
Single-agent and Multi-agent Approaches

to WWW Information Integration

Yasuhiko Kitamura1, Tomoya Noda1, and Shoji Tatsumi1

Department of Information and Communication Engineering
Faculty of Engineering, Osaka City University

3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
fkitamura, tnoda, tatsumig@kdel.info.eng.osaka-cu.ac.jp

http://www.kdel.info.eng.osaka-cu.ac.jp

Abstract. The WWW is a most popular service on the Internet and a
huge number of WWW information sources are available. Conventionally
we access WWW information sources one by one by using a browser, but
WWW information integration gives a uni�ed view to users by integrat-
ing multiple WWW information sources elaborately. In this paper, we
introduce our single-agent and multi-agent approaches to WWW infor-
mation integration.

1 Introduction

As the Internet spreads out over our society, it is becoming one of indispensable
social infrastructures which support our daily life. Among various services o�ered
by the Internet, the WWW (World Wide Web) becomes most popular and a
huge number of WWW information sources support our research, business, and
personal activities. Conventionally we access WWW information sources one by
one by using a browser and utilize each of them as an independent information
source. On the other hand, WWW information integration gives a uni�ed view
to users by integrating multiple WWW information sources elaborately.

For instance, the Softbots project led by Oren Etzioni at University of Wash-
ington aims at integrating information sources on the Internet to o�er more ad-
vanced and better quality information services [1]. MetaCrawler1 is a meta search
engine which integrates query results obtained from multiple generic search en-
gines and improves the quality of query results [6]. Ahoy!2 is a special purpose
search engine to �nd a personal homepage by �ltering query results from the
Metacrawler by using other information sources such as an E-mail database [7].

In academic research �elds, WWW information integration plays an impor-
tant role. In the Human Genome Project, researchers are developing a number
of various biological databases, concerning sequences, 3D structures, functions,
and bibliography of DNA and protein etc., which are now available through the
WWW. These databases will be more useful if they are interoperable. As a �rst

1 http://www.metacrawler.com/
2 http://ahoy.cs.washington.edu:6060/



step to information integration, DBGET3[3] and SRS4[2] have been developed
to make data items interreferable by using hyperlinks.

The above examples are precursors of WWW information integration but
have some drawbacks such that they achieve only page-level integration on third-
party servers where users cannot specify how to integrate the information. In
the future, we need to achieve WWW information integration more easily, freely,
and elaborately on our client machine.

In this paper, we introduce our two approaches to WWW information inte-
gration. As our �rst approach, we developed a single-agent system called Meta-
Commander. The MetaCommander collects WWW pages, extracts data, and
merges them on behalf of a user following a script described by the user. We then,
as our second approach, introduce a multi-agent system called Personal WWW
Information Integrator (PWII). PWII consists of Information Agents which ex-
tract data from WWW servers, Task Agents which synthesize extracted data,
and Interface Agents which mediate between the system and users. We combine
these agents on a single platform with GUI, hence we can not only integrate
WWW information easily and exibly, but also we can reuse and share the
agents among users.

2 MetaCommander

The MetaCommander is an agent with the following features which automat-
ically collects and sorts data from distributed WWW information sources on
behalf of its user.

Paragraph-level integration. The purpose of developing MetaCommander is
to achieve WWW information integration at paragraph level, while current
WWW tools like search engines and bookmarks of WWW browser achieve
it at page level. Hence, we can cut and paste paragraphs in various WWW
pages at di�erent sites and produce new pages automatically.

Script language. Because current WWW pages (HTML documents) contain
little semantic information, cutting and pasting paragraphs in WWW pages
is not an easy task for an agent, and its user needs to assist the agent
in teaching how to do it precisely. For this purpose, we adopted an easy-
to-use script language to represent the user's requirements for integrating
information from distributed WWW servers. It is easier to represent the
requirement in a script language than a high-level language although it may
constrain the functionality.The script should be easy enough for a non-expert
of computer, who has a little knowledge of programming, to use. However,
for facilitating complicated information integration, the script should have
basic functions that ordinary programming languages provide such as local
�le access, mathematical/logical calculation, control, and so on.

