
Native Code Level Test of Optimizing Performance of Android Compilers

Naoki YOSHIDA †,∗ Toya HAMADA † Nagisa ISHIURA ††

† Graduate School of Science and Technology †† School of Engineering
Kwansei Gakuin University

1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, JAPAN

Abstract— In this paper, we introduce a technique for assess-
ing the optimization performance of the Android DEX compiler
at the level of native code. This method is designed to detect
missed optimization in native codes generated by the Android
runtime environment through random generation of Java pro-
grams. The detection of optimization deficiencies is performed
using both differential method and equivalent program methods.
In the differential method tests, we attempt to identify missed
optimization by comparing the native code produced by newer
and older versions of DEX compilers. In the equivalent program
method, we aim to identify missed optimizations by comparing
the native codes generated by a DEX compiler from both opti-
mized and unoptimized source programs. The Random Java pro-
grams are generated from a modified version of Orange4, which
were originally developted for generating C programs. The test
systems, employing the proposed methods, effectively identified
insufficient optimization in x86 64 native code generated by the
d8 DEX compiler.

I. Introduction

Android1 is an open-source operating system designed for
mobile devices, and its utilization has been steadily on the
rise in recent years. Android finds extensive application across
various portable devices, including smartphones, which under-
scores the pressing need for improving its performance.

To tackle this challenge, continuous enhancements are be-
ing made to Android’s compilers and runtime systems. As an
alternative to the long-standing Dalvik virtual machine, An-
droid adopted ART (Android Runtime) [1]. ART is based on
Ahead-Of-Time (AOT) compilation, which precompiles parts
of the code into native code. Consequently, it delivers superior
runtime performance compared to Dalvik.

Alongside these developments, ensuring the reliability of
these components through comprehensive testing is also a cru-
cial task. In the context of testing Android’s runtime, [2, 3, 4]
have conducted testing of ART by generating random byte-
codes. However, these tests primarily focus on error detection
within the runtime systems and do not specifically address per-
formance testing.

In contrast, this paper introduces a novel approach for eval-
uating the performance of Android’s compilers and runtime.
Our method aims to identify optimization shortcomings in both
the DEX compiler and the AOT compiler in Android Runtime

*Currently with NSW Inc., Japan.
1https://source.android.com (accessed 2023-9-20)

(ART). Identification of optimization deficiencies is carried out
based on both differential testing [5, 6] and equivalence testing
[7]. Class files compiled from randomely generated Java pro-
grams are used as test inputs. We detect the missed optimiza-
tion by by analyzing the native code generated by the AOT
compiler.

The experimental results with two test systems based on the
proposed method have identified optimization deficiencies in
the x86 64 native code produced by the DEX compiler d8 and
ART.

II. Random testing of android processors and compiler
optimizations

A. DEX compiler and Android virtual machine ART

The Android processing system is depicted in Fig. 1. First, a
program undergoes compilation using either the Java or Kotlin
compiler, resulting in the creation of a class file. Subsequently,
the DEX compiler (dx or d8) processes the class file, producing
a DEX file that encapsulates bytecode for Android’s runtime
environment, referred to as ART [1].

The virtual machine (VM) in ART executes bytecode
through interpretation, but for performance improvement, a
portion of the code is converted into native code by a backend
compiler and executed directly by the processor. This compi-
lation process is performed ahead of time (AOT) during app
installation, not Just-In-Time (JIT).

Both DEX compilers, dx and d8, perform bytecode-level
optimizations. Among them, d8 is the latest compiler, and it
is known to exhibit equivalent or better runtime performance
compared to dx. Additionally, d8 has shorter compilation
times and generates smaller DEX files compared to dx.

ART takes the received DEX files and converts them into
executable ELF format files called OAT files using dex2oat.
Before compilation, dex2oat verifies the validity of the DEX
files through verification and then extracts portions for compi-
lation from bytecode through filtering.

In other words, dex2oat compiles only those methods that
meet specific conditions, such as a certain method size (e.g.,
the number of instructions or maximum register numbers).

The backend compiler transforms the bytecode’s selected
portions into intermediate representation (IR) for optimization,
and from IR, it generates native code. Finally, dex2oat adds
the native code to the original DEX file’s contents to create the
OAT file.

