
Binary Synthesis Using High-Level Synthesizer as its Back-End

Ryo NAKAMICHI † Sho KISHIMOTO † Nagisa ISHIURA †† Takumi KONDO †

† Graduate School of Science and Technology †† School of Engineering
Kwansei Gakuin University

1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, JAPAN

Abstract—This paper presents a facile way to implement bi-
nary synthesizers using existing high-level synthesizers as their
back-ends. Binary synthesis is a variant of high-level synthe-
sis which translates binary programs into register transfer level
hardware models. In the proposed method, C programs in place
of CDFGs (control dataflow graphs) are generated from binary
programs, which are synthesized into hardware by high-level syn-
thesis. Based on the proposed method, a binary synthesizer for
RISC-V (RV32IM) has been implemented using Xilinx Vivado
HLS as a back-end high-level synthesizer. The execution cy-
cles and critical path delay of the synthesized circuits, generated
from RV32IM binaries compiled from C programs, are almost the
same as those of the circuits generated by the high-level synthe-
sizer from the C programs, though the circuit size is 1.00 to 3.32
times larger.

I. Introduction

While increasingly rich functions are implemented in em-
bedded systems, there is constant and severe requirement for
size and power consumption of the embedded devices. One of
the approaches to this issue is to implement some critical parts
of the systems, or even the hole systems, as hardware.

The cost of hardware design is much higher than software
design, for the level of abstraction is generally lower in hard-
ware than in software. As a tool to improve efficiency of hard-
ware design, high-level synthesis has been proposed [1]. Be-
havior specification in high-level programming languages such
as C is automatically synthesized into hardware, which drasti-
cally reduces the cost of hardware design.

However, high-level synthesis can not be used to convert all
the existing software programs into hardware. Especially, sys-
tems that control external devices must handle interrupts and
use special instructions to access dedicated registers. When
these programs are written in assembly languages or written
using inline assembly, high-level synthesis is not directly ap-
plicable.

In such a case, binary synthesis may be used as an alter-
native. Binary synthesis generates hardware from binary pro-
grams, rather than programs in high-level languages. Stitt, et
al. developed binary synthesizers for MIPS, ARM, and Mi-
croBlaze [2]. Ito, et al. synthesized systems that include inter-
rupt handlers written in MIPS assembly into hardware [3, 4]
using a binary synthesizer ACAP [5]. Binary synthesizers may
be used to replace a CPU running a control binary program

high-level synthesis binary synthesis

binary programbehavioral specification

analysis &
optimization

CDFG

scheduling

binding

HDL generation

HDL

analysis &
optimization

Fig. 1. Typical flow of high-level/binary synthesis

without a source code by hardware, or to protect the binary
codes from reverse engineering.

Unlike high-level synthesizers, binary synthesizers are ma-
chine independent. That means, a binary synthesizer must be
developed for each instruction set architecture. An easy way to
develop a binary synthesizer is to reuse existing high-level syn-
thesizers or open source high-level synthesizers such as LegUp
[6] and to implement only a front-end that generates interme-
diate data such as a CDFG (control dataflow graph). However,
even this requires substantial effort, for it may involve dataflow
analysis, program-level optimization, or construction of vari-
able tables.

This paper proposes a facile method for developing binary
synthesizers using high-level synthesizers as their back-ends.
A C program that emulates the behavior of a given binary pro-
gram is generated, which is fed to high-level synthesis. The
binary to C translator is easy to develop, for its major task is
one by one conversion of an instruction to C statements and
there is no need for further analysis and optimization.

Based on the proposed method, a binary synthesizer for
RISC-V (RV32IM) has been developed. An experiment on
binary programs compiled from C programs has shown that
synthesized circuits run as fast as the ones generated by high-
level synthesizers, though the circuits become up to 3.32 times
larger.

