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Abstract—This paper presents an automatic scheme for gener-
ating hardware that provides RTOS’s functions for full-hardware
implementation of RTOS-based systems. Though Muguruma and
Ando et al. have proposed a method for implementing both
tasks of a real-time system and RTOS functions as hardware,
the management hardware that provides RTOS functions was
designed manually in Verilog HDL. In our method, the manager
hardware is automatically generated from a file that describes
the configuration of the target system. Manager hardware for
different RTOSs can be generated by describing RTOS dependent
attributes in the configuration file. Generation of RTL description
for unused function is omitted, which reduces the size of the
resulting hardware. A prototype system based on the proposed
method has been implemented in Perl5, which successfully
generated manager hardware modules for 4 tasks for both
TOPPERS/ASP3 and FreeRTOS. Manager hardware modules
for 4, 8, and 16 tasks have also been generated, which suggests
the circuit size and the critical path delay increases in proportion
to the number of tasks and their logarithms, respectively.

Index Terms—real-time systems, RTOS, full hardware imple-
mentation, hardware design automation

I. INTRODUCTION

With the recent development of information and commu-

nication technology, various new services and devices are

being developed every day, which in turn require higher

functionality to embedded systems. In particular, control of

automobile devices and unmanned aerial vehicles requires not

only rich functionality but also high response performance.

Such real-time systems are developed using a real-time oper-

ating system (RTOS). Although the RTOS provides functions

to help designers ensure real-time responses, it is becoming

increasingly difficult to achieve real-time performance as the

systems become more and more sophisticated.

As a method to improve the response performance of

systems using RTOS, hardware implementation of RTOS func-

tionality was proposed. Cho [1], Kohout [2], and Vetromille

[3] proposed hardware scheduler of RTOS, and Nakano [4]

and Maruyama [5] proposed to implement most of the RTOS

functions as hardware. However, tasks and handlers were

†Currently with Mitsubishi Electric Corporation, Japan

implemented as software, overhead from context switching

was inevitable.

As a new approach to address this issue, Oosako [6] has

proposed a full hardware implementation scheme, where all

the tasks/handlers as well as RTOS functions were realized

as hardware. This dramatically improved the response perfor-

mance of systems with a small number of tasks. Muguruma

and Ando [7] has proposed an improved hardware archi-

tecture for full hardware implementation that consolidates

RTOS service functions duplicated in tasks into management

hardware so as to reduce the circuit size. They have also

proposed a control method that allows task programs to be

synthesized by a commercially available high-level synthesis

tool. Minamiguchi et al. have proposed efficient hardware

implementation of RTOS services [8].

However, the management hardware which provides the

RTOS functions was designed manually in Verilog HDL. In

addition, only TOPPERS/ASP3 [9] was assumed as the RTOS.

To address this issue, this paper proposes a method to

automatically generate management hardware for the archi-

tecture in [7]. In the proposed scheme, the number of tasks,

the RTOS services used by tasks, and the other system

configuration information are described in a configuration file,

from which RTL descriptions of the management hardware

are automatically generated. By describing ROTS dependent

specification in the configuration file, management hardware

for RTOSs other than TOPPERS/ASP3 becomes possible.

We have implemented a system to autogenerate manage-

ment hardware for both TOPPERS/ASP3 and FreeRTOS [10].

In a preliminary experiment of synthesizing hardware for

systems with 4, 8, and 16 tasks, the circuit size and the critical

path delay were roughly proportional to the number of tasks

and their logarithms, respectively.

II. FULL HARDWARE IMPLEMENTATION OF RTOS-BASED

SYSTEM

A. Concept

Oosako [6] proposed a method to synthesize all RTOS

functions as well as tasks and handlers into hardware. The con-

cept is shown in Fig. 1. The upper figure shows conventional
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Fig. 1: Concept of full hardware implementation [6]

software implementation of a real-time system, where the tasks

(TSKi) are run on a CPU under the control of the RTOS. The

lower figure shows full hardware implementation of the above

system. Each Ti is an independent hardware module and the

RTOS functions are provided by the management hardware

(manager).