SASIMI 2024 ProceedingsR3-3

- 181 -

Fig. 1. DEX compiler and Android run time environment [4]

(a) Differential method (b) Equivalent program method

Fig. 2. Methods for testing compiler optimization [5]

B. Random testing of compiler optimization

There are two distinct methods to assess the optimization
performance of compilers: the differential method [5, 6] and
the equivalent program method [7].

The differential method attempts to find optimization defi-
ciencies in compilers by contrasting the outputs of two differ-
ent compilers. The test procedure is illustrated in Fig. 2 (a).
A test program org.c is compiled by distinct compilers (or
different versions of the same compiler), compilerA and com-
pilerB. The generated assembly codes denoted as orgA.s and
orgB.s are then compared to identify optimization shortcom-
ings, if any, in either of the compilers.

On the other hand, the equivalent program method tests a
compiler using a pair of test programs which are functionally
equivalent. In Fig. 2 (b), org.c and opt.c are the test pro-
grams, where opt.c is derived from org.c by applying an-
ticipated optimization at the source code level. By comparing
the assembly codes org.s and opt.s generated from them,
optimization shortcomings are identified.

In terms of test programs for performance assessment, it is
common to use benchmark programs or manually crafted test
programs. However, for comprehensive testing, it is essential
to utilize a large volume of test programs obtained through au-
tomatic generation.

In the context of automatic random generation of programs
for compiler testing, a crucial challenge is how to avoid unde-
fined behavior, such as division by zero, overflow, and infinite
loops, all of which are tied to the dynamic behavior of these
programs.

In the case of C program generation, tools like Csmith [8]
achieve this by inserting guards to avoid undefined behavior.
This approach facilitates the creation of programs that span a
broad spectrum of C language syntax, but the forms of expres-
sions or statements are limited.

In contrast, Orange4, as described in [9], guarantees the

01: #include <stdio.h>
02: #include <stdarg.h>
03: #define OK() printf("@OK@\n")
04: #define NG(test,fmt,val) printf("@NG@ (test = " fmt ")\n",val)
05:
06: static volatile unsigned short x86 = 3U;
07: const signed short x88 = 386;
08: static volatile unsigned short t0 = 2428U;
09: volatile unsigned long long t1 = 2LLU;
10: static volatile signed char t3 = 9;
11: volatile signed char x92 = 115;
12:
13: int main (void)
14: {
15: static const unsigned char x33 = 1U;
16: static const volatile signed long long x41 = -1LL;
17: volatile unsigned char x52 = 5U;
18: const volatile unsigned char x65 = 38U;
19: static signed long long x77 = 0LL;
20: volatile signed int x87 = 511;
21: const volatile signed long x89 = 2029215198009L;
22: const volatile unsigned int x90 = 140U;
23: volatile unsigned short t2 = 6570U;
24: const unsigned long long x91 = 1255744988028LLU;
25: static volatile unsigned long t4 = 1404136965112782LU;
26: static volatile signed char t5 = 17;
27:
28: t0 = ((unsigned short)(((signed int)x87)&((signed short)x88)));
29: t1 = ((unsigned long)(((signed long)x89)*((signed long long)x33));
30: t2 = ((unsigned short)(((unsigned int)x90)<<(((signed char)x77))));
31: if(((signed char)(((unsigned short)x86)*((signed int)x41)))) {
32: t3 = ((signed char)(((unsigned long)x77)<<((signed long)x52)));
33: t4 = ((unsigned long)(((signed char)t3)|((unsigned long)x91)));
34: }
35: t5 = ((signed char)(((signed char)x92)%((signed char)x65)));
36:
37: if (t0 == 386U) { OK(); } else { NG("t0", "%hu", t0); }
38: if (t1 == 2029215198009LLU) { OK(); } else { NG("t1", "%llu", t1);}
39: if (t2 == 140U) { OK(); } else { NG("t2", "%hu", t2); }
40: if (t3 == 0) { OK(); } else { NG("t3", "%hhd", t3); }
41: if (t4 == 1255744988028LU) { OK(); } else { NG("t4", "%lu", t4); }
42: if (t5 == 1) { OK(); } else { NG("t5", "%hhd", t5); }
43:
44: return 0;
45: }

Fig. 3. Test program generated by Orange4 [9]

elimination of undefined behavior through the utilization of
data structures that consistently track values for all variables
and expressions within the generated program. While this ap-
proach may impose certain restrictions on program syntax, it
empowers Orange4 to generate a wide array of expressions,
characterized by both diversity and length.