II. High-level synthesis and binary synthesis

High-level synthesis [1] is a design automation technology
which generates register transfer level description of hardware

SASIMI 2022 ProceedingsB-3

- 121 -

binary
program

IMEM DMEM

CPU

DMEM

HW

Fig. 2. Type of binary synthesis assumed in this paper

disassemble

high-level synthesis

HDL for logic synthesis

C program

assembly program

assembly to C
translation

linked executable binary program

Fig. 3. Proposed flow of binary synthesis

from behavioral specification written in procedural languages
such as C.

Typical flow of high-level synthesis is shown in Fig. 1.
A given behavioral specification is analyzed to generate an
intermediate representation called a CDFG (control dataflow
graph). This analysis may involve dataflow analysis and opti-
mization using the information in the program. Scheduling and
binding are performed on the CDFG, from which HDL (hard-
ware design language) ready for logic synthesis is generated.

Programming languages such as C assume a computation
model where variables are mapped in the single memory space
and are accessible by their addresses. On the other hand, high-
level synthesizers generate hardware of a different computation
model where variables does not have explicit addresses. Thus,
when functions or threads in input programs have global vari-
ables or share variables via pointers, these accesses must be
rewritten to conform to the hardware model before high-level
synthesis.

In the case of systems to control devices, programs may be
composed of interrupt handlers or may use instructions to ma-
nipulate special registers, which are often written in assembly
languages or using inline assembly. High-level synthesis is not
directly applicable to those programs.

Binary synthesis is, in a sense, a variant of high-level syn-
thesis. It takes binary programs instead of programs written in
high-level languages. Stitt, et al. developed binary synthesiz-
ers for MIPS, ARM, and MicroBlaze, which convert critical
parts of binary program into hardware [2]. ACAP is a binary
synthesizer for MIPS, which can convert a whole executable
binary program into a hardware module that is equivalent to a
CPU running the program, or can compile specified sections
of a binary program into coprocessors that are tightly coupled
with the CPU running the program [5].

By generating hardware that emulates load/store instruc-
tions, binary synthesizers can handle accesses to global vari-
ables or accesses via pointers without rewriting the source pro-

....
<start>:
80000000: addi zero,zero,0
80000004: lui sp,0x7ffc
80000008: or sp,sp,0
8000000c: lui a0,0x4
80000010: addi gp,a0,4
80000014: lui t0,0x80000
 ...

void func(void) {
 // (1) registers
 static uint32_t zero = 0;
 static uint32_t ra;
 static uint32_t sp;
 static uint32_t gp;
 static uint32_t tp;
 ...

 // (2) memory
 static uint8_t M3[GN+LN];
 static uint8_t M2[GN+LN];
 static uint8_t M1[GN+LN];
 static uint8_t M0[GN+LN];

 // (3) instructions
 start:
 sp = 0x7ffc << 12;
 sp = sp | (0);
 a0 = 0x4 << 12;
 gp = a0 + (4);
 t0 = 0x80000 << 12;
 ...

}

Fig. 4. Configuration of generated C programs

add a5,a4,a5 a5 = a4 + a5;

addi sp,sp,-32 sp = sp + (-32);

and a4,a4,a5 a5 = a4 & a5;

sll a5,a5,a0 a5 = a5 << (a0 & 31);

sra a6,a4,a6 a6 = SINT32(a4) >> (a6 & 31);

srl a7,a4,a7 a7 = a4 >> (a7 & 31);

Fig. 5. Translation of ALU instructions

gram. Since binary synthesizers take binary programs as in-
puts, the languages of the source programs do not matter. In
[3, 4], programs with interrupt handlers written in combination
of C, MIPS assembly, and inline assembly are synthesized into
hardware.

The flow of binary synthesis is shown in Fig. 1. Once a
CDFG is constructed from a binary program, the subsequent
tasks are the same as in high-level synthesis. If a source code of
existing high-level synthesizer is available, or one has a good
knowledge on open source high-level synthesizers [6], a bi-
nary synthesizer may be developed by implementing a transla-
tor from binary programs to CDFGs (control dataflow graphs).
However, this may involves dataflow analysis, program-level
optimization, and construction of variable tables, which still
requires substantial effort.

