
Hardware RTOS Services
for Full Hardware Implementation of RTOS-Based Systems

Hiro MINAMIGUCHI Masaki NAKAHARA Yugo ISHII
Yukino SHINOHARA Iori MUGURUMA †,∗ Nagisa ISHIURA

Kwansei Gakuin University
1 Gakuen Uegahara, Sanda, Hyogo, 669-1330 Japan

Abstract—This paper presents hardware implementation of
RTOS services for full hardware implementation of RTOS-based
systems, where all the task programs and all the RTOS functions
are implemented as hardware. Hardware methods for processing
services of mutexes, event flags, data queues, shared variable ac-
cesses, and task control are proposed. Wait and release operations
necessary in synchronization and communication services are ef-
ficiently performed using a request arbitration module. Timeouts
are also handled by hardware using distributed timers. A hard-
ware module that contains two mutexes, two event flags, one data
queue of 320B data, and shared variable of 1024B, as well as task
scheduling and control functions, has been designed in Verilog
HDL. It was synthesized to an FPGA circuit of 4,300 LUTs and
2,200 flip-flops (Xilinx Artix-7). All the services can be executed
well in 150 ns, which is fast enough even for extreme applications.

I. Introduction

Recent advances in information and communication tech-
nologies are driving invention and deployment of new digital
services for our society. Within this trend, embedded devices
are getting more and more rich and sophisticated in their func-
tionalities. In some areas such as unmanned aerial vehicle, au-
tonomous cars, and service robots, high response performance
is also required in addition to the functionalities.

A real-time operating system (RTOS) is an indispensable
building block for such real-time systems, where tasks must
be processed within the specified periods in response to in-
put events. It helps designers to implement real-time systems
by providing controllability and predictability on the execu-
tion time of concurrent tasks. However, as the heavier loads
are posed on the tasks, it is getting the more difficult to ensure
real-time performance.

As an approach to lessen burden on CPUs, there have been
many efforts to implement some or all functions of RTOS as
hardware [1, 2, 3, 4, 5]. On the other hand, there have also been
some attempts to execute tasks by hardware [6, 7]. While only
some parts of systems are implemented as hardware in these
methods, [8] and [9] have proposed methods to implement a
whole system as hardware, which are however only applicable
to bare metal systems.

As a method to implement a whole RTOS-based system as
hardware, Oosako [10] proposed a full hardware scheme us-

*Currently with Honda Motor Co., Ltd., Japan.

ing high-level synthesis. Assuming that the tasks are created
statically at compile time, every task is synthesized into an in-
dependent hardware component which can run in parallel with
those of the other tasks. The tasks are controlled by a manager
hardware that runs/stops the tasks based on the tasks statuses,
which does not need ready queues. The preliminary implemen-
tation supports FreeRTOS1 [11] as well as TOPPERS/ASP32.
However, the resulting circuits were too large even for small
demo programs.

To address this issue, Ando and Muguruma has proposed
a different architecture for full hardware implementation of
RTOS-based systems [12]. Duplication of hardware for pro-
cessing RTOS services (service hardware) is eliminated by
moving the service hardware from the task modules to the
manager. It also enables the use of a general commercial high-
level synthesizer, instead of an in-house binary synthesizer.
They have succeeded in drastically reducing the circuit size
by this architecture.

This paper proposes hardware implementation of RTOS ser-
vices for the architecture in [12]. Mutexes, event flags, data
queues, task control, and shared memory access, are imple-
mented as hardware modules, where wait and release for task
synchronization are efficiently implemented utilizing a request
arbitration hardware. Timeouts are also efficiently handled by
hardware using distributed timers. An example manager mod-
ule which can control 4 tasks and provide 5 services has been
designed in Verilog HDL, which is synthesized into a circuit of
reasonable size and of extremely high response performance.

II. full hardware implementation of RTOS-based systems

A. full hardware implementation
A real-time operating system (RTOS) controls the execution

of concurrently running sequential computation entities, called
tasks. It schedules execution of the tasks based on their priori-
ties so that tasks associated with input events will be performed
within specified periods.