Fig. 3 provides an example of a test program generated by
Orange4. Lines 6–26 declare variables, lines 28–35 contain
statements with arithmetic expressions and control flow, and
lines 37–42 involve statements for checking computed results.

III. Random testing of Android compiler optimization based
on native code comparison

A. Outline

This paper proposes novel random testing techniques de-
signed to assess the optimization performance of the Android
DEX compiler. The evaluation of the DEX compiler’s opti-
mization performance is based on the quality of the native code
generated within dex2oat. Please note note that this evaluation
takes place at the native code level, as the ultimate performance
outcome is dictated by the execution of native code within the
runtime environment, rather than the bytecode generated by
the DEX compiler.

We present two distinct methods for performance testing,
which are based on the differential method and the equivalent
program method. The differential method involves comparing
the native code outputs derived from the same Java program
using two different DEX compilers. On the other hand, the
equivalent program method revolves around the comparison
of native code generated by a single compiler from two Java
programs that are functionally equivalent.

- 182 -

Fig. 4. Proposed flow of differential testing

The Java programs for the tests are generated by a modified
version of Orange4 tailored for Java. Care is taken to generate
only those those Java programs that meet the conditions for
native code generation by dex2oat.

B. Differential method

In the differential testing approach, two versions of DEX
compilers are used. Typically, performance of a new version
is tested against an old version, where the goal is to check
whether the code generated by the newer version is not infe-
rior to that generated by the older one.

The flow of the differential testing is illustrated in Fig. 4.
Randomly generated Java programs are compiled, resulting in
class files, which are then compiled using the two versions of
DEX compilers, denoted as “dx” and “d8” in the figure, to
generate two DEX files. Native codes generated by ART from
each of these DEX files are extracted and compared to detect
performance differences.

C. Equivalent program method

In the equivalent program method, it is tested if a combina-
tion of a DEX compiler and AOT compilers perform intended
optimization to generate native codes. The workflow of this
method is illustrated in Fig. 5. In this approach, equivalent pro-
grams are generated by applying the expected optimizations at
the source code level to randomly generated test programs. By
compiling these programs using the d8 compiler and compar-
ing the resulting two native codes, the goal is to detect opti-
mization deficiencies.

In this paper, our specific focus lies in arithmetic optimiza-
tion, which simplifies expressions during compile time. While
this optimization is considered fundamental, it frequently ex-
poses compiler bugs. Fig. 6 provides an illustrative example
of arithmetic optimization in action. Initial constant values are
assigned to the variables x3, x4, x5, and x6, and subexpres-
sions are evaluated during the compilation process. Note that
variables that variables x1 and x2 cannot be substituted with
constants due to their declaration as volatile, indicating the
potential for external updates to their values during program
execution.

D. Native code comparison

The native code segments to be compared are derived from
the OAT files generated by ART from DEX files. A textual

Fig. 5. Proposed flow of equivalence testing

Fig. 6. Arithmetic optimization

dump of an OAT file encompasses various pieces of infor-
mation, from which only the lines containing instructions and
operands relevant to the target processor are isolated. An ex-
ample of the extracted native code is illustrated in Fig. 7.

The comparison of native code is performed following the
method described in [5], as shown in Fig. 8.

Initially, code pairs are examined from the start to the end,
and contiguous sections where two codes exhibit matching in-
structions and operands for a minimum of k instructions (with k
typically around 7) are designated as matching sections, while
the remaining segments are classified as non-matching sec-
tions. Within a non-matching section, pairs featuring identical
instructions are filtered out. The sum of the weights assigned
to the remaining instructions (with higher weights assigned to
instructions presumed to consume more execution cycles, such
as multiplication/division and branch instructions) is assessed,
and if the ratio surpasses a predefined threshold, it signifies a
significant performance disparity in the code.