III. Binary synthesis using high-level synthesis

A. Overview
A new flow of binary synthesis that allows low cost imple-

mentation is proposed in this paper. A C program, instead of a
CDFG, is generated from a given binary program from which
hardware design is generated by a high-level synthesizer.

In this paper a type of binary synthesis is assumed where a
combination of a CPU and a binary program is converted to an
equivalent hardware modules, as shown in Fig. 2. It is also as-

- 122 -

#define SINT32(u) ((int32 t)((u) & 0x7fffffff) + (((u) & 0x80000000) ? -2147483648 : 0))

#define SINT16(u) ((int16 t)((u) & 0x7fff) + (((u) & 0x8000) ? -32768 : 0))

#define SINT8(u) ((int8 t)((u) & 0x7f) + (((u) & 0x80) ? -128 : 0))

Fig. 6. Conversion from unsigned to signed integer

mul rd,rs1,rs2 rd = rs1 * rs2;

mulhu rd,rs1,rs2 rd = ((uint64 t)rs1 * (uint64 t)rs2) >> 32;

mulh rd,rs1,rs2 rd = ((int64 t)SINT32(rs1) * (int64 t)SINT32(rs2)) >> 32;

mulhsu rd,rs1,rs2 rd = ((int64 t)SINT32(rs1) * (int64 t)rs2) >> 32;

Fig. 7. Translation of multiply instructions

sumed in this paper that data memory is implemented logically
inside the hardware module (physical implementation depends
on high-level synthesizers).

By mapping general purpose registers of the CPU to C vari-
ables, each of the ALU instructions is translated to a C state-
ment in a straightforward manner, with some attention to con-
version between signed and unsigned integers and the preci-
sion of intermediate results. Load and store instructions are
converted to accesses to an array variable with translation of
addresses to indexes. Branch and jump instructions are trans-
lated to goto statements with some auxiliary statements. Reg-
ister jump instructions, whose targets are decided only at run
time, are converted to switch statements by listing all the pos-
sible targets.

B. Flow of synthesis
The proposed flow of binary synthesis is shown in Fig. 3.

A given linked executable binary program is disassembled and
then translated to a C program of equivalent behavior. It is fed
into high-level synthesis to generate an HDL code ready for
logic synthesis. Since laborious tasks such as dataflow analy-
sis, scheduling, biding are done by the high-level synthesizer,
all we have to do is to develop an assembly to C translator.

Though various styles are possible for the C programs, this
paper considers a C program consisting of a single function for
the input assembly program, as shown in Fig. 4. The function
consists of three parts; (1) declaration of the registers, (2) dec-
laration of the memory, and (3) statements translated from the
instructions.

In the following subsections, translation from RISC-V in-
structions is shown as examples, but note that the method itself
is not restricted to the specific ISA.

C. ALU instructions and handling of signs
Each register in the ISA is expressed as a local variable of

unsigned integer type with the same number of bits. Fig. 4
(1) is an example of declaration for 32-bit registers. uint32 t
is defined to be an integer type that the back-end high-level
synthesizer deals with as a 32-bit unsigned integer.

Arithmetic, logical, and shift instructions are straightfor-
wardly translated to equivalent C statements. Examples of
translation of 32-bit ALU instructions of RISC-V are shown
in Fig. 5. For example, an instruction “add rd,rs1,rs2” is
translated to a statement “rd = rs1 + rs2;”.

