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Abstract—As an approach to drastically enhance the response
performance of RTOS-based systems, Oosako proposed a full
hardware scheme in which all the tasks/handlers as well as RTOS
functions are implemented by hardware. In the architecture
proposed so far to realize this hardware scheme, however,
service requests from tasks were processed only in the order
of tasks’ priorities, while some RTOSs stipulate services must
be processed in the order of arrival of requests. This paper
proposes a hardware mechanism to enable both priority order
processing and arrival order processing so that the processing
order is selectively defined service by service. This is realized
by newly designing an arrival order recording hardware and
extending the function of the request arbitration module and
flag registers to record the waiting tasks. Based on the proposed
method, a management hardware that provides the functions of
TOPPERS/ASP3 has been designed in Verilog HDL. The new
feature has been successfully implemented, at the cost of 2.6%
increase in circuit size.

Index Terms—real-time systems, RTOS-based systems, full-
hardware implementation, RTOS services, arrival order process-
ing

I. INTRODUCTION

With the recent development of information and commu-

nication technology, various services are deployed to our

everyday life. Accordingly, embedded systems used in those

services are required to afford higher and higher functions.

In particular, control of automobile devices, unmanned aerial

vehicles, and robots requires high response performance as

well as rich functionality. Such systems are designed using a

real-time operating system (RTOS). RTOSs provide functions

to design a system to complete tasks in response to input

events within predefined time periods. However, as systems

become more sophisticated, it is becoming more difficult to

ensure required response performance.

In order to improve the response performance of RTOS-

based systems, hardware implementation of some or all of the

RTOS functions has been proposed. The scheduler in RTOSs

is implemented in hardware in [1] [2] [3], and most of the

functions of RTOSs are implemented in hardware in [4] [5]. In

these methods, however, tasks and handlers are implemented

as software, which suffers from overhead due to CPU waits

and context switching.
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Fig. 1: Full hardware implementation [8]

To address issue, Oosako proposed a scheme to implement

all tasks/handlers as well as RTOS functions as hardware

[8]. The tasks are synthesized into independent hardware

modules where all the tasks are executed in parallel as soon

as they are ready to run. This eliminates CPU wait and

task switching overheads. Ando and Muguruma proposed an

improved hardware architecture for this scheme which reduces

hardware size and enables the use of commercially available

high-level synthesizer [12].

In this architecture, service requests from tasks were pro-

cessed only in the order of tasks’ priorities when multiple

requests are waiting for the service. However, some RTOSs

stipulates that the services must be processed in the arrival

order of requests, or that users may define the processing order

for each service.

This paper proposes to introduce a mechanism to enable

arrival order processing into the architecture of [12]. It allow

users to select between priority or arrival order processing for

each service of RTOSs. The mechanism consists of decoupling

of arbitration of service requests and dequeueing of waiting

services, and design of a hardware module to record the arrival

order of service requests.

As a result of implementing the management hardware

based on our method on an FPGA, the new feature has

been realized with an 2.6% increase in the number of LUTs

compared to the previous architecture.

II. FULL HARDWARE IMPLEMENTATION OF RTOS-BASED

SYSTEMS

A. Concept

Fig. 1 shows the concept of the full hardware scheme

Oosako proposed in [8]. The left-hand side is normal software

implementation of a real-time system, where tasks (taski) are

- 467 -

The 38th International Technical Conference on Circuits/Systems, Computers, and Communications 2023



TF0 TA0 TF1 TA1 TF2 TA2

T0 T1 T2

XT XF XA

STATUS

WAIT

S2

manager

S0 S1 S3

Request Arbiter (RA)

(1)

(2)

(3)

(5)

(4)

Fig. 2: Ando and Muguruma’s architecture [12]

software programs that run on a CPU under the control of an

RTOS. The right-hand side is the full hardware implementation

of this system which is functionally equivalent to a CPU

that runs the programs. Each of the tasks is synthesized into

an independent hardware module Ti. Manager is a hardware

module to provide function of the RTOS; it generates control

signals to run/stop each task based on the state of the task, and

provides services such as synchronization and communication

among tasks.

Although the number of tasks handled by this scheme

is limited to about 16, the response performance will be

significantly improved, because the tasks are executed by

hardware, there is no CPU wait, and there is no overhead

caused by task scheduling nor context switching.

B. Hardware architecture

Ando and Muguruma’s architecture for the full hardware

scheme [12] is shown in Fig. 2. T0 through T2 are task

modules. S0 through S3 are service modules that provide

RTOS services such as a mutex, an eventflag, a dataqueue, etc.

To avoid interference among the services, only one service is

executed at a time. When multiple services are requested at

the same time, the Request Arbiter (RA) mediates the requests

based on the priorities of the tasks. The WAIT module keeps

track of which tasks are waiting for which services. All tasks in

the ready state are executed in parallel. The manager generates

signals to control run/stop of each task based on the status of

the task which is stored in the STATUS register.