Oosako proposed a full hardware scheme where both the
tasks and the RTOS functions are implemented as hardware
which is functionally equivalent to a CPU that runs the pro-
gram [10]. Fig. 1 shows the concept. “task1” through “taskn”
are software tasks running under an RTOS. They are converted

1https://www.freertos.org/
2https://www.toppers.jp/

SASIMI 2022 ProceedingsA-3

- 14 -

RTOS

task1 task2 taskn...

T1 T2 Tn...

CPU

DMEM

manager

DMEM

Fig. 1. full hardware implementation of RTOS-based system [12]

TF0 TA0 TF1 TA1 TF2 TA2

T0 T1 T2

request arbiter (RA)

XT XF XA

STATUS

WAIT

mutex event
flag

data
queue

shared
variable

task
control

manager

Fig. 2. Architecture of manager [12]

into hardware modules (task modules) “T1” through “Tn” by
high-level synthesis [13]. “Manager” is a hardware module
that replaces the RTOS. It controls execution of the task mod-
ules and provides services such as mutexes and data queues.

All the task modules are executed in parallel as soon as they
become ready. The manager simply controls run/pause of each
task by a signal generated from the task state, which eliminates
the need for the ready queues and the task scheduler.

Response time of the system is drastically reduced by this
scheme due to 1) parallel execution of tasks (no CPU wait), 2)
no overhead regarding scheduling nor context switching, and
3) hardware acceleration.

Limitation to this scheme is that all the tasks must be stati-
cally created (at compile time). Moreover, the number of tasks
is limited to as much as 16. Although tasks are executed in par-
allel, RTOS services are processed sequentially so as to avoid
interference among them.

B. Architecture of Manager
The hardware configuration of the manager proposed in [12]

is shown in Fig. 2. “T0”, “T1”, “T2” are task modules. “mu-
tex”, “event flag”, through “task control” in the manager are
service modules that provides RTOS services. The services
are processed one at a time to avoid conflicts among them.
“request arbiter” (RA) is a module to serialize execution of
services when multiple requests are issued from tasks at the
same time. “STATUS” is a collection of registers that keeps the
state, the priority, the timer, and so on of each task. “WAIT” is
a two dimensional array of flags to keep track of which task is
waiting for which service.

Ti issues a request for a service by writing the ID of the
service and necessary arguments to registers TFi and TAi, re-
spectively. If multiple tasks issued the requests at the same
time, the RA chooses one of them based on the priorities of the
tasks. The RA writes the ID of the selected task to register XT

TF0 TA0 TF1 TA1 TF2 TA2

0

mux
10

mux
10

mux
10

00

max_index
0 1 2

mux
10

XT XF XA

WAIT

STATUS

req0 req1 req2

2
mux

10 2

wt2
wt1
wt0

cpri2
cpri1
cpri0

stall2
stall1
stall0

wt2

task2 0 0 1 0 0 0

...

wt1

task1 0 0 0 0 0 0

...

wt0

task0 0 0 0 0 1 0

...

0 1 2 3 4 5service:

Fig. 3. Hardware configuration of request arbiter (RA)

and copies the contents of TFi and TAi to registers XF and XA,
respectively. Then the service module in charge processes the
request and writes the result to XA, which is forwarded back
to the task through TAi.

As soon as a task becomes Ready, the manager changes its
state to Running in the next cycle, so that all the ready tasks
run in parallel. In the hardware scheme of [12], all the tasks,
including the ones in Dormant or Suspended states, are al-
lowed to run, though only service requests from Running tasks
are processed; requests from Dormant or Suspended tasks are
blocked until they become Running. Since the access to the
shared global variables is also dealt with as one of the RTOS
services in this scheme, Dormant or Suspended tasks may up-
date their local states but could not affect the other tasks nor
external devices.

III. Hardware RTOS services

A. Overview
This paper proposes hardware implementation of RTOS ser-

vices dedicated to the architecture of [12]. The technical fea-
tures are as follows:
• Mutexes, event flags, data queues, task control, and

shared memory access, are implemented as hardware that
works in cooperation with the request arbiter module.
• Wait and release operations which are essential for

synchronization and communication services are imple-
mented with a combination of the WAIT register and the
request arbiter, without using lists of waiting tasks.
• Timeouts are efficiently handled by hardware using dis-

tributed timers instead of a centralized timer.