3 http://www.genome.ad.jp/dbget/dbget.html
4 http://www.embl-heidelberg.de/srs/srsc



Java implementation. The system should run on a client machine like PC.
Hence, we implemented the MetaCommander with the Java language, which
is platform independent and runs on most of current platforms like UNIX,
MacOS, and Windows.

2.1 System Components

We show the MetaCommander components and the data ow in Fig. 1. We give
commands to the MetaCommander by describing a script. The MetaCommander
interprets the script and executes it. It uses the HTTP (Hyper Text Transfer
Protocol) to access WWW servers through the Internet. It also can read and
write local data �les. Finally, it outputs an HTML text, and we can display it
on an ordinary WWW browser.

MC
Script

WWW
Browser

Internet

Meta-
Commander

DataHTML
Text

Fig. 1. MetaCommander components.

2.2 MetaCommander Script

We show major functions of MetaCommander script in Table 1.
The style of MetaCommander functions is similar to that of the language

C like function(arg1, arg2, ...). The scope where a function is e�ective is
speci�ed by braces( `f' and `g'). By adding else with braces after the function
name, we can specify another scope which is e�ective when the function fails.

For example,

getURL( "http://www.ieice.or.jp/" ) {

print

} else {

print( "ERROR" )

}



Table 1. Major functions of MetaCommander script.

Group Name Description

getURL get a page at URL
postURL get a page at URL by posting to CGI

Page Retrieve multipartURL get a page at URL by posting in MIME format
fileURL download a page at URL
password set user's name and password
getAnchor extract an anchor
getString extract text strings

Data Extraction searchString extract a paragraph
searchTag extract an HTML tag
cutString extract text strings by specifying the region

Layout tag insert an HTML tag

Print print print data to standard output
open open a �le
eof check if end of �le

File Access getline read a line from a �le
putline write a line to a �le
fprint write data to a �le
set set data to a variable
unset unset data in a variable

Variable calc evaluate a mathematical expression
strcat concatenate variables
chop remove CR code in variable

if jump on condition
foreach repeat operations for each data

Control while begin a loop
exit halt
break break the loop
continue jump to the top of loop

outputs the contents of the designated page when the MetaCommander succeeds
to access it, otherwise it outputs \ERROR."

Unique functions of the MetaCommander are those for WWWpage retrieval,
data extraction, and layout. Functions for WWW page retrieval collect HTML
documents from WWW servers at the designated URLs. The function getURL

is mainly used with a URL as its argument. When we need to send data to
a CGI (Common Gateway Interface) through a form, one of getURL, postURL,
or multipartURL is chosen depending on the form type. When we need user's
authentication to access a secured server, password function is used to specify
user's name and password.

Functions for data extraction are used to cut data from and paste them
to HTML documents. They are getAnchor that extracts link data, getString
that extracts pure text strings without tags, searchTag that extracts a tag,



searchString and cutString that extract text strings by using key strings.
For example,

cutString("ABC","XYZ") {

print

}

cuts text strings beginning with \ABC" and terminating with \XYZ."
The tag is a function for layout, which inserts a tag in an HTML text. The

print is a function for outputting a speci�ed data into the standard output (a
�le named \meta.html"). If the function has no argument, the contents in the
valid scope become the output.

Furthermore, functions for local �le access, variables, calculation, control,
and so on, are prepared. Subroutine calls are also available.

2.3 Applications to Scienti�c Research Domain

The Human Genome Project is an international project to elucidate all the ge-
netic information and mechanism of human body. This project has a big expec-
tation that the genetic information will contribute to the revolutionary progress
in biology, medicine, and pharmacy such as elucidation and treatment of genetic
diseases. On the other hand, information processing technologies are essential to
manage and utilize a huge amount of various data obtained by biological exper-
iments[9]. At present, the WWW is a nucleus technology to share information
among genome researchers in the world, and a number of various databases and
analysis tools are open to the researchers such as the GenomeNet5 in Japan.