E. Generation of random Java programs

We adapted the random C program generator of Orange4
for generating Java programs. Major modifications include the
following three points.

1. Variable modifiers

The generator has been adjusted to generate variable mod-
ifiers in accordance with the Java language specification.
The modifiers are volatile, final, static, private,
protected, public, and transient. Specifically, the
final modifier is applied to variables that undergo a sin-
gle assignment, while the static modifier is assigned to
all class variables but not to local variables.

2. Statements

The statements generated in the test programs are if,
for, and switch. while statements are omitted due to
a minor technical issue with Orange4.

3. Explicit type conversion between integer and boolean
types

- 183 -

1:0x00001010: C3 ret
2:0x00001020: 85842400E0FFFF test eax, [esp + -8192]
3:0x00001027: 55 push ebp
4:0x00001028: 83EC18 sub esp, 24
5:0x0000102b: 890424 mov [esp], eax
6:0x0000102e: 6466833D0000000000 cmpw fs:[0x0], 0 ; state_and_flags
7:0x00001037: 0F8584000000 jnz/ne +132 (0x000010c1)
8:0x0000103d: 8B28 mov ebp, [eax]
9:0x0000103f: 64833D6003000000 cmp fs:[0x360], 0 ; pReadBarrierMarkReg05
10:0x00001047: 0F8580000000 jnz/ne +128 (0x000010cd)
11:0x0000104d: F6450710 test [ebp + 7], 16
12:0x00001051: 8B85AC000000 mov eax, [ebp + 172]
13:0x00001057: 0F857C000000 jnz/ne +124 (0x000010d9)
14:0x0000105d: 83780800 cmp [eax + 8], 0
15:0x00001061: 0F867E000000 jbe/na +126 (0x000010e5)
16:0x00001067: F6400710 test [eax + 7], 16
17:0x0000106b: 8B500C mov edx, [eax + 12]
18:0x0000106e: 0F857D000000 jnz/ne +125 (0x000010f1)
19:0x00001074: 8B85B8000000 mov eax, [ebp + 184]
20:0x0000107a: 85C0 test eax, eax
21:0x0000107c: 0F847B000000 jz/eq +123 (0x000010fd)
22:0x00001082: 837A0800 cmp [edx + 8], 0
23:0x00001086: 0F8678000000 jbe/na +120 (0x00001104)
24:0x0000108c: 0FBF420C movsxw eax, [edx + 12]
25:0x00001090: 99 cdq
26:0x00001091: 89C3 mov ebx, eax
27:0x00001093: 0BDA or ebx, edx
28:0x00001095: 0F8475000000 jz/eq +117 (0x00001110)
29:0x0000109b: 89D3 mov ebx, edx
30:0x0000109d: 89C2 mov edx, eax
31:0x0000109f: B817855D9D mov eax, -1654815465
32:0x000010a4: B999381D00 mov ecx, 1915033
33:0x000010a9: 64FF1594020000 call fs:[0x294] ; pLdiv
34:0x000010b0: 8985B0000000 mov [ebp + 176], eax
35:0x000010b6: 8995B4000000 mov [ebp + 180], edx
36:0x000010bc: 83C418 add esp, 24
37:0x000010bf: 5D pop ebp
38:0x000010c0: C3 ret
39:0x000010c1: 64FF15E0020000 call fs:[0x2e0] ; pTestSuspend
40:0x000010c8: E970FFFFFF jmp -144 (0x0000103d)
41:0x000010cd: 64FF1560030000 call fs:[0x360] ; pReadBarrierMarkReg05
42:0x000010d4: E974FFFFFF jmp -140 (0x0000104d)
43:0x000010d9: 64FF154C030000 call fs:[0x34c] ; pReadBarrierMarkReg00
44:0x000010e0: E978FFFFFF jmp -136 (0x0000105d)
45:0x000010e5: 8B4808 mov ecx, [eax + 8]
46:0x000010e8: 33C0 xor eax, eax
47:0x000010ea: 64FF15E8020000 call fs:[0x2e8] ; pThrowArrayBounds
48:0x000010f1: 64FF1554030000 call fs:[0x354] ; pReadBarrierMarkReg02
49:0x000010f8: E977FFFFFF jmp -137 (0x00001074)
50:0x000010fd: 64FF15EC020000 call fs:[0x2ec] ; pThrowDivZero
51:0x00001104: 8B4A08 mov ecx, [edx + 8]
52:0x00001107: 33C0 xor eax, eax
53:0x00001109: 64FF15E8020000 call fs:[0x2e8] ; pThrowArrayBounds
54:0x00001110: 64FF15EC020000 call fs:[0x2ec] ; pThrowDivZero