In this hardware scheme, all tasks are executed in parallel

whenever they are ready to run. Tasks are controlled by the

manager module, which outputs execution/stop signals based

on the states of the tasks. This substantially reduces the

complexity of the scheduler in RTOS. Each task module is

executed independently, which eliminates the overheads of

CPU waiting and context switching. Accelerated execution by

hardware further improves the response performance.

B. Hardware architecture

This paper assumes the architecture of [7]. The hardware

configuration is shown in Fig. 2. The STATUS register in the

manager module keeps the status information of each task

(its state, current priority, base priority, timer, etc.), and the

WAIT register holds the information about waiting services

of each task. The mutex, event flag, etc. in the lower part

are service modules that provide RTOS service functions.

shared variable is a module to read/write shared variables,

and control task is a module to provide services such as

task activation, sleep, priority change, and so on. To avoid

interference among services, only one service is executed at a

time. Request Arbiter (RA) is a circuit that mediates service

requests from multiple tasks based on the priority of each task.

All task modules are run in parallel whenever they are ready.

The manager delivers the control signals to instruct each task

to run/stop based on the status of each task in the STATUS

register.

A task (Ti) requests a service by writing the ID of the

service and the necessary arguments into registers TFi and

TAi, respectively, and it waits for the completion of the

service. RA finds the task with the highest priority by a tree of

comparators, and writes the task ID, the service ID, and the

arguments into registers XT, XF, and XA, respectively. The

service module performs the requested operation and writes

the return value into the XA register. The manager notifies

TF0 TA0 TF1 TA1 TF2 TA2

T0 T1 T2

Request Arbiter (RA)

XT XF XA

STATUS

WAIT

mutex event
flag

data
queue

shared
variable

control
task

manager

Fig. 2: Hardware architecture of literature [7]
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Fig. 3: Mutex module

the task of the completion of the service by copying the value

of XA to TAi, then the task reads the return value from TAi

and resumes its own processing.

Timeouts are handled by attaching a timer to each task.

When a task requests a service with a timeout, the service

module sets a timer for the task. The manager counts down

the timer every clock, and when the timer hits 0, the manager

forces the service module to cancel the service.

Service modules (for mutex, eventflag, dataqueue, etc.)

handle multiple instances used in the system in a single module

[8]. An example configuration of the mutex module is shown

in Fig. 3, where the system runs three tasks (ID=0, 1, 2) which

uses three mutexes (ID=0, 1, 2) of the priority ceiling protocol.

An array of flags, lock, keeps track of which mutex is locked

by which task. Max priority LUT is a table that calculates the

maximum of the ceiling priorities of the mutexes that have

been locked by a task.

When a task requests lock of a free mutex, the mutex module

sets the flag and finds the maximum of the ceiling priorities

in the table, updates the current priority of the task with the

value, and returns a return code indicating normal completion.

If the mutex that a task tries to lock has already been acquired

by another task, the task that made this request is placed in

the waiting state.

When a task releases an acquired mutex, the mutex module

resets the flag, updates the current priority of the task, and

wakes up a task that has been waiting for the mutex, if any.
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Fig. 4: Flow of hardware generation

III. AUTOMATIC GENERATION OF MANAGEMENT MODULE

A. Overview

This paper presents automatic generation of the manager

module in the architecture of [7].

The number of tasks in the system and information on

RTOS service modules used by the tasks are described in the

configuration file by designers, from which an RTL description

of a manager module that provides the required number

of ports and service functions is generated. By describing

RTOS dependent attributes in the configuration file, such as

the min/max values of task priorities, error codes, detailed

specification of services, etc., multiple RTOSs are supported.

In addition, the size of the resulting circuit is reduced by

generating only the necessary part of RTOS service functions.