To integrate databases by hyperlinks however causes an operational problem.
For example, it is possible to collect reference information from a nucleic acid
database GenBank by sending a query through its CGI, but the operations be-
come repetitive when a user wants to collect related information from a number
of entries because each entry is contained in a single WWW page. For this prob-
lem, the MetaCommander can automate to follow hyperlinks and cut some parts
(ex. reference data) out of GenBank pages, and integrate them into a page. We
here show a MetaCommander script to execute the above operations in Fig. 2.

At �rst, the URL of GenBank server (Line 1), the number of entries to retrieve
(Line 2), and keywords (Line 3) are set to variables. Then, a MetaCommander
gets access to the GenBank server (Line 4) and obtains a list of links to entries
as shown in Fig. 3(a). It extracts the link (Line 6) and outputs it (Line 8). As
the URL designated by the link has been set to a system variable $ , it follows
the link (Line 10). Since the server returns a page shown in Fig. 3(b), the Meta-
Commander cuts reference data between \REFERENCE" and \FEATURES"
(Line 11) and outputs them (Line 12). Finally an HTML text shown in Fig. 3(c)
is obtained. In Fig. 4, we show an example produced by executing the script in
Fig. 2.

5 http://www.genome.ad.jp



1:set( url, "http://www.genome.ad.jp/htbin/www_bfind_sub" )

2:set( max_hit, 5 )

3:set( keywords, "hiv human")

4:getURL($url,"dbkey"="genbank-today", "keywords"=$keywords,

"mode"="bfind", "max_hit"=$max_hit) {

5: file( "result.html" ) {

6: getAnchor($max_hit) {

7: tag("LI")

8: print

9: tag("BR")

10: getURL($_) {

11: cutString("REFERENCE","FEATURES",1,0){

12: tag("PRE") { print }}}}}

Fig. 2. A MetaCommander script to collect reference information from GenBank.

2.4 Application to Business Domain

Electronic commerce becomes one of most popular applications of the Internet.
There are a number of virtual shops which carry various goods. An advantage
of electronic commerce for a consumer is that he/she can compare the prices
of goods and choose cheapest ones much easier that he/she does in traditional
commerce. The MetaCommander makes the comparison shopping more easier.

Fig. 5 shows a collection of price information about a graphic board for PC
named \Revolution 3D" from 3 Japanese virtual shops (System Works6, DOS/V
Paradise7, and TWO TOP8).

Collecting price information from virtual shops is not easy. There is no de�ni-
tive rule to �nd a catalogue page which contains an item which a customer like
to buy because how to build catalogue pages depends on the shop. Normally
a customer is required to follow several links to �nd the page from the top
of virtual shop homepage and sometimes he/she has a di�culty to �nd it. If
we describe the above process in a script, it will be a quite complicated and
lengthy one. As a remedy, we can incorporate a use of ordinary search engine
into the script. In the script which outputs Fig. 5, we consult a search en-
gine with a keyword \Revolution 3D." Although it returns a number of links
concerning the keyword, we can sift the output by using the URLs of vir-
tual shops. For example, if http://twotop.exa.co.jp/tuhan/video.html is
included in the links from the search engine, we get to know that the TWO
TOP (twotop.exa.co.jp) carries \Revolution 3D" and that it is located at
http://twotop.exa.co.jp/tuhan/video.html. By incorporating a search en-
gine, we can reduce the length of script to about 200 lines.

6 http://www.systemworks.co.jp
7 http://www.dospara.co.jp
8 http://twotop.exa.co.jp



.............

.............

REFERENCE

.............

.............

.............

REFERENCE

Keywrods: hiv human

gbu:HIV1V3n10

..... ...

..... ...

REFERENCE
.............
.............
.............

.............

.............

REFERENCE

DBGET Search Result

gbu:HIV1V3n11

HIV1V3n10

HIV1V3n11

HIV1V3n10

HIV1V3n11

(a)

(b)

(c)

FEATURES

FEATURES

Fig. 3. Collecting reference information from GenBank.

2.5 Future Work

The MetaCommander is now downloadable from our WWW site9 and has been
applied to various purposes. Our future work on the MetaCommander is sum-
marized as follows.

Automatic script generation. The MetaCommander reduces the burden of
WWW information integration but developing scripts still remains as a tough
work especially for novice users. Now we have interest in automatic script
generation based on \demonstration-oriented user interface" (DoUI) [5] which
produces a script that mimics the user's operations on a WWW browser.