B. Request arbiter (RA)
The request arbiter (RA) module receives requests from

tasks and forwards them to the service modules. If there are
multiple requests at the same time, they are arbitrated accord-
ing to the priories of the tasks.

Fig. 3 shows the hardware configuration of the RA.

- 15 -

XA[1]XA[0]XFXT

mutex
ID RC

lock
unlock

task
ID

mutex
0 1 2

0

task 1

max priority
LUT

2

0 1 1

0 0 0

000

lock

(a) Configuration

priority ceiling

mutex 2 1 0
ceiling 3 5 1

look-up table

lock[t][*] max priority

0 0 0 –
0 0 1 1
0 1 0 5
0 1 1 5
1 0 0 3
1 0 1 3
1 1 0 5
1 1 1 5

(b) Table to lock-up maximum priority ceiling

Fig. 4. Mutex module

Signal stalli generated from the STATUS register means that
taski must pause because the state of taski is not in the Run-
ning state. Signal cprii is the current priority of taski where
the larger value means the higher priority. WAIT is a two di-
mensional array of flags where WAIT[i][s] is set iff taski is
waiting for some service s. Signal wti means that taski is wait-
ing for some service. “Max index” unit outputs the task ID of
the highest current priority. The inputs to the max index unit
are blocked if the tasks are not in the Running state or the tasks
are waiting for services. The resulting task ID is written into
register XT, and TFi and TAi of the selected task are copied
into XF and XA.

The arbitration completes in a single clock cycle, though the
tree to priority comparators in the max index unit will form the
critical path of the combinational logic.

C. Mutex
A mutex provides the atomic lock/unlock operations with a

protocol to prevent priority inversion. The priority ceiling pro-
tocol is assumed in this paper; a locker-priority is defined to
each mutex, and when a task locks mutexes, the current prior-
ity is raised to the maximum value among the locker-priorities
of the mutexes that the task locks and the task’s base priority.
When multiple tasks are waiting for a mutex and the locker
task unlocks the mutex, the waiting task of the highest priority
acquires the lock.

In our scheme, a single mutex module manages all the mu-
texes defined in a given system. Fig. 4 (a) illustrates its config-
uration. It contains a matrix of flags, where lock[t][m] is set iff
task t is locking mutex m, and a look-up table to find the max-
imum priority ceiling. The RTL behavior of the mutex module
for the lock operation is shown in Fig. 5 (a).

In the initial state (STATE0) it watches XF until the ID of
this module, MUTEX, is written to its module field (mod).
Then if LOCK function is specified in XF’s function field
(func), it gets task ID t and mutex ID m from XT and XA[0]
and tests if mutex m is locked by any other task.

If it is not locked, the module lets task t lock mutex m as
described in (1) and (2). It sets lock[t][m] flag and updates
the current priority of task t. This takes two cycles; it reads

XF.mod!=MUTEX XF.mod==MUTEX &&
XF.func==LOCK

XF.mod==MUTEX &&
F.func==UNLOCK

(b)

t = XT m = XA[0]

OR(lock[*][m])==0

WAIT[t][MUTEX(m)] <= 1
done = 1

Y N

STATE0

STATUS[t].cpri <= max(bpri,MAXCEIL(lock[t][*]))

STATE1

lock[t][m] <= 1
bpri <= STATUS[t].bpri
XA[0] <= RC_OK
return = 1

(1) (3)

(2)

(a) lock

OR(lock[*][m])==0

lock[t][m] <= 0
WAIT[*][MUTEX(m)] <= 0
bpri <= STATUS[t].bpri
XA[0] <= RC_OK
return = 1

Y N

STATE0

STATUS[t].cpri <= max(bpri,MAXCEIL(lock[t][*]))

STATE1

XA[0] <= RC_ERR
return = 1

t = XT m = XA[0]

(4) (5)

(6)

(b) unlock

Fig. 5. RTL behavior of mutex module

the base priority (bpri) of t from the STATUS register and then
updates the current priority (cpri). The maximum ceiling value
among the mutexes locked by task t (MAXCEIL) is found in
the look-up table. An example of the table is shown in Fig.
4 (b), where the ceiling value of mutexes 2, 1, and 0 are 3,
5, and 1, respectively. If task t has locked mutexes 2 and 0,
then lock[t][*] is 101 and the maximum ceiling is found to be
3. After writing a return code (RC OK) to XA[0], it raises the
completion signal (return) to return control to the manager.