When task T1 requests service i (mutex lock acquisition,

for example) to service module S2 (the mutex module), the

request is processed as follows.

(1) Task T1 requests a service by writing the ID and

arguments of the service i in TF1 and TA1 registers, and

waits for the completion of the service. The execution of T1

is suspended until the service is completed.

(2) The RA writes the ID of the highest priority task (1,

in this case) into XT register, and copies TF1 and TA1 to XF

and XA registers, respectively, by which S2 is activated.

(3) S2 executes the requested operation and writes the result

value back to XA.

TF0 TA0 TF1 TA1 TF2 TA2

XT XF XAWAIT

S2

Request Arbiter (RA)

T0 T1 T2
1 0 0S_WAIT

...(2)

(4)
block

T0 T1 T2

(1)

(1)

(1)

(3)
wT0 = 1

Fig. 3: Mechanism of service waiting

(4) The RA transfers the result value back to TA1 to inform

T1 of the completion of the service.

(5) T1 reads the return value from TA1 and resumes

execution.

C. Waiting and its release

1) Waiting: Some RTOS services make a requesting task

wait when it cannot immediately perform the requested ser-

vice. For example, when a task requests a mutex that has

already been acquired by another task, or when a task tries

to receive data from an empty queue, the task is forced to

wait until the mutex is released or the queue receives data.

In common software implementation, the waiting requests

are kept in a linear list which may be sorted by the priority

or arrival order. In contrast, in the hardware architecture of

[12], which task is waiting for which service is kept track of

with an array of flag registers. The highest priority request is

chosen by making use of the mediation function of the RA.

Fig. 3 shows how the management hardware make tasks

wait. Suppose task T0 requests service i to service module

S2, but it can not be processed immediately.

(1) T0 makes a request, which is forwarded to S2, where it

turns out the request can not be executed immediately.

(2) S2 sets the flag register S WAIT[T0][i] in the WAIT

module to record T0 is waiting for service i. S2 also changes

the state of T0 to the waiting state by writing to the STATUS

register (which is omitted in this figure).

(3) The WAIT module emits signal wT0 = 1 to the RA to

notice that T0 is waiting for some service, where the value of

wT0 is the logical OR of S WAIT[T0][∗].

(4) The RA is designed to block any request from task t

with wt = 1 regardless of the priority of the task (i.e., it does

not forward the request to XT, XF, XA). This means that the

request from T0 is kept waiting without being processed.

2) Release of waiting: When the cause of the wait is

resolved, the task may be released from waiting (or the request

is dequeued). There are cases where multiple requests are

waiting for the same service. In the architecture of [12],

requests are dequeued in the order of the tasks’ priorities.
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Fig. 4: Mechanism of releasing waits

This priority-based processing is realized by making most

of the priority-based arbitration of the RA. The flow of

dequeueing is shown in Fig. 4. Here, tasks T0 and T1 are

waiting for service i provided by S2 as shown in (a). The

priority of each task is assumed to be higher in the order of

T0, T1, and T2.

(1) S2 once releases the wait of all tasks that are waiting for

service i. This is done by clearing all S WAIT[∗][i] at once.

(2) By (1), the WAIT module comes to send wT0 = 0 and

wT1 = 0 to the RA. Then block of requests from T0 and T1

is lifted.

(3) Since the RA is designed to forward the request from

the highest priority task to the service module, T0 is selected

and its request is written to XT, XF, and XA, which is passed

to S2.

(4) If S2 can process the request of T0 (e.g., T0 can acquire

the mutex), S2 does that and notifies the completion by writing

the return value of normal completion (RC OK) to XA as

shown in Fig. 4 (b). On the other hand, if S2 still can not

process the request (e.g., the flags in the eventflag do not

match the condition), S2 again sets S WAIT[T0][i] to make

the request wait, as in Fig. 4 (c).

(5) Regardless of whether the T0’s wait is released or not,

the next request (from task T1) is conveyed to S2 as shown

in Fig. 4 (d). If S2 cannot process the request (i.e., the mutex

is locked by T0), it sets S WAIT[T1][i] again to make the

request wait.

One reason for releasing all waiting request once is to let

the RA select the highest priority task. The other reason is

that there are services such as the eventflag that can release

wait of multiple tasks whose requests match the condition.

The problem with this design is that only priority-based

dequeueing is possible. There are some RTOSs or some

particular services that assume arrival order dequeueing. For

example, TOPPERS/ASP3’s message buffer performs arrival

order dequeueing, while mutex and eventflag can select be-

tween arrival order or priority order for each instance.

Moreover, most of the RTOSs stipulates that requests are

processed in their arrival order when they are from the tasks of

the same priority. This cannot be realized by this architecture.