Sociability. In the future, more automated WWW access tools like the Meta-
Commander will be widely used, and this will make the tra�c in the Internet
increase rapidly. In the current Internet environment, sel�sh users can use
the resource (network bandwidth and servers) as much as they like. For
this issue, the sociability of agent would work e�ectively. For example, by
monitoring the load of network and servers, agents can selectively access less-
loaded servers, or schedule the access plans cooperating with the servers.

9 http://www.kdel.info.eng.osaka-cu.ac.jp/ mc/



Fig. 4. A WWW page obtained by executing the script in Fig. 2



Fig. 5. Collecting price information from virtual shops. The table consists of price
information about a PC graphic board \Revolution 3D" collected from three Japanese
virtual shops; SYSTEM WORKS, DOS/V Paradise, and TWO TOP, on the Internet.
Each line consists of the name of virtual shop, the speci�cation, and the price in Yen.



3 Personal WWW Information Integrator

The MetaCommander, in which a WWW information integration task has to be
described as a script, has following shortcomings.

{ When a WWW information integration task is complicated, the script also
becomes complicated and di�cult to be updated or modi�ed.

{ When the structure of WWW information source is updated, it may a�ect
the whole script.

{ It is not easy to share or reuse scripts among users.

To deal with the above shortcomings, we are developing a multiagentWWW
information integration system called Personal WWW Information Integrator
(PWII) where a WWW information integration task is viewed as a cooperative
task by multiple agents. PWII has the following features.

{ We agentize a WWW server on the Internet as an Information Agent which
is interoperable on a client machine. An Information Agent accesses aWWW
server, decomposes an obtained HTML document, and transforms it into a
structured data with semantic tags.

{ We introduce Task Agents which transform and synthesize data extracted
by Information Agents and Interface Agents which mediate between a user
and the system.

{ We introduce a GUI environment in which agents are integrated.

{ We make agents shareable among users and agent developers.

3.1 Components of PWII

We show the PWII which consists of Information Agents, Task Agents, and
Interface Agents in Fig. 6 [8]. Here we concisely describe each of them as follows.

Information Agent An Information Agent manages accesses to a WWW
server on the Internet and gives an interface to other agents. It accesses a WWW
server through the HTTP and obtains a HTML document. It then decomposes
the document into paragraphs and restructures them with semantic tags. To
represent this structured data, we plans to use XML (eXtensible Markup Lan-
guage). We call the output of Information Agent message.

A straight forward method to transform a HTML document to a XML doc-
ument is by hard coding using script or programming language, but it has draw-
backs such that the coding sometimes can be complicated and this method is
not robust against the structure change of WWW pages. Hence, we may be
able to adopt an approach by [4] which use a template to extract information
automatically.



WWW Resource

Task Agent

Task Agent

Interface
Agent

Client Machine

Information
Agent

WWW ResourceWWW Resource

Information
Agent

Information
Agent

Fig. 6. Components of PWII

Task Agent For WWW information integration to satisfy requests from a user,
we need to transform and synthesize messages from Information Agents. Because
requests are various and depend on users, a generic task agent, which performs
generic data transformation or synthesis such as relational operations of database
management system, may be useful since we can satisfy many requests by reusing
or replicating the generic agents.

Interface Agent An Interface Agent mediates between its user and other
agents. It receives parameters for WWW server access from its user and dis-
plays the result to the user or saves it in a �le.

3.2 Integration Network

A WWW information integration task is achieved through message exchange
among Information Agents, Task Agents, and Interface Agents.

Here we show an integration of search engines as an example scenario of
WWW information integration in Fig. 7. We assume query keywords are stored
in a �le. An Interface Agent (File Input) reads keywords from the �le and send
them to Information Agents (Search Engines A and B). Search Engine A sends
its output to Task Agent (Filtering) for message �ltering. The Task Agent passes
search results with score of 80% or more to another Task Agent (Union). Search
Engine B sends all the results to Union. Union compares both results and takes
ones which are included in both results and sends them to another Interface
Agent (File Output). The Interface Agent saves the result in a �le.



