(Figure 7(b)).

The preconditions are the same as those of single loop. (1) The length of
a path is more than two to make directions of its inner lines deterministic. (2)
Points in the path should not be existing ones.

A new configuration is obtained after putting the closed path onto the exist-
ing area.
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add inpath: Constructor add inpath is rather complicated. This constructor cor-
responds to the division of an area by cutting two points of the same existing
circuit that belongs to that area (Figure 7(c)).

The preconditions are as follows. (1) The length of a path is more than zero
to make directions of its inner lines deterministic. (2) Points in the path should
not be existing ones. (3) Two points (that may be the same) connected to the
start and end points of the path should be in the same circuit to avoid a bridge.

A new configuration is obtained after making an area by re-composing an
existing circuit with a new path. In this case, at least two lines are added to L.

add inline: Constructor add inline is similar to add inpath but simpler, since no
new points are added. Intuitively, it makes a shortcut between the two existing,
different points in the same circuit (Figure 7(d)).

The precondition is: (1) There is no line that connects two different points
in the same circuit to guarantee planarity.

A new configuration is obtained after making an area by re-composing an
existing circuit with a new line. In this case, only one line is added to L.

3.5 Inductive PLCA

The four described constructors are formalized below. A PLCA expression con-
structed in this way is called an inductive PLCA expression. In the following,
‘rll’ denotes a function reverse linelist.

single loop: Let p1, p2, ..., pn (n ≥ 3) be distinct points, P = [p1, p2, ..., pn],
L = [(pn, p1), (p1, p2), ..., (pn−1, pn)], c = [(pn, p1), (p1, p2), ..., (pn−1, pn)], C =
[c, rll(c)] and A = [[c]]. Then, ⟨P,L,C,A, rll(c)⟩ is an inductive PLCA expression.

add loop: Let ⟨P,L,C,A, o⟩ be an inductive PLCA expression. If p1, p2, ..., pn
(n ≥ 3) are distinct, pi for any i does not appear in P , c = [(pn, p1), (p1, p2), ...,
(pn−1, pn)] and a ∈ A, then ⟨P ′, L′, C ′, A′, o⟩ is an inductive PLCA expression,
where P ′, L′, C ′, A′ are as follows.

– P ′ = [p1, ..., pn] + P
– L′ = [(pn, p1), (p1, p2), ..., (pn−1, pn)] + L
– C ′ = [c, rll(c)] + C
– A′ = [[c]] + [[rll(c)] + a] + (A− [a])

add inpath: Let ⟨P,L,C,A, o⟩ be an inductive PLCA expression. Suppose that
s, p1, ..., pn, e are distinct, s, e and pi for any i do not appear in P . Let ap =
[s, p1, ..., pn, e], al = [(s, p1), ..., (pn, e)]. Note that if s = e, then ap = [s] and
al = [ ]. Also suppose that c ∈ a, a ∈ A, and c = lxy + lyz + lzx where lxy , lyz
and lzx start with points x, y and z and end with points y, z and x, respectively.
At least one of y and z or s and e are different. ⟨P ′, L′, C ′, A′, o⟩ is an inductive
PLCA expression, where P ′, L′, C ′, A′ are as follows.

– P ′ = ap + P
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– L′ = [(y, s), (e, z)] + al + L
– C ′ = [[(s, y)]+ lyz+[(z, e)]+rll(al), lxy+[(y, s)]+al+[(e, z)]+ lzx ]+(C− [c])
– A′ = [[[(s, y)]+ lyz +[(z, e)]+ rll(al)], [lxy +[(y, s)]+al +[(e, z)]+ lzx ]+ (a−

[c])] + (A− [a])

add inline: Let ⟨P,L,C,A, o⟩ be an inductive PLCA expression. Suppose that
c ∈ a, a ∈ A, and c = lxy + lyz + lzx where lxy , lyz and lzx start with points x, y
and z and end with points y, z and x respectively. If either (y, z) or its reverse
line is not in L, ⟨P,L′, C ′, A′, o⟩ is an inductive PLCA expression, where L′, C ′,
A′ are as follows.