The flow of hardware generation is shown in Fig. 4. PROG.c

is the source code of the real-time system to be designed, and

PROG.cfg is the configuration file describing the system con-

figuration. From the information in the configuration file, the

configurator generates the management hardware (manager.v),

the submodules such as the request arbiter (RA.v) and the

services modules (mutex.v, ..., shared variable.v). Currently,

the configuration file is assumed to be written manually, but

we plan to generate them from source code in the future.

B. Generation of hardware from system configuration

The configurator in Fig. 4 generates a manager module

with the RA modules and service modules as well as the

necessary number of ports, STATUS registers, and WAIT

modules, according to the number of tasks and RTOS services

used by the tasks in the designed system. The configuration

file is designed to contain the following information:

• The number of tasks

• The services that the tasks use and their attributes

An example configuration file description is shown in Fig. 5.

Line 03 specifies the number of tasks. Lines 05–68 list the

service modules used in the system. For each service module,

attributes of the service and information for its instances are

described. Lines 06–24 are specification of the mutex module.

protocol in line 07 indicates the mutexes follow the priority

ceiling protocol. Lines 09–15 are information of the first of

the two instances, which specify ID, service calls invoked on

01 system => {
02
03 tasks => 3,
04
05 service_modules => [
06 mutexes => {
07 protocol => ’ceiling’,
08 instances => [
09 {
10 id => 0,
11 services => [tloc_mtx, loc_mtx, unl_mtx],
12 tasks => [0, 2],
13 ceiling => 2
14 processing_order => ’priority’,
15 },
16 {
17 id => 1,
18 services => [loc_mtx, unl_mtx],
19 tasks => [0, 1, 2],
20 ceiling => 1
21 processing_order => ’arrival’,
22 }
23 ]
24 }
25 eventflags => {
26 instances => [
27 {
28 id => 0,
29 services => [set_flg, wai_flg, clr_flg],
30 and_or => ’and’,
31 clear => 0
32 processing_order => ’arrival’,
33 },
34 {
35 id => 1,
36 services => [set_flg, wai_flg, clr_flg,
37 twai_flg],
38 and_or => ’and’,
39 clear => 1
40 processing_order => ’priority’,
41 }
42 ]
43 },
44 dataqueues => {
45 instances => [
46 {
47 id => 0,
48 services => [snd_dtq, rcv_dtq],
49 data => 10
50 processing_order => ’priority’,
51 },
52 {
53 id => 1,
54 services => [snd_dtq, rcv_dtq],
55 data => 20
56 processing_order => ’priority’,
57 }
58 ],
59 },
60 shared_variables => {
61 services => [read, write],
62 words => 32
63 },
64 control_task => {
65 services => [wup_tsk, sus_tsk, get_pri,
66 chg_pri]
67 }
68 ]
69 ...
70 }

Fig. 5: Example of system specification (PROG.cfg)

this instance, tasks that use this instance, the ceiling of the

priority, and the order in which the service is processed [11].

Based on the information on the number of tasks and service

modules to be used, the ports and RA circuits are generated.

The STATUS register and the registers in the WAIT module

are generated in the similar way.

As for the service modules, the size and number of their

registers and the functions to be implemented are determined

from the number of instances, the number of tasks that uses

them, and the set of service calls used in the system.

C. Supporting multiple RTOSs

Support of multiple RTOSs is realized by describing RTOS

dependent information in the configuration file.
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01 system => {
02
03 tasks => 3,
04
05 service_modules => [
06 mutexes => {
07 protocol => ’ceiling’,
08 instances => [
09 {
10 id => 0,
11 services => [tloc_mtx, loc_mtx, unl_mtx],
12 tasks => [0, 2],
13 ceiling => 2
14 processing_order => ’priority’,
15 },
16 {
17 id => 1,
18 services => [loc_mtx, unl_mtx],
19 tasks => [0, 1, 2],
20 ceiling => 1
21 processing_order => ’arrival’,
22 }
23 ]
24 }
25 ],
26
27 ...
28
29 priority => {MAX_PRI => 1, MIN_PRI => 16},
30
31 error_code => [
32 { mutex_unlock_ok => ’E_OK’ },
33 { mutex_other_locked_unlock_error
34 => ’E_OACV’ },
35 { mutex_unlocked_unlock_error => ’E_OACV’ },
37 { mutex_timeout => ’E_TMOUT’ },
37 { mutex_lock_ok => ’E_OK’ },
38 { mutex_locked_lock_error => ’E_OBJ’ },
39 ...
40 ]
41 }