Search
Engine A

File Input

Union

File Output

(A)

(B)

(D)

(E)

Filtering

(F)

(C)

Search
Engine B

Fig. 7. Integration of Search Engines.

3.3 Agent Integration on GUI

In Fig. 8, we show our GUI system for agent integration. This GUI consists of a
canvas and buttons. We locate agents and links on the canvas, and can edit them
like a drawing tool. We can use buttons whose functions are shown in Table 2
to manipulate agents and links.

A most common manipulation is as follows. We choose agents from the pull-
down menu and locate them on the canvas. We then add links between agents to
specify the ow of data among agents. We can change the properties of an agent
if needed by using its property window which appears when we click the agent.
Fig. 9 shows the property window of search engine called goo10. The parameters
correspond to the original CGI of the search engine and we can change these
except KEYWORD which is set by other agent (input file) connected by a
link because $KEY means outer reference. This goo agent outputs the number of
hits (HITS) and the list of URL (RESULT) from the search engine and sends them
to filter agent.

Once we construct an integration network, we can execute the integration
task by pressing \VIEW." The execution starts from root agents of the message
ow tree. When an agent receives a message, it processes the message and send
result messages to other agents as it is speci�ed in the integration network. When
a leaf agent is an Interface Agent for �le access, the output is saved in a �le in
the HTML format, so we can see the result by using a WWW browser.

10 http://www.goo.ne.jp/



When we press \EXPORT," the system generates a MetaCommander script
whose operations are the same as that of the integration network on the canvas.

Fig. 8. GUI of Personal WWW Information Integrator.

Table 2. Functions of Buttons

Name Function
DELETE delete a speci�ed agent
ADD LNK add a link between two spedi�ed agents
DEL LNK delete a speci�ed link
VIEW display the result

EXPORT output MetaCommander script
QUIT quit
SAVE save the integration network
LOAD load a saved integration network

3.4 Implementation

We developed a PWII prototype as a Java application. In this prototype, an
agent is coded as a class, so we can share one among users easily by copying the
class from a client machine to another.



Fig. 9. Property window of goo agent.

4 Summary

In this paper, we introduced two systems MetaCommander and PWII for WWW
information integration. Currently, these systems work following a script or an
integration network speci�ed by a user. For our future study, we have interest
in making these agents autonomous and smart.

Acknowledgements

This work is partly supported by a Grant-in-Aid for Scienti�c Research on Pri-
ority Areas, \Genome Science," from the Ministry of Education, Science, Sports
and Culture of Japan.

References

1. Etzioni, O.: Moving up the information food chain: deploying softbots on the World
Wide Web. Proc. 13th National Conference on Arti�cial Intelligence (1996) 1322{
1326

2. Etzold, T., Argos, P.: SRS { an indexing and retrieval tool for at �le data libraries.
CABIOS, 9(1) (1993) 49{57

3. Fujibuchi, W., Goto, S., Migimatsu, H., Uchiyama, I., Ogiwara, A., Akiyama, Y.,
Kanehisa, M.: DBGET/LinkDB: an Integrated Database Retrieval System. Paci�c
Symp. Biocomputing 3 (1997) 683-694

4. Hsu, J. and Yih, W.: Template-based information mining from HTML documents.
Proceedings of 14th National Conference on Arti�cial Intelligence (1997) 256{262

5. Knoblock, C.A. et al.: Modeling web sources for information integration. Proc. 14th
National Conference on Arti�cial Intelligence (1997) 211{218

6. Selberg, E., Etzioni, O.: The MetaCrawler architecture for resource aggregation on
the web. IEEE Expert, 12(1) (1997) 11{14



7. Shakes, J., Langheinrich, M., Etzioni, O.: Dynamic reference sifting: a case study
in the homepage domain. Proceedings of 6th International World Wide Web Con-
ference (1997)

8. Sycara, K., Pannu, A., Williamson, M., Zeng, D., Decker, K.: Distributed Intelligent
Agents. IEEE Expert, 11(6) (1996) 36{45

9. Takagi, T.: Application of deductive databases to genome informatics. Journal of
Japanese Society for Arti�cial Intelligence 10(1) (1995) 17{23 (in Japanese)


