
IEICE TRANS. FUNDAMENTALS, VOL. E84–A, NO. 6 JUNE 2001

1

LETTER

Register Constraint Analysis to Minimize Spill Code
for Application Specific DSPs

Tatsuo WATANABE†, Student Member and Nagisa ISHIURA†, Member

SUMMARY This letter presents a method which attempts
to minimize the number of spill codes to resolve usage conflicts
of distributed registers in application specific DSPs. It searches
for a set of ordering restrictions among operations which sequen-
tialize the lifetimes of the values residing in the same register as
much as possible. Experimental results show that the proposed
analysis method reduces the number of register spills into 28%.
key words: application specific DSP, spill code insertion, em-

bedded systems, scheduling, register constraint analysis

1. Introduction

Application specific embedded processors are recently
increasingly used in digital systems, for they provide
an advantageous trade-off between flexibility and cost.
Such processors often have irregular datapath struc-
tures containing distributed registers of small capacity,
instead of a central register file, aiming at increased
band width among functional units (Fig. 1). For those
datapaths, many of the compilation tasks such as bind-
ing and scheduling become computationally difficult.
Especially, in scheduling, reconciliation of usage con-
flicts of the distributed registers as well as the func-
tional units becomes a new challenge.

Mesman et al. [Mes98] proposed an efficient way
of solving the scheduling problem by introducing a reg-
ister constraint analysis before scheduling. However,
there is not always a feasible scheduling without regis-
ter conflict for a given DFG and binding. In that case, it
resort to recomputation of the binding, which requires
large computation time. On the other hand, the register
conflicts can be resolved by inserting spill codes. This
paper proposes a new register analysis method which
attempts to minimize the number of the register spills
necessary to avoid the register conflicts.

2. Scheduling and Register Constraint Analy-

sis

The scheduling problem is, given a DFG after bind-
ing (Fig. 2 (a)), to assign each nodes (operation) in
the DFG to a control step so that the total num-
ber of the control steps is as small as possible (Fig. 2

Manuscript received Oct. 4, 2000.

Manuscript received Dec. 22, 2000.
†The author is with the Graduate School of Engineering,

Osaka University.

ADD

MULTACC1

ADD

MULT

ROUND

SWITCH

SWITCH

RAM RAM

R0 R1 R2 R3

ACC2
ALU SHIFT

AGU

Fig. 1: G723.1 processor datapath.

Q S

P
a

Q

R
b

R S

P

RP

R
c

P

ALU1

ALU2

MUL

Q S

P
a

Q

R

b
R S

P

RP

R
c

P

ALU1

ALU2

MUL

Q S

P
a

Q

R

b
R S

P

RP

R
c

P

ALU1

ALU2

MUL

Q S

P
a

Q

R
b

R S

P

RP

R
c

P

ALU1

ALU2

MUL

(a) (b) (c) (d)

Fig. 2: Scheduling considering register conflicts.

(d)). For each operation node, the functional unit and
the read/write registers are determined in the binding
phase. In Fig. 2 (a), node a reads the data from register
P , computes with ALU1, Q, and writes the result into
register R. The same functional unit must not be used
more than once in the same control step (a resource
constraint), and a register, whose capacity is one, must
not be overwritten until its value is not referenced any
more.

The register constraints are difficult to deal with in
the distributed register architecture. In the scheduling
of Fig. 2 (a), neither (b) nor (c) satisfies the register
constraints and the only solution is to schedule a and b

into the same cycle ((d)). This type of scheduling is dif-
ficult to find by the conventional list-based algorithm.

The method of [Mes98] analyzes the given DFG
before list-based scheduling and converts the register
constraints into an equivalent set of new ordering edges.
In Fig. 3, suppose there are dependency edges from a



2
IEICE TRANS. FUNDAMENTALS, VOL. E84–A, NO. 6 JUNE 2001

R
a

R
b c

R

d
R

e
R

f
R

R
a

R
b c

R

d
R

e
R

f
R

0-edge

0-edge

R
a

R
b c

R

d
R

e
R

f
R

0-edge
0-edge

(a) (b) (c)

Fig. 3: 0-edges to sequentialize register usage.