– L′ = [(y, z)] + L
– C ′ = [[(z, y)] + lyz , lxy + [(y, z)] + lzx ] + (C − [c])
– A′ = [[[(z, y)] + lyz ], [lxy + [(y, z)] + lzx ] + (a− [c])] + (A− [a])

Figure 8 shows examples of an area division by constructor add inpath. We
put a path on the specified area and connect its start and end points to the
circuit. Note that y and z are the cutting points of an existing circuit, while x
is the starting point of a circuit. Since the circuit has a cyclic structure, and the
rotation of a cycle is equivalent to the original one, reconfiguration of a cycle
begins with the original starting point. Figure 8(a) is a case to put a path on
the area without a hole, Figure 8(b) is a case to put a path on the area with
a hole, and Figure 8(c) is a case in which y and z are the same point, which
corresponds to adding a loop to the existing point.

We show the corresponding Coq specification of each constructor in the Ap-
pendix.

4 Representation of Subdivision

We show that inductive PLCA represents a surface subdivision of a finite two-
dimensional plane that allows a region with holes as a subdivision.

The condition for subdivision is represented in a form of PLCA planarity
which consist of three properties: PLCA-constraint, PLCA-connectedness and
PLCA-euler.

Definition 6 (PLCA-constraints). Let ⟨P,L,C,A, o⟩ be a PLCA expression.
It is said that the expression satisfies PLCA-constraints iff it satisfies all of the
following conditions.

1. For each line (p, p′) ∈ L, p ̸= p′.
2. For each circuit c ∈ C, |c| ≥ 3 and c is a closed trail.
3. For each area a ∈ A,

– if c, c′ ∈ a and c ̸= c′, then c and c′ have no shared points or lines.
– if c ∈ a, then c appears in a only once and no rotated circuit of c appear

in a.
– |a| ≥ 1.

4. o is a closed path.
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Fig. 8. Examples of dividing an area by add inpath: (a) put a path on the area without
a hole, (b) put a path on the area with a hole, (c) two points in the circuit are the
same.

The first condition of PLCA-constraints guarantees that there is no iso-
lated point, and the second condition guarantees that there is no bridge be-
tween points. The third condition is for handling duplicated points in a sin-
gle circuit. For example, in Figure 9, a circuit [(p0, p1), (p1, p2), (p2, p3), (p3, p1),
(p1, p4), (p4, p5), (p5, p0)], that passes point p1 more than once, is included only
in the green area. Note that it is not a combination of two circuits. The fourth
condition is to guarantee that our target plane to be divided is a finite plane
encircled with a Jordan curve.

Definition PLCAconstraints(L : list Line)(C : list Circuit)

(A : list Area)(o : Circuit) : Prop :=

Lconstraint L /\ Cconstraint C /\ Aconstraint A

/\ Circuit_constraints o.

Each constraint is defined as a proposition. For example, the second condition
of Definition 6 is encoded as follows:

Definition Circuit_constraints(c : Circuit) : Prop :=

(exists x : Point, exists pl : list Point, trail x x pl c)

/\ 3 <= length c.

Definition Cconstraint(C : list Circuit) : Prop :=

forall(c : Circuit), In c C -> Circuit_constraints c.

Definition 7 (PLCA-connect). Let ⟨P,L,C,A, o⟩ be a PLCA expression. A
pair of objects in the expression is said to be PLCA-connect iff it is in the
symmetric transitive closure of the following relation Rc.
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Fig. 9. Treatment of circuit including a duplicated point.

1. If p ∈ P , l ∈ L and p ∈ l, then pRc l.
2. If l+ ∈ L or l− ∈ L, c ∈ C and l+ ∈ c, then l+ Rc c.
3. If c ∈ C, a ∈ A and c ∈ a, then cRc a.