Though it takes two cycles to read and write the current pri-
ority, the write to the STATUS register can be done in parallel
with the copy of XA to TAt by the manager. For this purpose,
the mutex module sets the return code and notifies the comple-
tion in the first state.

When the mutex is already locked, it proceeds to (3) in Fig.
5 (a). While typical software implementation involves manipu-
lation of a list of waiting tasks, which should be kept sorted by
the tasks’ priorities, our hardware implementation does not use
the list. It just sets the [t][MUTEX(m)] bit of the WAIT reg-
ister, where MUTEX(m) is the serial service number of mutex
m. This keeps the request from task t waiting at the input of
the RA. A different completion signal (done) is used to pass
control back to the manager not to return the result code to the
task.

The behavior for the unlock operation is shown in Fig. 5 (b).
If the mutex is not locked, an error code is returned (4). Oth-
erwise, the lock is released in two cycles ((5) and (6)). After
clearing the lock bit, it clears all the WAIT[*][MUTEX(m)]
bits. This temporarily releases the requests for mutex m from
waiting. Then, the request of the highest task priority will be
selected by the RA and forwarded to the mutex module. The
update of the current priority of the task is done in the same

- 16 -

(flag[f] & p)==p

WAIT[*][EVENTFLAG(f)] <= 0
done = 1

Y N

flag[f] <= flag[f] & p
XA[0] <= RC_OK
return = 1

t = XT f = XA[0] p = XA[1]

XF.mod==EVENTFLAG && XF.func==WAIT

(a) wait

flag[f] <= flag[f] | p
WAIT[*][EVENTFLAG(f)] <= 1
XA[0] <= RC_OK
return = 1

t = XT f = XA[0] p = XA[1]

XF.mod==EVENTFLAG && XF.func==SET

(b) set

Fig. 6. RTL behavior of eventflag module

way as in the lock operation.
Although it takes 3 more cycles before the waiting task of

the highest priority resumes execution, the release is done by
the RA and thus the task that issued the unlock request does
not have to wait for it.

D. Event flag
An event flag provides a tool for task synchronization. Its

basic operations include set and wait. By the set operation,
a task can set a bit pattern to the event flag, and by the wait
operation, a task can wait for a desired bit pattern to be set in
the event flag.

As with the mutex module, a single event flag module man-
ages all the event flags in the system. The module has an array
of registers (flag) where the bit pattern set for event flag f is
kept in flag[f].

The RTL behavior for the wait operation is shown in Fig. 6
(a). It gets the ID f of the event flag and bit pattern p from
XA. If all the bits in p are set in flag[f], it clears the bits and
return to the task. Otherwise, it forces task t to wait by setting
the flag in the WAIT register.

The behavior for the set operation is shown in Fig. 6 (b).
It first updates flag[f] by ORing it with p. Then it clears all
the bits regarding f in the WAIT register. This releases the
requests waiting for f at the RA, if any, which are resent to the
event flag module in the order of the task priorities.

The both operations take only a single cycle.

E. Data queue
A data queue is a mechanism for passing fixed length data

between tasks. Its basic operations include send and receive,
where send appends a datum at the end of the queue and re-
ceive takes the head data out of the queue. The maximum
number of data is predefined for each queue. Thus, a send
operation to a full queue makes the sender task wait until some
other task receives from this queue. When multiple send oper-
ations are waiting, they are processed in the order of the task
priorities. Receive operations on an empty queue are processed
in the same manner.

Fig. 7 shows the configuration of the data queue module,
which is in charge of all the data queues defined in the sys-

data[0]

rp[0] wp[0] used[0] 32 5

data[1]

rp[1] wp[1] used[1] 51 6

...

