
記号処理

Prolog はデータとして,数値だけではなく,項を扱うことができる.

- 変数 (variable) は大文字または '_' ではじまる文字列である.
- 定数 (atom) は小文字ではじまる文字列である.
- 構造 (structure) は func($T_1, ..., T_n$) の形をしている. ただし, func はファンクタと呼ばれる演算子, $T_1, ..., T_n$ は項である.
- 項 (term, データオブジェクト) は変数か定数か構造である.

構造の木表現

注意:項はデータ,すなわち引数として扱うものなので,ゴールと混同しないこと. ゴールは $\operatorname{pred}(\ T_1,\dots,T_n\)$ の形をしている.ただし, pred は述語記号 (関係), $\operatorname{T}_1,\dots,\operatorname{T}_n$ は項である.

練習問題

1. 以下の文法 (\mathcal{G}_1) が定義されているとき , 与えられた表現が項 (Term) か否かを判定する $\mathrm{isTm}(\mathrm{X})$ のプログラムを作成せよ $\mathrm{.isTm}(\mathrm{f}(\mathrm{a}))$, $\mathrm{isTm}(\mathrm{f}(\mathrm{f}(\mathrm{b})))$ は成功し , $\mathrm{isTm}(\mathrm{c})$ は失敗することを確認せよ $\mathrm{.}\mathcal{G}_1$ はプログラムが対象とする言語であり , プログラミング言語 と混同しないように注意 .

 (\mathcal{G}_1)

```
Term ::= Alphabet | f(Term)
Alphabet ::= a | b
```

2. 以下の文法 (\mathcal{G}_2) が定義されているとき,与えられた表現が項 (Term) か否かを判定する isTerm(X) のプログラムを作成せよ.データ f(a), g(0,f(b)), f(c), g(a) について動作確認せよ.

 (\mathcal{G}_2)

```
Term ::= Alphabet | Digit | f(Term) | g(Term,Term)
Alphabet ::= a | b
Digit ::= 0 | 1
```

演習問題 (r6)

以下の問題ではテストデータが複雑な形なので,プログラム中に test(X):- substitute(f(g(0,f(1))),0,a,X).

などを定義するなど工夫せよ.

また,デバッグはこのような複雑なデータではなく,もっと単純なデータを使ってエラーの原因を特定すること.

- (1) 文法 \mathcal{G}_1 が定義されているとき,項 T1 に出現する a をすべて c に書き換えた結果が項 T2 であるような subst_atoc(T1,T2) のプログラムを作成せよ.たとえば,subst_atoc(f(f(a)),X) は X=f(f(c)) となって成功し,subst_atoc(f(f(b)),X) は X=f(f(b)) となって(書き換えなしで) 成功する.ただし,T1 には文法 \mathcal{G}_1 にかなったものしか入力されないものとする.
- (2) 文法 \mathcal{G}_2 が定義されているとき,項 T1 に出現するアトム a をすべて b に書き換え た結果が項 T2 であるような $\mathrm{subst_atob}(\mathrm{T1},\mathrm{T2})$ のプログラムを作成せよ.たとえば, $\mathrm{subst_atob}(\mathrm{f(g(1,f(a))}),\mathrm{X})$ は $\mathrm{X=f(g(1,f(b)))}$ となって成功する.ただし,T1 には文法 \mathcal{G}_2 にかなったものしか入力されないものとする.
- (3) 文法 \mathcal{G}_2 が定義されているとき , 与えられたアトム A , B に対して項 T1 に出現する A をすべて B に書き換えた結果が項 T2 であるような substitute(T1,A,B,T2) のプログラムを作成せよ.たとえば , substitute(f(g(0,f(1))),0,a,X) は X=f(g(a,f(1))) となって成功する.ただし , T1 には文法 \mathcal{G}_2 にかなったものしか入力されないものとする.
- (4) 文法 \mathcal{G}_2 が定義されているとき,与えられたアトム A が与えられた項 Term に出現する回数が C である関係を表す述語 $\operatorname{count_ocr}(A,\operatorname{Term},C)$ のプログラムを作成せよ. $\operatorname{count_ocr}(a,f(g(a,f(a))),C),\operatorname{count_ocr}(b,f(g(a,f(a))),C),\operatorname{count_ocr}(a,f(g(b,f(a))),C)$ についてそれぞれ動作確認せよ.ただし, $\operatorname{T1}$ には文法 G_2 にかなったものしか入力されないものとする.
- (5) 文法 \mathcal{G}_2 が定義されているとき , 与えられたアトム A が与えられた項 Term に出現するかどうかを判定する述語 ocr_check(A,Term) のプログラムを作成せよ . ocr_check のみを用いて (他 の 述 語 を 使 わ ず) 再帰 的 に 定 義 す る こ と . ocr_check(a,f(g(a,f(a)))), ocr_check(b,f(g(a,f(a)))), ocr_check(a,f(g(b,f(a)))) について動作確認せよ . ただし , T1 には文法 \mathcal{G}_2 にかなったものしか入力されないものとする .
- (6) 解答例 r5_5 についてレポートせよ.