Definition 8 (PLCA-connectedness). It is said that a PLCA expression sat-
isfies PLCA-connectedness iff any pair of objects in the expression are PLCA-
connected.

Intuitively, PLCA-connectedness guarantees that no objects are separated,
including the outermost. Each object is traceable from outermost.

Representing PLCA-connectedness has one difficulty: this property holds over
the different types of P,L,C and A. Therefore, we have to convert these data
types to a common data type object, and prepare a new incidence function OIn.

Inductive object :=

| o_point : Point -> object

| o_line : Line -> object

| o_circuit : Circuit -> object

| o_area : Area -> object.

Definition OIn (o : object) : Prop :=

match o with

| o_point p => In p P

| o_line l => In l L

| o_circuit c => In c C

| o_area a => In a A

end.

Then, PLCA-connectedness is implemented as follows.

Inductive PLCAconnect : object -> object -> Prop :=

| PLcon : forall(p : Point)(l : Line),

In p P -> In l L -> InPL p l ->

PLCAconnect (o_point p) (o_line l)

| LCcon : forall(l : Line)(c : Circuit),

In l L -> In c C -> LIn l c ->
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PLCAconnect (o_line l) (o_circuit c)

| CAcon : forall(c : Circuit)(a : Area),

In c C -> In a A -> In c a ->

PLCAconnect (o_circuit c) (o_area a)

| SYMME : forall(o1 o2 : object),

PLCAconnect o1 o2 -> PLCAconnect o2 o1

| TRANS : forall(o1 o2 o3 : object),

PLCAconnect o1 o2 -> PLCAconnect o2 o3 -> PLCAconnect o1 o3.

Definition PLCAconnected : Prop :=

forall(o1 o2 : object), OIn o1 -> OIn o2 -> PLCAconnect o1 o2.

Definition 9 (PLCA-euler). Let ⟨P,L,C,A, o⟩ be a PLCA expression. It is
said that the expression satisfies PLCA-euler iff |P | − |L| − |C|+ 2|A| = 0.

PLCA-euler guarantees that a PLCA expression can be embedded in a two-
dimensional plane so that the orientation of each circuit can be correctly defined.

Coq implementation is straightforward.

Definition PLCAeuler : Prop :=

length P + 2 * length A = length L + length C.

Definition 10 (planar PLCA). If a consistent PLCA satisfies PLCA-
constraints, PLCA-connectedness, and PLCA-euler, then it is said to be a planar
PLCA.

The following theorem shows that inductive PLCA satisfies planarity.

Theorem 1. Inductive PLCA is a planar PLCA.

This is proved by proving the following three lemmas.

Lemma PLCA_consistency_and_constraints :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

I P L C A o -> PLCAconsistency P L C A o /\ PLCAconstraints L C A o.

Lemma PLCAconnectedness :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

I P L C A o ->

(forall(p : Point)(l : Line),

In p P -> In l L -> PLCAconnect P L C A (o_point p) (o_line l))

/\ (forall(l : Line)(c : Circuit),

In l L -> In c C -> PLCAconnect P L C A (o_line l) (o_circuit c))

/\ (forall(c : Circuit)(a : Area),

In c C -> In a A -> PLCAconnect P L C A (o_circuit c) (o_area a)).

Lemma PLCAeuler :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

I P L C A o -> PLCAeuler P L C A.
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The PLCA-equivalence preserves PLCA planarity.

Theorem 2. Let e, e′ be equivalent PLCA expressions. If e is a planar PLCA
then e′ is also a planar PLCA.

We define that an expression of subdivision mentioned in Section 1 as follows.
It is defined depending on the case whether a line is included in outermost or
not. Intuitively, this definition means that for each line, if it is not in outermost,
then distinct two areas are connected by this line; otherwise, there exists only
one area that is connected with the outside of the figure by this line.