In addition, since the RA operates by looking up only task’s

priorities, a request from the highest priority task may be

processed even if the request is irrelevant from the wait, which

prolongs the process of the wait release.
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III. ARRIVAL ORDER PROCESSING

A. Overview

In this paper, we propose a hardware scheme that enables

both arrival order processing and priority order processing

of service requests in the architecture of [12]. The proposed

design allows each instance of the service may choose between

the two orders.

In order to prevent wait release from being delayed, wait

release and normal mediation are clearly separated at the RA.

For this purpose, the RA is redesigned to have two modes,

one to complete wait release and the other to mediate normal

service requests. In the wait release mode, the RA is instructed

to dequeue requests in the priority order or in the arrival order.

We have also designed a module to record the arrival order

of requests. Instead of logging the timestamps of requests, only

the arrival orders are maintained so as to reduce hardware cost.

The overall configuration the proposed design is shown in

Fig. 5. A module for arrival order recording (ARRIVAL) has

been added to the architecture of [12]. The WAIT module

emits an order signal by which the priority fed to the the RA

is switched. It also sends release signal to the RA, which place

the RA into the release mode.

B. WAIT module and RA

Fig. 6 shows the structure of the revised WAIT module. It

has a one-dimensional flag R WAIT and a single bit register

ORDER, in addition to the two dimensional flag register

S WAIT (to record which task is waiting for which service).

R WAIT[t] is set when task t is being released from waiting,

and ORDER indicates in which order the waits should be

released (e.g., 0 for the priority order and 1 for the arrival

order).

When a service module wants to dequeue requests for

service i, it sets R WAIT[t] for all t where S WAIT[t][i]

= 1 (instead of clearing all S WAIT[∗][i]). When any of

R WAIT[∗] is set to 1, release = 1 is send to the RA to switch

it to the wait release mode. The RA in the wait release mode

unblocks the request from the task which has the highest order

among the tasks whose R WAIT[∗] is 1. This is repeated while

any of R WAIT[∗] is 1, and then the RA returns to the normal

mode.

The following is the flow when the service module S

releases the wait of the requests for service i.

(1) Service module S instructs WAIT to release waiting

tasks by specifying instance i and the order (priority/arrival)

of release.

(2) WAIT sets R WAIT[t] for every task t with

S WAIT [t][i] = 1. It also sets ORDER register as instructed

by the service module S. WAIT sends the value of R WAIT

to the RA to place it into the wait release mode.

(3) The RA in the wait release mode selects task t with the

highest order among the tasks with R WAIT[*] = 1, and pass

the request from t to the service module via XT, XF, XA.

(4) If service module can process the request from t, it

clears S WAIT[t][i] and R WAIT[t] to indicate that the wait

is released. If not, only R WAIT[t] is cleared, which causes

the request of task t to be blocked again by the RA.

The number of tasks to be dequeued depends on the service.

Most of the services, such as the mutex and the eventflag with

the CLR attribute, dequeue only one waiting request. In this

case, the service module clears all R WAIT[∗] at the end of

the release, which brings the RA back to the normal mode. On

the other hand, in the case of the eventflag without the CLR

attribute, the dequeue operation is continued until all requests

are tested.

C. Switching between priority order and arrival order

The order for task wait release is instructed to the RA by

changing the priority inputs to the RA. The circuit for this

scheme is shown in Fig. 7, where prit and aot are the current

priority and the arrival order of task t, respectively, and MSBt

and LSBt are the upper and the lower bits of the priority for

task t, respectively. When an instructed order is “priority,” the

outputs are set as MSBt = prit and LSBt = aot, and vice versa

when an order is “arrival.” This allows the RA to arbitrate tasks

of the same priority in the arrival order when the priority order

is instructed.

D. Arrival order recording module

In the arrival order recording module, only the orders

in which the services are requested are recorded, because
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recording of timestamps would result in many bits of registers

and a large comparator tree.

In our design, when k tasks are waiting for the completion

of a service, their orders are recorded by consecutive integers

0, 1, 2, . . . , k − 1. The order of a task that are not in the

waiting state is represented by −1. The orders are updated

each time tasks request services or a service module completes

a requested service.

The structure of the ARRIVAL module is shown in Fig. 8.

Register ORDER is a one-dimensional array to record the

arrival orders of the tasks. Register MO stores the maximum

value of the arrival order. In this example, 3 tasks are in the

waiting state where T0, T2, and T3 have issued requests in

this order.

When task t newly requests a service, MO is incremented

and the new value of MO is assigned to ORDER[t]. When the

service requested by task t′ is completed, ORDER[t] for all

t satisfying ORDER[t′]<ORDER[t] is decremented, and then

MO is decremented and ORDER[t′] is reset to −1.

For example, in Fig. 9 (a), T4 requests a service, then MO

is incremented to 3 and the new value is set to ORDER[T4].