XA[1]XA[0]XFXT

Fig. 7. Data queue module

used[q] < QSIZE[q]

WAIT[t][QUEUE(q)] <= 1
done = 1

Y N

data[q][wp[q]] <= d
wp[q] <= (wp[q]+1) % QSIZE[q]
used[q] <= used[q] + 1
WAIT[*][QUEUE(q)] <= 0
XA[0] <= RC OK
return = 1

t = XT q = XA[0] d = XA[1]

XF.mod==QUEUE && XF.func==SEND

(1) (2)

Fig. 8. RTL behavior of data queue module (send)

memory

XA[1]XA[0]XFXT

data aligner

address RC dataR/W & size

...

Fig. 9. Shared variable read/write module

tem. Each data queue q is managed with an array of data
(data[q][*]), read and write pointers (rp[q] and wp[q]), and a
register to record the number of data in the queue (used[q]).

The RTL behavior for the send operation is shown in Fig.
8. After receiving a task ID (t), a target queue ID (q), and
a datum (d), it tests if there is a space for d in the queue.
If yes, (1) it enqueues d and notifies success with the return
code. At this point, it resets all the wait flags regarding q in
the WAIT register, to release all the waiting send requests for
queue q (if any). If the queue is full, (2) it sets the wait flag
WAIT[t][QUEUE(q)] to let task t wait.

The receive operation is similar to the send operation. The
both operations complete in a single cycle.

F. Shared variable access
An access to the shared (global) variable is dealt with as one

of the services of the RTOS in the architecture of [12]. The
read/write requests are processed in the order of task priorities.

As shown in Fig. 9, the major components of the shared
variable module are a memory array and a data aligner. The
module receives an operation code from XF, which specifies
read or write and the number of bytes (1, 2, or 4) of the datum
and an address from XA[0]. In the case of the read operation,
the return code and the datum are written back to XA[0] and
XA[1], respectively. In the case of the write operation, a datum
in XA[1] is written into the memory and a code is returned to
XA[0].

Though the memory array is logically inside the module,

- 17 -

cpuloc != 1 XA[0] <= RC_ERR1
return = 1

Y N

t <= XA[0]

XF.mod==TSK_CTRL && XF.func==ACT_TSK

cpuloc <= STATUS[G].cpuloc

actcnt <= STATUS[t].actcnt

actcnt < MAX_ACTCNTY N

state <= STATUS[t].state

STATUS[t].state <= READY

state != DORMANTY N

STATUS[t].actcnt <= actcnt + 1

XA[0] <= RC_OK
return = 1

XA[0] <= RC_ERR2
return = 1

Fig. 10. RTL behavior for task activation

TF0 TA0 TF1 TA1 TF2 TA2

T0 T1 T2

Request Arbiter (RA)

XT XF XA

STATUS

WAIT

mutex event
flag

data
queue

mem
access

task
control

T0 T1 T2

(3) expire (4) set cancel bit

(5)

(6)

(7)

(8)

(1)

(2)
count
down

(6)

Fig. 11. Mechanism of timeout

it may be physically implemented with flip-flops, on-chip
RAMs, or off-chip RAMs.

G. Task control

A task control module processes all the service calls to
change the states or the priorities of the tasks. The services
are processed mainly by reading/writing the STATUS register.

An example of the RTL behavior for task activation is shown
in Fig. 10, where the state of the task specified in register
XA[0] is changed from Dormant to Ready. Though the essen-
tial operation is just the update of STATUS[t].state in the final
state, this operation takes 5 cycles including error handling.

H. Timeouts

An optional timeout period may be specified for mutex lock,
event flag wait, and data queue send/receive requests. This pa-
per proposes an efficient way of handling timeouts by hard-
ware.

The mechanism of timeout is shown in Fig. 11. Each task is
provided with a timer which is kept in the STATUS register.

When a service module lets a request wait with a timeout
period, it sets the period into the timer of the task at the same
time it sets the flag in the WAIT register (1).