(a) TOPPERS/ASP3

01 system => {
02
03 tasks => 3,
04
05 service_modules => [
06 mutexes => {
07 protocol => ’inheritance’,
08 instances => {
09 {
10 id => 0,
11 services => [tloc_mtx, loc_mtx, unl_mtx],
12 tasks=>[0, 2]
13 processing_order => ’priority’,
14 },
15 {
16 id => 1,
17 services => [loc_mtx, unl_mtx],
18 tasks=>[0, 1, 2]
19 processing_order => ’priority’,
20 }
21 ]
22 }
23 ...
24 ],
25
26 priority => {MAX_PRI => 31, MIN_PRI => 0},
27
28 error_code => [
29 { mutex_unlock_ok => ’pdTRUE’ },
30 { mutex_other_locked_unlock_error
31 => ’pdFALSE’ },
32 { mutex_unlocked_unlock_error => ’pdFALSE’ },
33 { mutex_timeout => ’pdFALSE’ },
34 { mutex_lock_ok => ’pdTRUE’ },
35 { mutex_locked_lock_error => ’pdFALSE’ },
36 ...
37 ]
38 }

(b) FreeRTOS

Fig. 6: Example of RTOS dependent specification

(1) Task’s priorities

While we may assume that the priorities of the tasks

are expressed by integers, the maximum and the minimum

values as well as whether the priority is in ascending order

or in descending order depend on RTOSs. For example, in

TOPPERS/ASP3 the range of the priority is 1 to 16 where 1

means the highest priority, while in FreeRTOS the range is 0

to 31 where 31 means the highest priority.

In our scheme, the maximum and minimum priority values

(MAX PRI and MIN PRI, respectively) are specified in the

configuration file. If MAX PRI is smaller than MIN PRI, the

priority is interpreted as in ascending order, and vice versa.

From the information, RA comparison tree and the registers

and wires with the necessary number of bits to handle the

priorities are generated.

Fig. 6 (a) is an example description for a system using

TOPPERS/ASP3, where the priority information is given in

line 29. In the case of FreeRTOS, the priority is specified as

in line 26 of Fig. 6 (b).

(2) Attributes of services

Even for the same service, detailed specifications may differ

from RTOS to RTOS. For example, in the case of mutex,

TOPPERS/ASP3 assumes the priority ceiling protocol, while

FreeRTOS uses the priority inheritance protocol. By specify-

ing detailed specification in the configuration file, hardware

description that matches the specification is generated.

For example, in the example description for TOPPER-

S/ASP3 in Fig. 6 (a), the protocol is described as ”ceiling”

in line 07 and the ceiling priorities for the two instances are

specified in lines 13 and 20. In the example of Fig. 6 (b),

protocol is specified as ”inheritance” in line 07. From this

information, the RTL description of the mutex module with

the specified protocol is generated.

(3) Error codes

The error codes for the services are also different among

RTOSs. This kind of differences are also handled via the

configuration file.

For example, in Fig. 6 (a), lines 31–40 describes the

error codes for the mutex module in TOPPERS/ASP3. mu-

tex_unlock_ok in line 32 is the case for successful com-

pletion of mutex unlock, which is represented as E_OK in

TOPPERS/ASP3. In the case of FreeRTOS, the module returns

pdTRUE for the same case, which is specified in line 29 in

Fig. 6 (b).

D. Pruning of redundant hardware

In our scheme, unnecessary function in the service module

may be omitted so that smaller hardware can be generated.

The following situations are assumed:

• Some service calls are not used by any of the tasks.