Definition 11 (subdivision). Let e = ⟨P,L,C,A, o⟩ be a consistent PLCA
expression. For each l ∈ L, if the following condition is satisfied, then e is said
to be a subdivision: (i) there exist areas a, a′ ∈ A such that a ̸= a′, l+ ∈ c ∈ a,
and l− ∈ c′ ∈ a′, for l ̸∈ outermost, and (ii) there exists an area a and a circuit
c such that l ∈ c ∈ a, c ̸= outermost, for l ∈ outermost.

Finally, we get the following theorem that means a planar PLCA forms a
subdivision.

Theorem 3. A planar PLCA is a subdivision.

It is proved by the following theorems by case split depending on whether a
line is included by the outermost.

Theorem PLCAsubdivision_area :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

PLCA_planar P L C A o ->

forall (l : Line),

In l L

-> ~LIn l o

-> exists (c c’ : Circuit),

In c C

/\ In c’ C

/\ In l c

/\ In (reverse l) c’

/\ exists (a a’ : Area),

In a A

/\ In a’ A

/\ In c a

/\ In c’ a’

/\ a <> a’.

Theorem PLCAsubdivision_outermost :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

PLCA_planar P L C A o ->

forall (l : Line),

LIn l o
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-> exists (c : Circuit),

In c C

/\ LIn l c

/\ o <> c

/\ exists (a : Area),

In a A

/\ In c a.

5 Related Works

Hypermap is a well-known data structure for handling topological aspects of
spatial data; it is an algebraic data structure that consists of a set of darts and
two permutations. Hypermap uses a dart as a primitive, and an edge and a
vertex are defined as compositions of darts. Circuit and connected components
are calculated by permutations. Hypermap is a useful data structure but it is
hard to envisage, for example, a figure embedded in a two-dimensional plane,
since vertices, edges and faces are not represented directly. On the other hand,
PLCA provides a more straightforward expression of a figure.

There are several works that give a formalization based on hypermap and
a proof of geographic/topological properties using proof assistants. Brun et al.
showed a derivation of a program to compute a convex-hull for a given set of
points from their specification [3]. They specified the algorithm and proved its
correctness using a structural induction. Gonthier showed the four color theorem
based on surface subdivision [9]. However, they did not treat a disconnected com-
ponent. Dufourd discusses that embedding polyhedra onto a plane is a sufficient
condition for planarity [6]. In that work, a hypermap was applied to formalize
a discrete version of a Jordan curve and to prove its soundness [7]. Dufourd’s
most relevant work is a formalization of an Delaunay triangulation [8]. They
represented Delaunay triangulation in a form where all edges have two darts
and all faces have three vertices. A coordinate was used to represent a proper
triangle, and disconnected components were not handled. Our formalization on
subdivision includes disconnected components.

Besides a hypermap, Yamamoto et al. studied a graph embedded on a plane
using HOL [16]. That model is simpler since it does not handle regions. There are
few studies on qualitative spatial representation from the viewpoint of theorem
proving. Recently, an interesting work is done by Dapoigny et al. [5]. They
formalized Tarski’s mereogeometry using Coq. The representation is based on a
part-hole relationship between regions, which is completely different from that
of PLCA.

The doubly connected edge list is a popular data structure in computational
geometry for representing a surface subdivision allowing disconnected compo-
nents [1]. It contains records for each face, edge, vertex of the subdivision. Each
edge is regarded as two half-edges bounding different faces, and each half-edge
has a pointer to its connecting half-edges as well as its twin. Comparing its
data structure with PLCA, an edge (or a line) is represented in relating to the
two faces that share it in both data structures; however, incidence relations of
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objects are represented as pointers in the record in doubly connected edge list,
whereas an object is explicitly defined using other existing objects in PLCA;
the location of each object is determined uniquely by the coordinates in doubly
connected edge list, which is different from our work. Moreover, the main goal
of computational geometry is to develop an algorithm that can reduce compu-
tational complexity, whereas here, we investigate the soundness of an algorithm.
The method proposed can handle geometric data on a more abstract level, and
can therefore be applied to prove the correctness of algorithms including doubly
connected edge lists.