Since the variables for the registers are declared as un-
signed, type conversion is necessary if an instruction assumes
signed operands. However, in the case of CPUs based on
2’s complement expression, there is no need for type conver-

M3M2M1M0

heap
region

stack
region

main memory

GB

GN

LB

LN

GN+LN

Fig. 8. Implementation of memory space

sion, for the unsigned arithmetic yields the same results as the
signed arithmetic. For example, if we simply translate “addi
sp,sp,-32” to “sp = sp + (-32);” assuming the unsigned
arithmetic, −32 is interpreted as 4294967264 and the lower 32
bit of sp + 4294967264 is assigned to sp, which yields the
same results as in the signed arithmetic.

This does not work, however, for some instructions such as
the shift right arithmetic instruction. In this case, strict type
conversion is needed. Note that a simple cast operation is not
always valid in the light of the C language specification; if we
attempt to convert an unsigned integer whose MSB is set (a
negative number if seen as a signed integer) to a signed inte-
ger by the cast operation, it causes signed overflow and incurs
undefined behavior, which means that the program is invalid
and compilers may generate any (erroneous) code. Thus, for a
safety reason, macros SINT32, SINT16, and SINT8 shown in
Fig. 6 are defined which performs unsigned to signed conver-
sion without triggering undefined behavior1.

D. Precision
When higher precision is needed in the computation for in-

structions, necessary type conversion is inserted. Examples for
multiplication of RISC-V is shown in Fig. 7.

• mul instruction computes the product of unsigned 32-bit
integers rs1 and rs2 and writes the lower 32 bits of the
result to rd. Multiplication of 32-bit unsigned integer
type in C only leave the lower 32-bit of the result, no type
conversion is needed.
• mulhu instruction computes the product of unsigned 32-

bit integers rs1 and rs2 and writes the upper 32 bits of
the result to rd. This needs multiplication of the 64-bit
precision, so the operands are cast to of 64-bit unsigned
integers before multiplication. The upper half of the result

1Though they consist of several operations, GCC and LLVM of the latest
versions reduce them to null.

- 123 -

lw rd,off(rs) rd = (MEM 3[MA(rs+off)] << 24)
+ (MEM 2[MA(rs+off)] << 16)
+ (MEM 1[MA(rs+off)] << 8)
+ (MEM 0[MA(rs+off)]);

lh rd,off(rs) rd = (MEM 1[MA(rs+off)] << 8)
+ (MEM 0[MA(rs+off)]);

lb rd,off(rs) rd = (MEM 0[MA(rs+off)]);

sw rs2,off(rs1) MEM 3[MA(rs1+off)] = (rs2 >> 24);
MEM 2[MA(rs1+off)] = (rs2 >> 16);
MEM 1[MA(rs1+off)] = (rs2 >> 8);
MEM 0[MA(rs1+off)] = (rs2 & 255);

sh rs2,off(rs1) MEM 1[MA(rs1+off)] = (rs2 >> 8);
MEM 0[MA(rs1+off)] = (rs2 & 255);

sb rs2,off(rs1) MEM 0[MA(rs1+off)] = (rs2 & 255);

Fig. 9. Translation of load/store instructions

#define LB 0x7ffbfe

#define GB 0xc0000000

#define MA L(a) ((((a) - LB) / 4) + GN)

#define MA G(a) ((((a) - GB) / 4))

#define MA(a) (((a) >= LB) ? MA G(a) : MA L(a))

Fig. 10. Macros for address translation

is captured by a shift operation.
• mulh instruction computes the product of signed 32-bit

integers rs1 and rs2 and writes the upper 32 bits of the
result to rd. In this case, rs1 and rs2 must be converted
to 32-bit signed integers and then to 64 bit signed integers.
• mulhsu instruction computes the product of signed rs1

and unsigned rs2 and writes the upper 32 bits of the re-
sult to rd. The both operands must be extended to signed
64-bit integers, not unsigned 64-bit integers, before mul-
tiplication.

E. Load and store instructions
This paper assumes that the main memory is byte address-

able but mainly accessed by the word consisting of w bytes.
Then the main memory is modeled by w arrays of bytes. The
effective addresses of load/store instructions are translated to
the corresponding array indexes.