Fig. 7. Native code extracted form OAT file

Fig. 8. Comparison based on weighted sum [5]

TABLE I
Type conversion between integer and boolean

C → Java
t1 = (x1 < x2) + x3; → t1 = ((x1 < x2) ? 1 : 0) + x3;
t1 = (x1 + x2) && (x3 < x4); → t1 = ((x1 + x2) != 0) && (x3 < x4);
if (x1 * x2) {...}; → if ((x1 * x2) != 0) {...};

Integer values and boolean values may be used inter-
changablly in C but they are strictly distinguished in Java.
So the expression generator is modified to insert subex-
pressions for appropriate type conversion. Some exam-
ples of the conversion are provided in Table I.

With the exception of these issues, the framework for pro-
gram generation from Orange4 remains unchanged.

Test programs encompass scalars and arrays of data types
byte, short, int, long, and expressions are composed with

1:class test {
2:static volatile long []x12 = { 809778608162550391L } ;
3:static long [][]t2 =

{ {-42619926745397389L,310236433L,40980388267829143L,0L} } ;
4:static short x21 = 1;
5:static volatile byte x22 = 0;
6:static volatile long x26 = -9223372036740299116L;
7:static long x30 = -9223372036854775807L;
8:static long x31 = 1L;
9:static volatile short x34 = -125;
10:static volatile short x37 = 9;
11:static transient int t7 = -89;
12:static volatile int x39 = 0;
13:
14:public static void main (String args[]){
15: byte x9 = 0;byte x9 = 0;
16: short []x10 = { 1 } ;
17: int []x11 = { 0,0,0,23251,45021,-27,-1243,-10,3121 } ;
18: final short [][]x14 = { {-19,1,5,-12,547,133,0,-8912,1736},

{-149,-599,-360,-1,1,-9906,8836,13,1} } ;
19: int x18 = 1;
20: short x19 = 1;
21: final int x20 = 1;
22: short x23 = 0;
23: byte x24 = -1;
24: long x25 = -9223372036854775808L;
25: long x32 = -1L;
26: short x35 = 1;
27: short x36 = -14;
28: final int x40 = -1;
29: final int x41 = 0;
30: if((((int)((((byte)(x23>>((int)x22)))

((int)((short)(x20((short)((int)
(((long)x23)-x24)))))))|x10[((int)x22)]))
*((short)(x20*x21)))!= 0 ?true:false){;}

31: t7 = (int)((int)(((x30/x31)-((long)x19))
-((x26/((long)(x35*((short)x32))))
/((short)(((byte)(x36*x37))%x34)))));

32: t2[x11[2]][x41] = (long)(x12[((int)x9)]/
((long)(x14[((int)((byte)(x25*x11[1])))]
[(x39/x40)]/((short)x14[x11[0]][x18]))));

33: int h = 0;
34: h += t7;
35: h += t2[0][0];
36:
37: System.out.println(h);
38: }
39:}

Fig. 9. Java program generated by modified Orange4

arithmetic operators(+, -, *, /, %), shift operators(<<, >>), bit-
wise operators(&, |, ˆ), comparison operators(<, >, <=, >=, ==,
!=), and logical operators(&&, ||).

To prevent compiler optimizers from eliminating the entire
code within test programs, each method is compelled to return
the hash value of the resultant variables.

An example of a test program generated by this method is
shown in Fig. 9. Lines 2–29 are variable declarations, lines 30–
32 contain statements with arithmetic expressions and control
flow, and lines 33–35 calculates the hash value.

