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Abstract—This paper proposes a method for exhaustive search
of efficient FPGA implementations of generalized parallel coun-
ters (GPCs) that have not yet been discovered. Multi-input
addition is the core operation in multiplier circuits and multiply-
accumulate circuits. A known method to construct efficient multi-
input adders on FPGAs involves building trees of full adders
extended into GPCs. To date, three types of GPCs that can
be implemented in a single slice of Xilinx 7 series have been
identified. This paper attempts to find other GPCs that can be
implemented in a single slice exhaustively. We enumerate possible
GPC input-output specifications with output of five bits or less
and determine the connections from inputs to LUTs and the truth
tables of LUTs if they exist. Running the proposed search method
resulted in the discovery of five new GPCs: (1,2,6;4), (4,2,5;5),
(1,2,4,4;5), (1,3,1,6;5), and (1,3,3,4;5). Furthermore, using these
GPCs to construct multiplier circuits and multi-input adder
circuits resulted in a reduction in the number of slices for two
circuits and the number of stages for two other circuits.

Index Terms—Digital Arithmetic, FPGA, Compressor Tree,
Generalized Parallel Counter

I. INTRODUCTION

Multi-input adder circuits have long been used in var-
ious arithmetic circuits, such as multipliers and multiply-
accumulate units [1] [2]. Recently, they have become increas-
ingly important as core components for hardware acceleration
of neural networks [3].

For efficient implementation of multi-input adders, classical
methods include carry-save adder trees using 3-input 2-output
full adders [1] [2] and trees of redundant binary adders [4].
These methods enable the addition of n integers of n bits with
a latency of O(log n) stages.

These methods assume circuit components are full adders.
However, on LUT (Look-Up Table) based FPGAs, circuits
using 3-input 2-output full adders may not efficiently utilize
5 to 6-input LUTs.

Thus, for FPGA implementation of multi-input adders,
extended adders like 6-input 3-output, or further extended
ones allowing inputs with weights of powers of 2, are used.
These adders are called generalized parallel counters (GPCs),
and trees of GPCs for multi-input addition are known as
compressor trees [5] [7] [8] [9] [10]. While the number of
stages is still O(log n), compressor trees generally result in
smaller delays and sizes on FPGAs compared to those based
on full adders.

Various GPCs have been designed to match FPGA archi-
tecture. Particularly for FPGAs with embedded carry look-
ahead circuits (carry logic), it is important to utilize these
features. Additionally, in FPGAs where a ”slice” or ”logic
block” consisting of several LUTs and carry logic is a design
unit. Fitting a GPC into a single slice would enhance overall
FPGA efficiency.

For Xilinx 7 series FPGAs, three types of GPCs can be
implemented in a single slice [8] [10], and 21 variations
from these are used in compressor trees. However, these were
designed heuristically, and it was unknown if other GPCs
could be implemented in a single slice.

This paper aims to discover more efficient GPCs by ex-
haustively exploring those that can be implemented in a single
slice. We determine whether input connections to LUTs and
LUT truth tables exist for all input-output specifications of
GPCs with up to 5-bit outputs.

Using the proposed method, we discovered five new GPCs
that can be implemented in a single slice. Constructing com-
pressor trees for 8 to 32-bit multipliers and multi-input adders
with these GPCs confirmed that they help reduce circuit size
and delay.

II. FPGA IMPLEMENTATION OF GENERALIZED PARALLEL
COUNTERS

A. LUT-Based FPGA

Look-up Table (LUT) based field-programmable gate ar-
rays (FPGAs) construct logic circuits using LUTs and pro-
grammable interconnects. LUTs function as logic gates that
implement any logical function by storing truth tables in mem-
ory. Additionally, some FPGAs have embedded carry look-
ahead logic (carry logic) for efficient addition and subtraction.

This paper assumes an FPGA model of the Xilinx 7 series
[11] shown in Fig. 1. A ”slice” in these FPGAs consists of four
6-input, 2-output LUTs and a 4-bit carry logic (CARRY4).
Each LUT output is connected to the carry generation signal
gk and propagation signal pk of the CARRY4.

The LUT consists of two truth table memories and a
multiplexer, as shown in Fig. 1b. Each truth table memory
can implement any 5-input logical function. When the input
to port I5 is set to 1, the LUT computes any 5-input, 2-output
function. When I5 is used as a variable, the p output can realize
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Fig. 1: Model of LUT-based FPGA

any 6-input function, and the g output realizes the logical
function of p with I5 fixed to 0.