6 Conclusion

We have shown a symbolic representation with PLCA for a surface subdivision of
a finite two-dimensional plane that allows holes in a region. All the formalization
and proofs are performed in Coq and consist of about 12,800 lines [12].

In future work, following issues are considered:

– To specify other intuitive definition of planarity and prove the equivalence
with PLCA-Euler.

– To implement high level computational geometry algorithms such as Delau-
nay triangulation or graph embedding algorithms in PLCA and prove them.

– To extend the proposed approach to handle more general surfaces such as
polyhedra or torus with an arbitrary genus.
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Appendix

Coq specification of each constructor.

Inductive I : list Point -> list Line -> list Circuit -> list Area

-> Circuit -> Prop :=

| single_loop : forall(pl : list Point)(ll : list Line)(x y : Point),

simplepath x y pl ll

-> x <> y

-> 2 <= length ll

-> I pl ((y,x)::ll) (((y,x)::ll)::(reverse_linelist ((y,x)::ll))::nil)

((((y,x)::ll)::nil)::nil) ((reverse_linelist ((y,x)::ll)))

| add_inline : forall(P : list Point)(L : list Line)

(C : list Circuit)(A : list Area)(o : Circuit)

(a : Area)(x y z : Point)(pxy pyz pzx : list Point)

(lxy lyz lzx : list Line),

I P L C A o

-> In a A

-> In (lxy ++ lyz ++ lzx) a

-> trail x y pxy lxy

-> trail y z pyz lyz

-> trail z x pzx lzx

-> ~LIn (y, z) L

-> y <> z

-> 2 <= length lyz

-> 2 <= length (lxy ++ lzx)

-> I P

((y,z)::L)

(((z,y)::lyz)::(lxy++(y,z)::lzx)

::(set_remove eq_listline_dec (lxy ++ lyz ++ lzx) C))

((((z,y)::lyz)::nil)

::((lxy++(y,z)::lzx)::(set_remove eq_listline_dec

(lxy ++ lyz ++ lzx) a))

::(set_remove eq_listcircuit_dec a A))

o

| add_inpath : forall(P : list Point)(L : list Line)

(C : list Circuit)(A : list Area)(o : Circuit)

(a : Area)(x y z s e : Point)(ap pxy pyz pzx : list Point)

(al lxy lyz lzx : list Line),

I P L C A o

-> In a A

-> In (lxy ++ lyz ++ lzx) a

-> trail x y pxy lxy

-> trail y z pyz lyz

-> trail z x pzx lzx

-> simplepath s e ap al

-> 1 <= length (al ++ lyz)

-> 1 <= length (lxy ++ lzx)
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-> y <> z \/ s <> e

-> (forall(p : Point), In p ap -> ~In p P)

-> I (ap++P)

((y,s)::(e,z)::al++L)

((((s,y)::lyz)++((z,e)::(reverse_linelist al)))

::(lxy++((y,s)::al)++((e,z)::lzx))

::(set_remove eq_listline_dec (lxy ++ lyz ++ lzx) C))

(((((s,y)::lyz)++((z,e)::(reverse_linelist al)))::nil)

::((lxy++((y,s)::al)++((e,z)::lzx))

::(set_remove eq_listline_dec (lxy ++ lyz ++ lzx) a))

::(set_remove eq_listcircuit_dec a A))

o

| add_loop : forall(P : list Point)(L : list Line)

(C : list Circuit)(A : list Area)(o : Circuit)

(a : Area)(x y : Point)(ap : list Point)(al : list Line),

I P L C A o

-> In a A

-> simplepath x y ap al

-> x <> y

-> 2 <= length al

-> (forall(p : Point), In p ap -> ~In p P)

-> I (ap++P)

((y,x)::al++L)

(((y,x)::al)::(reverse_linelist ((y,x)::al))::C)

((((y,x)::al)::nil)

::((reverse_linelist ((y,x)::al))::a)

::(set_remove eq_listcircuit_dec a A))

o.