To ensure ART to convert byte codes to native codes, it is
crucial to pay special attention to the size parameters of the
test programs. Each class should contain exactly one method.
In addition, the maximum number of operators per program
should be limited (typically, to as much as 25).

IV. Experimental results

We implemented two test systems using the proposed meth-
ods, namely the differential method and the equivalent program
method, in Perl 5. The systems run on Ubuntu Linux. The test
generation component running on Ubuntu produces DEX files,
which are transmitted to an Android emulator also running on
the Ubuntu system via the Android Debug Bridge (adb). The
version os the ART was 2.1.0.

Two test systems based on the proposed methods, differ-
ential method and equivalent program method, were imple-
mented in Perl 5. The systems run on Ubuntu Linux. DEX
files, generated by the test generation component running on
Ubuntu, are sent to Android emulator running on the same
Ubuntu system through the Android Debug Bridge (adb). The

- 184 -

TABLE II
Result by differential testing

(a) x86 64 (b) ARM

target→
reference ↓ dx d8

dx — 7
d8 62 —

target→
reference ↓ dx d8

dx — 0
d8 13 —

3,000 tests 3,000 tests

test1.java
1: class test
2: {
3: static int [][] t0 = {{1}};
4: static int x1 = 1;
5:
6: public static void main (String args[])
7: {
8: int t1 = 1;
9: t1 = 1/t0[0][0&(1/x1)];
10: }
11: }

test1.s (dx) test1.s (d8)
... ...

1: mov eax, [edx + 176] 1: mov ecx, [ecx + 176]
2: test eax, eax 2: test ecx, ecx
3: jz/eq +73 (0x000010ca) 3: jz/eq +90 (0x000010db)
4: 4: mov eax, 1
5: 5: cmp ecx, -1
6: 6: jz/eq +83 (0x000010e2)
7: 7: cdq
8: 8: idiv edx:eax, edx:eax / ecx
9: cmp [ebx + 8], 0 9: cmp [ebx + 8], 0
10: jbe/na +70 (0x000010d1) 10: jbe/na +74 (0x000010e6)
11: mov eax, [ebx + 12] 11: mov eax, [ebx + 12]
12: test eax, eax 12: test eax, eax
13: jz/eq +71 (0x000010dd) 13: jz/eq +75 (0x000010f2)
14: add esp, 28 14: add esp, 12
15: ret 15: ret

... ...

Fig. 10. Test program detecting under-optimization of d8

version of the ART subjected to testing was 2.1.0.

A. Differential method

The results of the differential testing are presented in Table
II. The target ISAs for testing were x86 64 and ARM. In total,
we executed 3,000 test programs, with the testing duration be-
ing approximately 3 hours for x86 64 and around 6 hours for
ARM.

In the table, “target” represents the compiler under evalu-
ation, while ”reference” refers to the compiler serving as a
benchmark. The numerical values represent the quantity of
programs for which the target compiler exhibited optimization
shortcomings in comparison to the reference compiler. For
example, in Table II (a), 62 programs identified optimization
shortcomings in dx when contrasted with d8, and conversely, 7
programs identified optimization deficiencies in d8 when com-
pared to dx.

Assuming that d8 is newer than dx, it is reasonable that dx
exhibits higher count of optimization shortcomings than d8 in
both (a) and (b). No optimization deficiencies were detected
in d8 for ARM. On the other hand, 7 programs in x86 64 de-
tected optimization deficiencies in d8, indicating a regression
in performance during the version upgrade. The 7 programs
could be classified into two types.

A program of the the first type has been minimized, which

test2.java
1: class test
2: {
3: static int x0 = 1;
4:
5: public static void main (String args[])
6: {
7: int t0 = 1;
8: int []x1 = {1} ;
9: long [][]x2 = {{1,1}} ;
10: t0 = (int)(x2[0&(int)(x0*x2[0][0])][(1/x1[0])]);
11: }
12: }

test2.s (dx) test2.s (d8)
... ...