B. Generalized Parallel Counter

Efficient methods for constructing multi-input adder circuits
include Wallace trees [1] and Dadda trees [2], which use 3-
input 2-output full adders as the basic element. However, for
FPGA implementations, trees of full adders do not fit well into
5 to 6 input LUTs and fail to utilize carry logic effectively,
resulting in inefficiency.

To address this, adders extended to 6-input, 3-output config-
urations or those allowing weights of powers of 2 in addition
to weight 1 have been proposed. These extended adders are
called generalized parallel counters (GPCs), and trees using
GPCs are known as compressor trees.

The input-output specifications of a GPC are represented as
(pq−2, pq−3, . . . , p0; q). This circuit outputs the sum of pk bits
with a weight of 2k as a q-bit value. For example, a full adder
(3;2) has three inputs of weight 1 and outputs their sum as a
2-bit value. Similarly, (1,3,5;4) has inputs of weights 1, 2, and
4, with 5, 3, and 1 inputs respectively, and outputs their sum
as a 4-bit value.

For the FPGA model in Fig. 1, efforts are being made to find
GPCs that can be implemented in one slice. So far, three GPC
designs (1,1,7;4) [10], (1,3,5;4) [10], and (1,3,2,5;5) [8] are
known. These GPCs, along with reduced input-output versions
and their combinations, result in 21 types used in compressor
trees [6] [7] [8] [9] [10] [12].

Compressor trees using these GPCs as basic elements are
more complex than those based on full adders. To build
compressor trees with fewer stages and reduced sizes, various
methods have been proposed, which includes formulations for
integer linear programming and heuristic algorithms [5] [8]
[9] [10].
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Fig. 2: GPC (1,3,2,5;5) [8]

III. ENUMERATION OF GPCS

A. GPC Enumeration Problem and Algorithm Outline

The GPCs mentioned in the previous section were discov-
ered heuristically, and there is no guarantee that they represent
all possible configurations. In this paper, we aim to discover
more efficient GPCs by addressing the problem of finding all
GPCs that can be implemented within a single slice in the
FPGA model discussed in the previous chapter.

We enumerate all GPC specifications with outputs of q bits
where q ≤ 5 ( 1⃝ in Fig. 2) and determine the implementability
of each. First, we enumerate all possible ways to connect the
inputs to the LUTs ( 2⃝), and for each configuration, we check
whether there exists an assignment of the LUT truth tables
that yields the desired GPC output ( 3⃝).

B. Enumeration of GPC Specifications

We generate all GPC specifications of the
form (pq−2, pq−3, . . . , p0; q) where q ≤ 5 and
2q−1 ≤

∑3
k=0 2

kpk < 2q . The generation conducts in
lexicographical order, starting from (0, 0, 0, 0; 0), (0, 0, 0, 1; 1),
. . . , (0, 0, 0, 7; 3), (0, 0, 1, 0; 2), . . . , up to (3, 1, 1, 1; 5).

Here, we refer to the k-th LUT from the right as the LUT
for the k-th digit, denoted as LUTk. To reflect the value of
the input at the k-th digit in the output of the k-th digit,
all inputs for the k-th digit must be connected to LUTk, as
shown in Fig. 2. Since the maximum number of inputs for the
LUTs considered in this paper is 6, it is generally sufficient
to consider a maximum of 6 inputs for each digit pk of a
GPC. However, as shown by the input s00 in Fig. 2, the ”cin”
input of the carry chain allows an additional input in the
least significant digit. Additionally, by splitting the GPCs, as
described in the next section, it is possible to handle up to
7 inputs even in digits other than the least significant digit.
Therefore, in this paper, we generate GPC specifications for
each digit k within the range 0 ≤ pk ≤ 7.

C. Splitting of GPCs

GPCs can sometimes be split, and determining the feasibil-
ity of each can significantly reduce the computational cost of
subsequent processes. Additionally, splitting the GPC allows
the ”cin” input to be used in digits beyond the least significant
place, enabling pk to be set to 7.
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Fig. 3: Splitting GPC

When the carry from the k-th to the (k + 1)-th digit is
at most 1, it can propagate using only the carry logic. Such
a GPC can be divided into two parts at the k-th digit. For
example, the GPC (6,0,7;5) has a maximum carry of 1 from
the second to the third digit, so it can be split into two (7;3)
GPCs, as shown in Fig. 3a.