For example, when w = 4, and if the heap (global) region
of size GN starts at address GB, and the stack region of size
LN starts at address LB, the memory space is implemented as
4 arrays of bytes of size GN+LN, as shown in Fig. 8. A given
effective address is first tested if it belongs to the heap region
or the stack region, and then is converted to the array index.
The macros for the address translation is shown in Fig. 10,
where MA(a) in the bottom line gives the index corresponding
to address a.

Using the MA(a), load/store instructions are translated to ac-
cesses to the memory arrays, as the examples shown in Fig. 9.
“lw”, “lh”, and “lb” are load instructions for 4, 2, and 1-byte
data, respectively, while “sw”, “sh”, and “sb” are store in-
structions for 4, 2, and 1-byte data, respectively. Though they
involve several operations, high-level synthesis will optimize
the accesses to the arrays to be done in parallel and the shift
and add operations into mere data transfers.

F. Branch and jump instructions
A branch instruction can be converted to a conditional state-

ment and a goto statement.

 ...

80000084: bltu a1,a5,800000fc
 ...

800000fc: add a5,a5,a0

 ...

 if (a1<a5) goto L800000fc;
 ...

L800000fc:
 a5 = a5 + a0;

(a) conditional branch

 ...

80000084: jal ra,800000fc

 ...

800000fc: add sp,sp,16

 ...

 ra = 80000088;
 goto L800000fc;

L80000088:
 ...

L800000fc:
 sp = sp + 16;

(b) jump and link

Fig. 11. Translation of branch and jump instructions

…

npc = 0 + ra;

switch(hash(npc)){

case 0: goto L80000000;

case 2: goto L80000020;

case 7: goto L80000028;

...

}

...

npc = 0 + ra;

switch(hash(npc)){

case 0: goto L80000000;

case 2: goto L80000020;

case 7: goto L80000028;

...

}

...

…

npc = 0 + ra;

goto regjump;

…

npc = 0 + ra;

goto regjump;

…

regjump:

switch(hash(npc)){

case 0: goto L80000000;

case 2: goto L80000020;

case 7: goto L80000028;

...

}

...

…

jalr zero,0(ra)

…

jalr zero,0(ra)

…

Fig. 12. Translation of register jump instruction

An example of transformation of a “branch if less than un-
signed” (bltu) instruction is shown Fig. 11 (a). In a prepro-
cessing stage, all the head addresses of the functions and the
target addresses of the branch instructions are enumerated and
the labels are attached to the statements corresponding to the
instructions at the addresses.

In our scheme where a whole assembly program is translated
to a single function in the C program, call and return instruc-
tions in the assembly program can also be converted using goto
statements. A jump with link instructions used for a function
call is translated to statements to save the return address and
to jump to the head of the function. An example of translation
of a “jump and link” (jal) instruction is shown in Fig. 11 (b).
The address of the next instruction is saved in ra as the return
address and then jump is made to L800000d8.

Register jump instructions needs some elaboration, because
the target of a register jump is dependent on the value in the
specified register, which is determined only at run-time. This
problem is solved by 1) including all the possible return ad-
dresses to the list of the branch targets and 2) generate a switch
statement to jump to one of the labels determined at run-time.
An example of translation of a register jump instruction is
shown in Fig. 12. The hash function on the target address is
to reduce the number of bits. Note that all the jalr instructions
result in the same sentences. Thus, only a single switch state-
ment is generated and all the register jumps are directed to the
switch statement. This substantially reduces the resulting cir-
cuit size.