1: mov ecx, [ecx + 172] 1: mov ecx, [ecx + 172]
2: xor eax, ecx 2: xor eax, ecx
3: xor ecx, eax 3: xor ecx, eax
4: xor eax, ecx 4: xor eax, ecx
5: cdq 5: cdq
6: mov eax, [ecx + 8] 6: mov ebx, [ecx + 8]
7: mov edx, [ecx + 16] 7: mov esi, [ecx + 16]
8: mov ebx, [ecx + 20] 8: mov edi, [ecx + 20]
9: cmp [ebx + 8], 0 9: cmp [ebx + 8], 0
10: 10: mov [esp + 4], esi
11: 11: mov [esp + 8], edi
12: 12: mov esi, eax
13: 13: mov edi, edx
14: 14: mov eax, [esp + 8]
15: 15: imul eax, esi
16: 16: imul edi, [esp + 4]
17: 17: add edi, eax
18: 18: mov eax, esi
19: 19: mul edx:eax, eax * [esp + 4]
20: 20: add edi, edx
21: 21: mov esi, eax
22: 22: mov eax, esi
23: mov eax, 1 23: mov eax, 1
24: mov eax, eax 24: mov eax, eax
25: jnb/ae/nc +73 (0x00001114) 25: jnb/ae/nc +77 (0x0000113d)
26: add esp, 20 26: add esp, 32
27: pop ebp 27: pop ebp
28: pop esi 28: pop esi
29: 29: pop edi
30: ret 30: ret

... ...

Fig. 11. Test program detecting under-optimization of d8

TABLE III
Result by equivalence testing

Test programs Under-optimization Time [s]
3,000 558 13,229

is shown in Fig. 10. “test1.java” is a test program in Java and
“test1.s (dx)” and “test1.s (d8)” are native codes generated by
dx and d8, respectively. The native codes are identical except
for lines 4–8, where d8 introduced generated an instruction se-
quence including division operation (idiv). The results of the
idiv instruction are stored in the registers edx and eax, but they
remain unused subsequently: at line 11 eax is reassigned an-
other value at line 11 (it is also not used in the jump destination
at line 10). This observation implies that d8 has failed to elim-
inate unnecessary codes in lines 4–8.

A minimized test program of the second type is shown in
Fig. 11. The sequence of instructions d8 generated in lines
10–22 including multiplication operations (imul and mul) has
no effect to the subsequent instructions and should have been
removed through optimization.

- 185 -

org.java opt.java

1: class test { 1: class test {
2: static volatile int x1 = 1; 2: static volatile int x1 = 1;
3: public static void 3: public static void
4: main(String args[]){ 4: main(String args[]){
5: int x2 = 1; 5: int x2 = 1;
6: int x3 = 0; 6: int x3 = 0;
7: int h = (x3<<x2)*(1/x1); 7: int h = 0*(1/x1);
8: System.out.println(h); 8: System.out.println(h);
9: } 9: }
10: } 10: }

org.s opt.s

... ...
1: jz/eq +92 (0x000010bc) 1: jz/eq +75 (0x000010ab)
2: mov eax, 1 2: mov eax, [RIP + 0xf9a]
3: cmp ecx, -1 3: cmpb [rax + 115], -16
4: jz/eq +86 (0x000010c4) 4:
5: cdg 5:
6: idiv edx:eax, edx:eax / ecx 6:
7: mov eax, [RIP + 0xf89] 7:
8: cmpb [rax + 115], -16 8:
9: jb/nae/c +71 (0x000010c8) 9: jb/nae/c + 67 (0x000010b3)
10: test [rax + 7], 16 10: test [rax + 7], 16
11: mov esi, [rax + 244] 11: mov esi, [rax + 244]

... ...

Fig. 12. Test programs detecting under-optimization of d8

org.dex opt.dex
... ...

0x0000: nop 0x0000: nop
0x0001: nop 0x0001: nop
0x0002: sget v1, I test.x1 // field@1 0x0002: sget v1, I test.x1 // field@1
0x0004: const/4 v0, #+1 0x0004: const/4 v0, #+1
0x0005: div-int/2addr v0, v1 0x0005: div-int/2addr v0, v1
0x0006: const/4 v1, #+0
0x0007: mul-int v1, v1, v0 0x0006: mul-int/lit8 v0, v0, #+0
0x0009: sget-object v0, Ljava/io/PrintStream; 0x0008: sget-object v1, Ljava/io/PrintStream;

java.lang.System.out // field@0 java.lang.System.out // field@0
0x000b: invoke-virtual {v0, v1}, void 0x000a: invoke-virtual {v1, v0}, void

java.io.PrintStream.println(int) // method@0 java.io.PrintStream.println(int) // method@0
0x000e: return-void 0x000d: return-void

... ...