If no carry occurs from the k-th to the (k+1)-th digit, a split
using the unused ”cin” input can be made. For example, in the
GPC (7,0,3;5) in Fig. 3b, no carry occurs from the second to
the third digit. Splitting between these digits allows the unused
”cin” to provide an input to the second digit, increasing the
maximum inputs for the third digit to 7.

D. Enumeration of Connections from Inputs and LUTs

For the GPC specifications obtained in the previous section,
we enumerate all possible connections from inputs to LUTs
( 2⃝ in Fig. 2). In this process, we first treat all input ports
of the LUTs as symmetric, and at the end of this section, we
discuss the handling of asymmetric ports.

As shown in Fig. 2, using the ”cin” input of the carry logic
always allows for one additional input in the least significant
digit. Therefore, in this section, we exclude this one input and
only process the cases where all digits k satisfy pk ≤ 6.

Let Sk be the set of inputs for the k-th digit of GPC
(p3, p2, p1, p0; q). In the example shown in Fig. 2, S0 =
{s40, s30, s20, s10, s00}, S1 = {s11, s01}, S2 = {s22, s12, s02}, and
S3 = {s03}. Let Lk be the set of inputs assigned to the
k-th digit’s LUT (LUTk). In Fig. 2, L0 = {s40, s30, s20, s10},
L1 = {s11, s01, s30, s20, s10}, L2 = {s22, s12, s02, s11, s01}, and
L3 = {s03, s22, s12, s02}. We enumerate all possible combinations
(L3, L2, L1, L0) that satisfy the following conditions:

• |Lk| ≤ 6: The number of LUT inputs is at most 6.
• Sk ⊆ Lk: All inputs of the k-th digit of the GPC are

connected to the k-th digit’s LUT.
• Lk ⊆ Sk ∪Sk−1 ∪ . . .∪S0: The inputs to the k-th digit’s

LUT are only from the inputs of the GPC up to the k-th
digit.

To generate the combinations (L3, L2, L1, L0), we deter-
mine Lk in ascending order of k.

When k = 0, there are no lower digits, so L0 = S0.
For k > 0, starting with Lk = Sk, we try all possible

assignments for the remaining ports of LUTk.
In this process, we reduce the number of combinations by

using input symmetry. Let ST
k denote the set of elements from
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Fig. 4: Input group partitioning for assigning inputs to LUTs

Sk that are inputs to the set of LUTs T . For example, S{0,1,2}
0

represents the elements of S0 that are inputs only to LUT0,
LUT1, and LUT2. The inputs contained in ST

k are symmetric
with respect to the outputs of the LUTs, so there is no need
to distinguish between them.

An example of input assignment is shown in Fig. 4. In
the initial state (Fig. 4a), S{0}

0 = S0 = {s30, s20, s10, s00} and
S
{1}
1 = S1 = {s01}. When connecting three inputs from S0 to

LUT1, there is only one way to choose 3 inputs because the
elements within S

{0}
0 are indistinguishable. As a result of this

connection, S{0}
0 is split into S

{0}
0 and S

{0,1}
0 (Fig. 4b).

The inputs connected to LUT2 are selected from among
S
{1}
1 , S

{0}
0 , and S

{0,1}
0 . Since the inputs within S

{0,1}
0 are

symmetric, there is no need to distinguish between them.
When connecting 6 inputs to an LUT (using the I5 port in

Fig. 1b), one port is not symmetric. To handle this, we first
assign all 6 inputs and then determine which input will be
connected to the asymmetric port. The group is then split for
the selected input, and the same process is applied.

E. Determination of LUT Truth Tables

Given a GPC input-output specification (p3, p2, p1, p0; q)
and the connections to the LUTs (L3, L2, L1, L0), we de-
termine whether there exists a truth table for the LUTs that
realizes such a GPC ( 3⃝ in Fig. 2).

This is done by determining the output values pk and gk
for each LUTk so that the desired output values are obtained
for all possible input values to the GPC. Note that there can
be multiple combinations of LUT output values that achieve
a given GPC output. This multiplicity is a result of the
logic implementation of the carry logic in the FPGA model.
Also note that inconsistencies may arise in the outputs of
some LUTs for certain inputs. In such cases, some of the
combinations may need to be eliminated.