- 124 -

TABLE I
Synthesis result

program high-level synthesis proposed binary synthesis
#FF #LUT #DSP #cycle delay [ns] #insn #FF #LUT #DSP #cycle delay [ns]

bin search 164 405 0 22 6.720 38 198 523 (1.29) 0 21 (0.95) 5.924
bubble sort 112 190 0 90,300 6.514 37 170 631 (3.32) 0 90,002 (1.00) 6.514
lcm 1,419 1,363 3 200 8.470 39 1,654 1,801 (1.32) 3 204 (1.02) 8.470
prime 464 499 0 3,099 8.250 29 546 534 (1.07) 0 2,491 (0.80) 6.880
fsm32 3,307 4,767 64 265 8.470 226 3,827 4,699 (0.99) 66 268 (1.01) 8.470

GCC optimization: –O3, Synthesizer: Xilinx Vivado HLS (2020.1), Target: Xilinx Artix-7

test program
(C)

HDL

binary C

HDL

HLS
HLS

binary synthesis
(1) same result

(2) memory equiv
(3) memory equiv

(4) same result

(a)

(c)

(b)

(d)

Fig. 13. Flow of test of binary synthesizer

IV. Experimental results

Based on the proposed method, a binary synthesizer for
RISC-V has been implemented. The assumed ISA is RV32IM.
The synthesizer supports 45 instruction out of the 55 of
RV32IM, excluding fence, ecall, and control status register re-
lated instructions. Vivado HLS (2020.01) is used as a back-end
high-level synthesizer. The assembly to C translator is imple-
mented in Python3.

The implemented synthesizer was tested by comparing the
execution results of synthesized circuits by the binary synthe-
sizer against those by the high-level synthesizer. The flow of
test is shown in Fig. 13. First, test programs written in C are
prepared (a). The programs are composed so that their final re-
sults will be written to the memory at specific addresses. The
test programs are compiled and then translated to equivalent C
programs (b). By running the programs, it is tested if (a) and
(b) produce the same results. Then, both (a) and (b) are fed into
the high-level synthesizer to generate HDLs ((c) and (d)). By
co-simulation, it is tested if the C programs and HDLs yield
the equivalent memory access sequences ((2) and (3)). After
that, by simulation, it is tested if the pairs of HDLs produce
the same results (4).

The implemented binary synthesizer were evaluated using
5 RISC-V binary programs, which were generated from 5 C
programs by GCC. The GCC was of version 10.2.0 targeting
riscv32-unknown-elf and the optimization option was –O3.

The result is summarized in Table I. Among them, “fsm32”
is a randomly generated state machine of 32 states that repeats
state transition 128 times using remainder operations to deter-
mine the next states. The columns “high-level synthesis” show
the results of high-level synthesis from the original C programs
(these are just for reference and we do not intend to beat the
high-level synthesizer). The column “#insn” in the “proposed
binary synthesis” section shows the number of the instructions
of the binary programs.

The resulting circuit size is 3.32 times larger for bubble sort
but about the same for the other test programs. The execution
cycles and the critical path delay are almost the same as high-

TABLE II
Impact of program size

program #insn #FF #LUT #DSP #cycle delay [ns]
fsm16 126 1,864 2,500 35 261 8.470
fsm32 226 3,827 4,699 66 268 8.470
fsm64 419 7,033 9,649 194 283 8.470
fsm128 810 13,532 17,569 386 257 8.597
fsm256 1,720 24,543 29,635 514 260 8.670
fsm512 3,738 45,871 56,755 1,026 257 8.470

TABLE III
Impact of compiler option

program option #insn #FF #LUT #DSP #cycle delay [ns]
–O0 55 375 1,530 0 101 8.661

bin search –O1 37 232 673 0 29 7.557
–O2 42 166 530 0 20 7.113
–O3 38 198 523 0 21 5.924
–O0 86 794 1,985 0 362,107 8.660

bubble sort –O1 43 162 649 0 90,002 6.514
–O2 37 170 631 0 90,002 6.514
–O3 37 170 631 0 90,002 6.514
–O0 74 1,590 1,911 3 213 8.470

lcm –O1 47 1,492 1,467 3 212 8.470
–O2 41 1,588 1,801 3 189 8.470
–O3 39 1,654 1,801 3 204 8.470
–O0 40 515 920 0 1,145 6.616

prime –O1 32 546 553 0 1,767 8.280
–O2 29 546 534 0 3,447 6.880
–O3 29 546 534 0 2,491 6.880
–O0 704 2,671 16,511 64 1,105 8.470

fsm32 –O1 220 4,013 5,059 98 266 8.470
–O2 226 3,827 4,699 66 268 8.470
–O3 226 3,827 4,699 66 268 8.470

level synthesis.