Q
b

T

T

d
R T

T

T

P
c

T

R

a

Q
b

T

T

d
R T

T

T

P
c

T

R

T

T
LD

ST

a

(a) (b)

Fig. 4: Scheduling with spill code.

to d. In this case, execution of d must wait for the com-
pletion of b and c, otherwise d will destroy the content
of R before b and c read it. Thus the register conflict
is reduced into predecessor-successor relations between
nodes as shown in (b). We refer to this type of edge as
a 0-edge, which is different from data dependency edge
in that the 0-edge allows the simultaneous execution of
the two operations it connects.

The register constraint analysis is formulated as a
problem of finding a set of 0-edges that sequentialize
the usage of the same registers. This becomes a search
problem, because we must basically examine, for every
pair of nodes writing to the same register, the two pos-
sibilities of sequentializing the usage of the register, un-
less some sort of ordering is forced (as in Fig. 3). Search
fails if both of the two possible orderings of some node
pair are infeasible. The infeasibility of the ordering is
detected by finding a loop: In Fig. 3, ordering (b) is
feasible, but (c) is not because (c) contains a loop † .

3. Minimization of Register Spills

If the register analysis fails, [Mes98] resorted to the re-
computation of the binding, which was computation-
ally expensive and yet did not always yield a feasible
scheduling. On the other hand, register conflicts can be
settled by using spill codes. For example, no schedul-
ing can sequentialize the usage of register T in Fig. 4
(a), but insertion of ST and LD operation resolve the
conflict, as shown in Fig. 4 (b).

By the spill code insertion, we could generate a
feasible scheduling even if the analysis fails, but the
resulting code may be inefficient. Thus, we propose
an analysis method that attempts to find a set of 0-

†A loop consisting only of 0-edges are not invalid, if all
the nodes associated with the loop can be scheduled into
the same control step.

P={(o1, o2) | operation o1 and o2 write the same register}
Z=φ; nspill=0;
best Z=φ; best nspill=∞;
minspill(nspill, Z, P );

minspill(nspill,Z,P ){
if(P = φ){best nspill = nspill; best Z = Z;}
else if (nspill < best nspill){

if ((o1, o2) ∈ P s.t. R(Z, o1, o2) && !R(Z, o2, o1))
/* case 1 */
minspill(nspill,Z∪new 0edge(o1, o2), P − {(o1, o2)});

else if ((o1, o2) ∈ P s.t. !R(Z, o1, o2) && R(Z, o2, o1))
/* case 2 */
minspill(nspill,Z∪new 0edge(o2, o1), P − {(o1, o2)});

else if ((o1, o2) ∈ P s.t. R(Z, o1, o2) && R(Z, o2, o1)){
/* case 3 */
minspill(nspill,Z∪new 0edge(o1, o2), P − {(o1, o2)});
minspill(nspill,Z∪new 0edge(o2, o1), P − {(o1, o2)});

}
else minspill(nspill+1,Z,P − {(o1, o2)}); /* case 4 */

}
}

new 0edge(o1 , o2){
return the set of 0-edges sequentializing register usages of o1

and o2

}
R(Z, o1, o2){
return 1 if Z∪new 0edge(o1, o2) doesn’t form invalid loops
}

Fig. 5: The algorithm of proposed method

edges that leads to a scheduling with as few register
spills as possible. It basically attempts to find a fea-
sible solution. When the search encounters an invalid
situation, however, it does not backtrack at that point.
Instead, a failure count, which approximates the num-
ber of the necessary register spills, is increased by one
and the search is continued. When the search reaches
the bottom, the failure count and the set of 0-edges for
that configuration is recorded. Then search is contin-
ued, looking for other solutions with the smaller failure
count by backtracking.

Fig. 5 describes the algorithm. P is the set of all
the pairs of operations (o1, o2) where o1 and o2 write
to the same register. The resulting 0-edges are ac-
cumulated into set Z. “nspill” is the failure count.
“best nspill” and “best Z” memorize the “nspill” and
“Z”, respectively of the best solution found so far. Re-
cursive procedure “minspill” searches for the solution.
If the search reaches the bottom (P=φ), the best so-
lution is updated. R(Z, o1, o2) tests whether the or-
dering of o1 before o2 is possible. When only one of
R(Z, o1, o2) and R(Z, o2, o1) is 1 (“case 1” and “case
2”), new 0edge(o1, o2) or new 0edge(o2, o1) is invoked
to generate the 0-edges that sequentialize o1 and o2 in
this order. If the both orderings of o1 and o2 are
possible (“case 3”), we examine the two cases by re-
cursion. When neither R(Z, o1, o2) nor R(Z, o2, o1)
holds, we increment “nspill” and continue the search