Fig. 13. DEX codes for org.java and opt.java

B. Equivalent program method

The d8 compiler was tested by 3,000 pair of programs, tar-
geting the x86 64 ISA. The result is summarized in Table III.
By this test, 558 programs identified optimization shortcom-
ings in d8.

Fig. 12 shows one of the (minimized) test programs.
“org.java” and “opt.java” are unoptimized and optimized Java
programs, respectively, and “org.s” and “opt.s” are resulting
native codes. Lines 4–8 of “org.s” which includes a divicaion
(idiv) instruciton should be optimized away.

For reference, Fig. 13 is a part of the bytecode (DEX code),
which is generated before being converted into native code by
the AOT compiler in ART. At this stage, both programs gen-
erate the div instruction, indicating that the deficiency in op-
timization is not in the DEX compiler but rather in the AOT
compiler of ART.

V. Conclusion

This paper has proposed performance optimization test
methods for Android compilers based on native code compar-
ison. Through experiments, the both differential testing and
equivalence testing successfully detect optimization deficien-
cies in the d8 compiler and the AOT compiler in ART.

Our current testing system is limited in its scope, primarily
addressing a small portion of compiler optimization, specifi-
cally focusing on arithmetic optimization. Extending our test-

ing methodology to encompass other aspects of compiler opti-
mization is a direction for future research.

Acknowledgments

Authors would like to express their appreciation to the mem-
bers of Ishiura Lab. of Kwansei Gakuin Univ. for their cooper-
ation.

References

[1] Android Open Source Project (Android core technologies),
https://source.android.com/devices/tech/dalvik/

(accessed 2021-12-17).

[2] S. Kyle, H Leather, B. Franke, D. Butcher, S. Monteith: “Appli-
cation of Domain-aware Binary Fuzzing to Aid Android Virtual
Machine Testing,” ACM SIGPLAN Notices, vol. 50, Issue 7,
pp. 121132 (July 2015).

[3] H. Ikeo, R. Shimizu, and N. Ishiura: “Random Testing of
Android Virtual Machine by Valid DEX File Generation”
(in Japanese), in Technical Report of IEICE, VLD2017-88,
(Feb2̇018).

[4] R. Shimizu and N. Ishiura: “Reinforcing Generation of In-
struction Sequences in Random Testing of Android Virtual Ma-
chine” (in Japanese), in Technical Report of IEICE, VLD2018-
124, (Mar. 2019).

[5] K. Kitaura and N. Ishiura: “Random Testing of Compilers’
Performance Based on Mixed Static and Dynamic Code Com-
parison,” in Proc. ACM International Workshop on Automating
TEST Case Design, Selection, and Evaluation (A-TEST 2018),
pp. 38–44 (Nov. 2018).

[6] G. Barany: “Finding Missed Compiler Optimizations by Differ-
ential Testing,” in Proc. International Conference on Compiler
Construction (CC 2018), pp. 92–91 (Feb. 2018).

[7] A. Hashimoto and N. Ishiura: “Detecting Arithmetic Optimiza-
tion Opportunities for C Compilers by Randomly Generated
Equivalent Programs,” IPSJ Trans. System LSI Design Method-
ology, vol. 9, pp. 21–29 (Feb. 2016).

[8] X. Yang, Y. Chen, E. Eide and J. Regehr: “Finding and Un-
derstanding Bugs in C Compilers,” in Proc. ACM Conference
on Programming Language Design and Implementation (PLDI
’11), pp. 283–294 (Oct. 2011).

[9] K. Nakamura and N. Ishiura: “Random Testing of C Compilers
Based on Test Program Generation by Equivalence Transfor-
mation” in Proc. Asia and Pacific Conference on Circuits and
Systems (APCCAS 2016), pp. 676679 (Oct.2016).

- 186 -