• Service calls with timeout are not used for some services.

For example, in lines 65 and 66 of Fig. 5, we can see

the tasks only call wup_tsk, sus_tsk, get_pri, and

chg_pri for the control task module, so RTL description

for the other calls can be deleted.

Similarly in lines 48 and 54 in Fig. 5, we see that only

snd_dtq and rcv_dtq are called for the two dataqueue

instances. Since the service call for receiving data with timeout

is trcv_dtq, hardware for timeout processing can be omitted

for the dataqueue module.
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TABLE I: Synthesis result of management module

(a) TOPPERS/ASP3 and FreeRTOS

#LUT #FF delay [ns]

TOPPERS/ASP3 3,994 2,261 8.59
FreeRTOS 4,212 2,258 8.43

(b) 4, 8, and 16 tasks

#task #LUT #FF delay [ns]

4 5,105 2,399 8.76
8 9,809 4,198 10.95

16 19,104 7,832 13.91

IV. IMPLEMENTATION AND EXPERIMENT

Based on the proposed method, a configurator for generat-

ing Verilog HDL design of management hardware has been

implemented in Perl5.

In the first experiment, manager modules following the

specifications of TOPPERS/ASP3 and FreeRTOS were gener-

ated. The specification of the manager module was as follows:

• 4 tasks.

• A data queue module with 2 instances, each holds 10 data

of 4B.

• All the services are processed in the arrival order [11].

• A shared variable module accommodates 32 words of 4B.

• The control task module supports wup_tsk, sus_tsk,

get_pri, chg_pri for TOPPERS/ASP3, and

xTaskResume, vTaskSuspend, vTaskPriori-

tyGet, vTaskPrioritySet for FreeRTOS.

The generated Verilog HDL descriptions were synthesized

targeting an FPGA (Artix-7) using Xilinx’s Vivado 2016.4.

The circuit size and critical path delay of the generated

manager module are shown in TABLE I (a). The number of

look-up tables and the number of flip-flops are indicated by

#LUT and #FF, respectively, for the circuit size. The circuit

size and the critical path delay are considered reasonable.

Difference of RTOSs showed no significant impact on the size

and critical path delay of the synthesized circuits.

In the second experiment, we generated managers for 4, 8,

and 16 tasks. It assumes TOPPERS/ASP3 and incorporates the

following service modules:

• A mutex module with 2 instances.

• An event flag with 2 instances.

• A data queue module with 2 instances, each holds 10 data

of 4B.

• A shared variable module which accommodates 32 words

of 4B.

• A control task module which supports the following 12

services:

act_tsk, can_act, ter_tsk, chg_pri,

get_pri, wup_tsk, can_wup, rel_wai,

sus_tsk, rsm_tsk, loc_cpu, unl_cpu

The results of logic synthesis are shown in TABLE I (b).

The circuit size is approximately 1.9 times larger when the

number of tasks is doubled, and approximately 3.7 times larger

when the number of tasks is quadrupled, indicating that the

circuit size increases roughly in proportion to the number of

tasks.

The critical path delay increased by approximately 2ns and

5ns when the number of tasks was doubled and quadrupled,

respectively, and increased approximately in proportion to the

logarithm of the number of tasks. We guess that the increase

is caused by the number of stages in the comparison tree in

RA.

The circuit size and critical path delay of the manager

module for 16 tasks are a little too large for practical use.

Since there is much room for reducing both the circuit size and

critical path delay, we will continue improving or optimizing

the design.

V. CONCLUSION

In this paper, a method to generate management hardware

from configuration information of real-time systems has been

proposed. The method supports multiple RTOSs and reduces

the circuit size by generating only the necessary functions of

the RTOS.

Since the automatic generation of the management hardware

has revealed the increase of circuit size and critical path delay

relative to the number of tasks, identification of bottlenecks

and optimization of circuits are the next issues to be addressed.

Other future work include automatic generation of the configu-

ration file from a given program source code and application of

this hardware scheme to design of practical real-time systems.
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