The manager decrements active timers at every clock (2).
When a timer expires (3), the manager lets the service module
deal with cancellation. For this purpose, the manager sets the
cancel bit in register TF (4). If this bit is set, the RA forwards

TABLE I
Synthesis result

module #LUT #FF delay
mutex (2) 1070 45
eventflag (2) 170 64
data queue (1 × 1B × 8) 117 10
shared variable (32B×32) 112 0
task control 2,417 151
manager 697 1,913
total 4,583 2,183 7.349 [ns]

Logic synthesizer: Xilinx Vivado (2016.4)
Target: Xilinx Artix-7 (xc7a100tcsg324-3)

the request with the highest priority (5) 3.
Recognizing the cancel bit, the service module processes

cancellation (6), which includes reset of the WAIT flag as well
as returning of an error code. The manager forwards the error
code to the task (7) and then the task knows the request has
been expired.

For service modules, the overhead of timeout handling is
just to set timers, which can be done in parallel with the normal
processing in many cases, and to do cancel processing. The
rest of the work is done by the manager hardware. In the worst
case, where another request which takes T cycles is forwarded
to the service module at the same cycle as the cancel bit is set,
the waiting task resumes execution 6 + T + C cycles after the
timer expiration, where C is the number of cycles for the cancel
processing.

IV. Experimental result

Based on the proposed architecture, a manager module
along with service modules has been designed in Verilog HDL.
The design is synthesized using Xilinx Vivado (2016.4) target-
ing Xilinx Artix-7 (xc7a100tcsg324-3) FPGA.

The size in terms of the LUT and flip-flop counts and the
critical path delay of the resulting circuit are shown in Table I.
The experimental setup is as follows:

• The manager has 4 ports for tasks.
• The mutex module has 2 instances.
• The event flag module has 2 instances.
• The data queue module has an instance of 32B×10 data.
• The shared variable module has 32B × 32 word memory.
• The task control module implements the following 12 ser-

vices of TOPPERS/ASP3
act tsk, can act, ter tsk, chg pri, get pri, wup tsk,
can wup, rel wai, sus tsk, rsm tsk, loc cpu, unl cpu
• At this point, timeout has not been implemented.

It seems that the data arrays in the data queue and shared
variable modules were synthesized with LUT-RAMs rather
than block RAMs. The task control module was large because
it must handle many services with long state transitions for er-
ror handling. The critical path delay, which is considered to
come from the comparator tree to find the highest priority task
in the RA, was small enough in this setup.

3If the cancel occurs during some other service is being processed, the
cancel is processed after the current service is finished.

- 18 -

TABLE II
Response performance

module service #cycle
mutex lock 5

unlock 5 (+3)
event flag wait 5

set 5 (+3)
data queue send 5 (+3)

receive 5 (+3)
shared memory read 5

write 5
task control act tsk 10

wup tsk 10
ext txk 10
ras ter 9
ter tsk 7
slp tsk 15

The response performance of the services are summarized
in Table II. The number of cycles for locking a free mutex, for
example, consists of 1) a cycle for a task to write the request
to the TF and TA registers, 2) a cycle for the RA to forward
the request to the XF and XA registers, 3) a cycle for a service
module to lock the mutex and to write the return code back
to the XA register, 4) a cycle to forward the code to the TA
register, and 5) a cycle for the task to read the code to resume
execution. Mutex unlock also takes 5 cycles for the task to
receive the return code for the request regardless of whether
other tasks are waiting for the mutex. It takes extra 3 cycles
until the task that has newly acquired the mutex resume to its
execution. The synchronization and communication services
other than the mutex take the same cycles. The task control
calls take longer cycles for error handling.

All the services can be executed well in 150 ns, which is fast
enough even for extreme applications.

V. Conclusion

Hardware design of RTOS services necessary for full hard-
ware implementation of RTOS-based systems has been pro-
posed in this paper. All the functions of mutexes, event flags,
data queues, shared variables, and task control services are im-
plemented as hardware. Wait and release of service requests
are efficiently handled by hardware. The resulting hardware is
of reasonable size and runs extremely fast.