In order to see an impact of program size on the resulting
circuits, binary synthesis is run on different sizes of the state
machine programs. The result is shown in Table II. “fsmn” is
a state machine program of n states. For all the programs, the
number of transition was fixed to 128. It can be observed that
the circuit size grows in proportion to the number of instruc-
tions, but that the execution cycles and the critical path delay
stay almost the same.

Table III shows the result of an experiment to see relation
between the code quality in terms of the GCC’s optimization
options and the quality of the synthesized circuits. All the op-
tions –O1, –O2, and –O3 led to smaller circuits than –O0,
which seems mainly due to the number of instructions. The
cycle count varies, and it seems that we should better try plural
options to get the best synthesis results.

- 125 -

V. Conclusion

This paper has proposed an easy way to implement binary
synthesizers utilizing existing general high-level synthesizers
as their back-ends. A binary synthesizer for a new instruction
set architecture can be developed by only implementing a bi-
nary to C translator. An experimental result shows that synthe-
sized circuits from RISC-V binary programs are 1.00 to 3.32
times larger than those synthesized from original C programs,
but the number of execution cycles are almost the same.

A strength of our method is seamless handling of pointers
(addresses). For example, data objects can be shared among
functions by passing pointers. However, our method handles
only a single hardware module, so sharing of global objects
among multiple modules is impossible. Moreover, memory
mapped I/O is not supported either in the current framework.
To meet these requirements, we are now working on translation
of assembly codes to a different style of C programs that can
access an external memory via address and data ports. It is also
an interesting topic to generate C programs that lead to better
HLS results.

Acknowledgments
Authors would like to express their appreciation to Dr. Hi-

royuki Kanbara of ASTEM/RI, Prof. Hiroyuki Tomiyama of
Ritsumeikan University, and Mr. Takayuki Nakatani (formerly
with Ritsumeikan University) for their discussion and valu-
able comments. We would also like to thank to the mem-
bers of Ishiura Lab. of Kwansei Gakuin University. This work
was partly supported by JSPS KAKENHI under Grant No.
19H04081.

References

[1] D. D. Gajski, N. D. Dutt, A. C-H Wu, and S. Y-L Lin: High-Level Syn-
thesis: Introduction to Chip and System Design, Kluwer Academic Pub-
lishers (1992).

[2] G. Stitt and F. Vahid: “Binary synthesis,” ACM Trans. Design Automation
of Electronic Systems, vol. 12, no. 3, pp. 1–30 (Aug. 2007).

[3] N. Ito, N. Ishiura, H. Tomiyama, and H. Kanbara: “High-level synthesis
from programs with external interrupt handling,” in Proc. SASIMI 2015,
R1-3, pp. 10–15 (Mar. 2015).

[4] N. Ito, Y. Oosako, N. Ishiura, H. Tomiyama, and H. Kanbara: “Binary
synthesis implementing external interrupt handler as independent mod-
ule,” in Proc. RSP 2017, pp. 92–98 (Oct. 2017).

[5] N. Ishiura, H. Kanbara, and H. Tomiyama: “ACAP: Binary synthesizer
based on MIPS object codes,” in Proc. ITC-CSCC 2014, pp. 725–728
(July 2014).

[6] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, J. H. Anderson: “LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,” in ACM
Trans. on Embedded Computing Systems, vol. 13, no. 2, pp. 1–27 (Sept.
2013).

- 126 -