When the service for T2 is completed, as shown in Fig. 9 (b),

ORDER[T3] and ORDER[T4] are decremented because they

were higher ORDER[T2], and then MO is decremented and

ORDER[T2] is reset to −1,

When multiple tasks request services at the same time,

the number of requests is added to MO, and the ORDER

is recorded in the order of the task ID. For example, as

shown in Fig. 9 (c), when T1 and T5 request services at the

same time, MO is double incremented to 4 and ORDER[T1]

and ORDER[T5] are updated to 3 and 4, respectively. This

operation is implemented by adding up the request signals

from the tasks whose ID is smaller than each task by a parallel

counter.

If a request is issued at the same time as service completion,

all the ORDERs higher than the task to be completed are

decremented, and the ORDER of the requesting task is set to

MO. Fig. 9 (d) shows an example. When T2 requests a service

T0 T1 T2 T3 T4 T5 T0 T1 T2 T3 T4 T5

MO MO

0 -1 1 2 -1 -1

2

0 -1 1 2 3 -1

3

REQ

(a) Receipt of a service request

T0 T1 T2 T3 T4 T5 T0 T1 T2 T3 T4 T5

MO MO

0 -1 1 2 3 -1

3

0 -1 -1 1 2 -1

2

DONE

(b) Completion of a service request

T0 T1 T2 T3 T4 T5 T0 T1 T2 T3 T4 T5

MO MO

0 -1 -1 1 2 -1

2

0 3 -1 1 2 4

4

REQ REQ

(c) Receipt of simultaneous requests

T0 T1 T2 T3 T4 T5 T0 T1 T2 T3 T4 T5

MO MO

0 3 -1 1 2 4

4

0 2 4 1 -1 3

4

REQ DONE

(d) Simultaneous receipt and completion of requests

Fig. 9: Recording of arrival order

and T4 completes a service at the same time, ORDER[T1]

and ORDER[T5] which are higher than ORDER[T4] are

decremented and the value of MO is set ORDER[T2].

IV. IMPLEMENTATION AND EXPERIMENT

Based on the proposed scheme, a management hardware as-

suming TOPPERS/ASP3 has been designed by Verilog HDL.

The hardware description has been synthesized by Xilinx

Vivado 2020.2 targeting Xilinx FPGA Artix-7. The details of

the service modules in the manager are as follows:

• The control task module provides the following 12 ser-

vices:

act tsk, can act, ter tsk, chg pri, get pri, wup tsk,

can wup, rel wai, sus tsk, rsm tsk, loc cpu, unl cpu

• The shared variable module has 32 words each consisting

of 32bits.

• The mutex module implements 2 mutexes.

• The eventflag module has 2 registers each consisting of

32 bits.

• The dataqueue module has 2 buffers consisting of 10

words.

The circuit size of each module is shown in TABLE I. #LUT

is the number of look-up tables and #FF is the number of flip-

flops. “task × 4” is the total circuit size of the 4 tasks. Since
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TABLE I: Circuit size

previous [12] proposed

module #LUT #FF #LUT #FF

task × 4 48 44 48 44

control task 1053 140 1047 140
shared variable 125 0 125 0
mutex 1881 48 1956 48
eventflag 151 64 151 64
dataqueue 1108 16 1081 16

manager 898 2066 992 2089

total 5264 2378 5400 2401

TABLE II: Critical path delay

previous [12] proposed

delay[ns] 7.871 7.803

the hardware description was the same for both the previous

and proposed designs, the circuit sizes are the same.

Among the 5 service modules, the control task and

shared variable modules are irrelevant to the processing order

(hence, their hardware descriptions were the same for the both

designs). On the other hand, the other 4 modules are added

with wires necessary for arrival order processing. Although

there were some fluctuations, the total circuit size increased

only by 1.0% in terms of the number of LUTs compared to

the previous architecture.

The increase in the size of manager’s circuits was 10.5% in

terms of the LUT count. We guess this increase is due to the

addition of circuits such the arrival order recording module.

In total, the numbers of LUTs and FFs have increased

by 2.6% and 1.0%, respectively, which we believe are small

enough.

As shown in TABLE II, there has been no increase in critical

path delay of the synthesized circuit

V. CONCLUSION

In this paper, a new hardware scheme for dealing with

arrival order processing as well as priority order processing

of service requests in full hardware implementation of RTOS-

based systems. The new ideas are the mechanism to switch

between the two orders, the wait release mode of the request

arbiter, and the arrival order recording module.

Synthesis result of an example circuit has shown that the

new feature was implemented with only 2.6% increase in the

circuit size and there was no increase in the critical path delay.

The manager module of the experiment was designed man-

ually. We are now working on automatic generation of the

manager module [14]. Application to design of practical real-

time systems is another future work.
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