There is much room for improvement in the proposed archi-
tecture. The issues to be addressed are as follows:

• We have also implemented other service modules for syn-
chronization and communication, such as task notifica-
tion and message buffers. However, dynamic memory al-
location has not been implemented yet.
• In our implementation, waiting requests are released only

in the order of the task priorities. However, in some RTOS
specification, waiting tasks must be processed in the order
of their arrival. We are now working on release of waiting
requests in the arrival order.
• We have only designed a manager module for up to 4

tasks, but more tasks should be handled. We are now
working on automatically generating managers for an ar-
bitrary number of tasks. After finding a bottleneck of our

scheme, we will try to improve our architecture to handle
the larger number of tasks.

Acknowledgments
Authors would like to express their appreciation to Dr. Hiroyuki

Kanbara of ASTEM/RI, Prof. Hiroyuki Tomiyama of Ritsumeikan
Univ., Mr. Takayuki Nakatani (formerly with Ritsumeikan Univ.), Mr.
Shimpei Tamura (formerly with Kwansei Gakuin Univ.) for their dis-
cussion and valuable comments. We would also like to thank to the
members of Ishiura Lab. of Kwansei Gakuin Univ. This work was
partly supported by JSPS KAKENHI under Grant No. 19H04081.

References

[1] Y. Cho, S. Yoo, K. Choi, N-E Zergainoh, and A. A. Jerraya:
“Scheduler implementation in MPSoC design,” in Proc. ASP-
DAC 2005, pp. 151–156 (Jan. 2005)

[2] M. Vetromille, L. Ost, C. A. M. Marcon, C. Reif, and F. Hes-
sel: “RTOS scheduler implementation in hardware and software
for real time applications,” in Proc. RSP ’06 pp. 163–168 (June
2006).

[3] T. Nakano, Y. Komatsudaira, A. Shiomi, and M. Imai: “Perfor-
mance evaluation of STRON: A hardware implementation of a
real-time OS,” in IEICE Trans. Fundamentals, vol. E82-A, no. 11
pp. 2375–2382 (Nov. 1999).

[4] N. Maruyama, T. Ishihara, and H. Yasuura: “An RTOS in hard-
ware for energy efficient software-based TCP/IP processing,” in
Proc. SASP 2010, pp. 58–63 (June 2010).

[5] P. Kohout, B. Ganesh, and B. Jacob: “Hardware support for real-
time operating systems,” in Proc. CODES+ISSS ’03, pp. 45–51
(Oct. 2003).

[6] S. Shibata, S. Honda, H. Tomiyama, and H. Takada: “Advanced
system-builder: A tool set for multiprocessor design space ex-
ploration,” in Proc. ISOCC 2010, pp. 79–82 (Nov. 2010).

[7] Y. Ando, S. Honda, H. Takada, M. Edahiro: “System-level design
method for control systems with hardware-implemented interrupt
handler,” IPSJ Journal of Information Processing, vol. 23, no. 5,
pp. 532–541 (Sept. 2015).

[8] N. Ito, N. Ishiura, H. Tomiyama, and H. Kanbara: “High-level
synthesis from programs with external interrupt handling,” in
Proc. SASIMI 2015, R1-3, pp. 10–15 (Mar. 2015).

[9] N. Ito, Y. Oosako, N. Ishiura, H. Tomiyama, and H. Kanbara:
“Binary synthesis implementing external interrupt handler as in-
dependent module,” in Proc. RSP 2017, pp. 92–98 (Oct. 2017).

[10] Y. Oosako, N. Ishiura, H. Tomiyama, and H. Kanbara: “Synthe-
sis of full hardware implementation of RTOS-based systems,” in
Proc. RSP 2018, pp. 1–7 (Oct. 2018).

[11] W. Nakano, Y. Shinohara, and N. Ishiura: “Full hardware imple-
mentation of FreeRTOS-based real-time systems,” in Proc. TEN-
CON 2021, pp. 435–440, (Dec. 2021).

[12] T. Ando, I. Muguruma, Y. Ishii, N. Ishiura, H. Tomiyama and H.
Kanbara: “Full Hardware implementation of RTOS-based sys-
tems using general high-level synthesizer,” in Proc. SASIMI 2022
(Oct. 2022).

[13] D. D. Gajski, N. D. Dutt, A. C-H Wu, and S. Y-L Lin:
High-Level Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers (1992).

- 19 -