LETTER

3

T
c

RT
i

TR
hg

T

R
d

R
b

f
R

j
T

e
R

T
a

nspill

d->bb->d

0 0

(b,d)

b->d d->bX X
1 1

(b,d)

(a,c)

a->c c->a

(a) (b)

T
c

RT
i

TR
hg

T

R
d

R
b

f
R

j
T

e
R

T
a

RT
i

f
R

j
T

e
R

T
a

R
b

T
c

R
d

TR
h

g
T

ST
R

LD
R

(c) (d)

T
c

RT
i

TR
hg

T

R
d

R
b

f
R

j
T

e
R

T
a

T
c

RT
i

TR
hg

T

R
d

R
b

f
R

j
T

e
R

T
a

(e) (f)

j
T

g
T

T
c

T
a

RT
if

R

R
de

R TR
h

R
b

(g)

Fig. 6: Example of the algorithm.

while nspill<best nspill. The computational complex-
ity of this algorithm is inherently exponential.

Fig. 6 shows an example. Fig. 6 (a) is a
given DFG where P={(a, c), (b, d)}. We must de-
termine the ordering of (a, c) and (b, d). Since all
of R(Z, a, c), R(Z, c, a), R(Z, b, d), and R(Z, d, b) are 1,
“minspill” will examine the “case 3”. Fig. 6 (b) il-
lustrates the search tree. Firstly, the case where a

is executed before c (“a−>c” in Fig. 6 (b)) is exam-
ined and new 0edge(a, c)={(g, c)} is added to the DFG

(Fig. 6 (c)). Then, “minspill” is called recursively with
Z={(g, c)} and P={(b, d)} to determine the ordering
of b and d. Now that both R(Z, b, d) and R(Z, d, b)
have become 0 by the addition of 0-edge (g, c), nei-
ther branch “b−> d” nor “d−> b” is possible. If we
try to force “b−>d” (“d−> b”), 0-edge (h, d) (0-edge
(i, b)) will create a loop, respectively. Since this implies
that the usage of register R by b and d cannot be se-
quentialized and we must resort to spill code insertion,
we increment the failure count “nspill”. The search
reaches the bottom and the set of 0-edges in Fig. 6
(c) becomes the first feasible solution with nspill=1.
Fig. 6 (d) is the result of a list-based scheduling for
this solution, where a pair of store (ST) and load (LD)
is inserted to resolve the usage conflict of register R

between b and d. The search is continued for better
solutions on the case of “c−>a” by backtracking. In
this case, new 0edge(c, a)={(h, a), (i, a), (j, a)} are in-
serted into the DFG (Fig. 6 (e)). This time, both of
R(Z, b, d) and R(Z, d, b) remain 1. If we select “b−>d”,
new 0edge(b, d)={(e, d), (h, d)} is added (Fig. 6 (f)).
Since nspill=0, we can schedule the DFG without spill
codes (Fig. 6 (g)).

We assume that the number of clock cycles to spill
and to reload the register from/to RAMs may be differ-
ent from register to register. In the datapath of Fig. 1,
for example, storing of data for R0–R3 and reloading of
all the registers takes one cycle but two cycle for storing
of ACC1 and ACC2. With a view to decreasing the to-
tal number of the clock cycles for the spill codes, we sort
the pairs of operations in P by the number of the clock
cycles to spill and reload the register. In the search
procedure, pairs of larger costs are processed first, so
that write conflicts on registers with larger costs are re-
solved in earlier stage of the search and the spills may
happen on registers with smaller costs.

4. Experimental Result

A register constraint analysis program has been imple-
mented on an Ultra-80 workstation (450 MHz) in C++
language. The target is a DSP dedicated to G723.1
speech codec [Oku98]. Source programs are decom-
posed into basic blocks (sequences of operations with-
out branches), each of which is converted into a DFG.
The binding is computed by the method in [Ish00], and
list-based scheduling and spill code insertion are per-
formed after the register analysis.