For example, in Fig. 5, when the input is (0, 0, 0, 1, 1)
as shown in 1⃝, there are three possible combinations for
(p1, g1, p0, g0) to produce the output (0, 1, 0): (0, 0, 0, 1),
(1, 0, 0, 0), and (1, 1, 0, 0).

Some of the candidates may not be feasible due to the
constraints of the given LUT connections, and such infeasible
candidates are removed. In Fig. 5, 2⃝ shows the case when the
input is (0, 0, 0, 1, 0). The framed input to LUT1 is (0, 0, 0, 1)
in both 1⃝ and 2⃝, so LUT1 must output the same value for
both inputs. Consequently, the outputs (1, 0) and (1, 1) are
eliminated from the candidates, leaving only (0, 0) as a valid
output for this input.
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TABLE I: Set of GPCs used for experiments
(1;1) (1,3,5;4) (1,3,4,3;5) (2,1,3,5;5) (1,4,0,6;5) (1,4,1,5;5)

(1,4,2,3;5) (1,5;3) (2,1,5;4) (1,1,7;4) (2,1,1,6;5) (1,1,6,3;5)
(3;2) (2,3;3) (2,2,3;4) (2,2,2,3;5) (7;3) (2,0,7;4)

(6,0,6;5) (6,1,5;5) (6,2,3;5) (1,3,2,5;5)
(7,0,3;5) (1,2,6;5) (2,1,2,6;5) (1,2,5,3;5) (4,3,5;5) (4,4;4)

(1,2,4,4;5) (1,3,1,6;5) (1,3,3,4;5)

When using the asymmetric input of the LUT (I5 in Fig. 1b),
additional constraints are imposed on the LUT truth table.
When I5 = 0, the p output must use the same truth table
memory as the g output, which requires that p = q. Candidates
are eliminated based on this constraint.

After these operations, if there is at least one candidate for
the output values of the LUT for each input value of the GPC,
then a valid truth table can be defined. Otherwise, the GPC
cannot be realized with that LUT connection.

IV. EXPERIMENTAL RESULT

The GPC search program based on the proposed method
has been implemented in Rust1. The search took about 100
seconds on a single thread of a Ryzen 7 PRO 6850U processor.

As a result, five new GPCs were discovered that can be
implemented in one slice of the Xilinx 7 series: (1,2,6;4),
(4,2,5;5), (1,2,4,4;5), (1,3,1,6;5), and (1,3,3,4;5). Fig. 6 shows
the implementations of these GPCs.

Using the discovered GPCs, we constructed GPC trees for
n-bit multipliers and circuits adding n integers of n bits. The
GPCs used are listed in Table I. The upper part lists existing
GPCs, and the lower part shows the newly discovered GPCs
and their weaker variants. Using the formulation by [9], a
tree optimization program was run on 24 threads of a Ryzen
9 3900X processor using IBM ILOG CPLEX Optimization
Studio 22.1.0 with a time limit of 7,200 seconds.

Table II summarizes the results. The left side shows the
multipliers and the right side the squares. The number of
slices was reduced in the 13-bit multiplier and the 11× 11-bit
addition. Additionally, the number of stages was reduced in
the 23× 23-bit addition and the 26-bit multiplier.

V. CONCLUSION

This paper has proposed a method for enumerating GPCs
implementable with a single slice of an FPGA. By this method,

1Implementation: https://github.com/ishiuralab/advgpcgen-rs
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Fig. 6: Implementation of discovered GPCs

TABLE II: Synthesis result of multi-input adders (”✓” repre-
sents optimum)

n-bit multiplier addition of n integers of n bits
conventional proposed conventional proposed

n stage slice stage slice stage slice stage slice
11 ✓2 ✓14 ✓2 ✓14 ✓3 ✓15 ✓3 ✓14
13 ✓3 ✓20 ✓3 ✓19 ✓3 ✓21 ✓3 ✓21
23 ✓3 72 ✓3 71 4 71 ✓3 75
26 4 91 ✓3 94 ✓4 94 ✓4 93

we have discovered five GPCs that were previously unknown.
Constructing multi-input adders with these GPCs confirmed
their contribution to reducing circuit size and delay.

A future challenge is to extend the proposed method to
FPGA models other than the Xilinx 7 series.
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