Table 1 shows the result for various sizes of basic
blocks. The columns “DFG #n” is the size of the DFG
after binding in terms of the number of nodes. The
columns “without analysis” shows the compilation re-
sults without any register analysis, where “#spill/#cs”
are the number of the spill codes and the total number
of the clock cycles (original operation and spill codes),
and “CPU” is the computation time for analysis and
scheduling. The columns “with analysis” shows the



4
IEICE TRANS. FUNDAMENTALS, VOL. E84–A, NO. 6 JUNE 2001

Table 1: Experimental results I.

BB DFG
without analysis with analysis with analysis (+register ordering)

#n #spill/#cs
CPU

#spill/#cs(#0-e)
CPU

#spill/#cs(#0-e)
CPU

(sec) (sec) (sec)
Par2Ser BB 29 5/24 0.15 2/16 (8) 0.16 2/16 (10) 0.16
Init Vad BB 32 7/28 0.18 2/21 (13) 0.22 2/19 (13) 0.20
Init Decod BB 41 12/42 0.15 4/31 (14) 0.23 2/25 (16) 0.33
Ser2Par BB 53 11/45 0.28 9/45 (23) 0.98 5/33 (25) 0.75
Dec Sidgain BB 88 24/97 0.52 12/71 (47) 1.82 5/54 (51) 1.22
Comp En BB 91 26/98 0.74 10/61 (37) 1.84 6/55 (45) 1.33
Rem Dc BB 104 31/127 1.09 16/90 (52) 3.76 13/78 (52) 2.19
Filt Pw BB 208 71/293 1.58 25/237 (141) 33.08 21/213 (141) 8.83

Table 2: Experimental results II.

function
size previous method proposed method

#BB #n #BB ok #spill/#cs CPU (sec) #spill/#cs CPU (sec)
Wght Lpc.c 9 423 2 97/386 2.98 29/270 3.70
Gen Trn.c 15 483 9 68/371 3.32 22/297 3.74
Error Wght.c 18 825 10 141/726 5.94 46/597 7.66
Upd Ring.c 21 1229 6 295/1196 9.14 84/882 17.16

compilation results with the register analysis without
register ordering and the columns “with analysis (+reg-
ister ordering)” is that considering register ordering.
“#0-e” indicates the number of the 0-edges introduced
by the analysis. The number of the spills is signifi-
cantly reduced by our register constraint analysis and
the resulting number of the control steps is also reduced.
With register ordering, the number of the spills and the
clock cycles are further reduced.

Table 2 shows a simple comparison with the pre-
vious method. This time, functions each of which con-
sists of multiple basic blocks are compiled. “#BB” and
“#n” are the number of the basic blocks and the num-
ber of the nodes in the function. “#BB ok” shows the
number of the basic blocks for which previous method
successfully found the solution. If the analysis failed
for a basic block, register conflicts are resolved by spill
code insertion. The number of the spills and the num-
ber of the control steps are significantly reduced by our
method. Our program successfully finished the analy-
sis for DFGs consisting of as much as 1229 nodes in a
practical amount of CPU time.

5. Conclusion

We have presented a register constraint analysis method
which attempts to minimize the register spills to resolve

register conflicts. With the analysis, the number of the
register spills and the total number of the clock cycles
to execute the program are significantly reduced.

Acknowledgment

The authors would like to thank Prof. Isao Shirakawa
of Osaka University for his support and advice on this
research. We would like to thank Dr. Masayuki Yam-
aguchi, Mr. Mizuki Takahashi, Dr. Hiroyuki Okuhata,
and Mr. Sinya Hashimoto for their discussion and con-

structive comments.

References

[Mes98] B. Mesman, M. Strik, A. H. Timmer, J. L. van Meer-
bergen, and J. A. G. Jess: “A Constraint Driven Approach
to Loop Pipelining and Register Binding,” in Proc. IEEE

DATE, pp. 377–383 (Feb. 1998).
[Ish00] N. Ishiura, T. Watanabe and M. Yamaguchi: “A Code

Generation Method for Datapath Oriented Application
Specific Processor Design,” in Proc. SASIMI 2000, pp. 71–
78 (Apr. 2000).

[Oku98] H. Okuhata, Morgan H. Miki, T. Onoye, I. Shirakawa:
“A Low-Power DSP Core Architecture for Low Bitrate
Speech Codec,” in IEICE Trans. Fundamentals, vol. E81-C,
pp. 1616–1621, (Aug. 1998).


