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Abstract—As higher and higher functionalities are being im-
plemented in embedded systems, it is becoming difficult to ensure
their real-time performance. As one approach to enhancing
response performance of RTOS-based systems, Oosako proposed
a method for implementing both kernel objects and RTOS func-
tionalities as hardware utilizing high-level synthesis, where TOP-
PERS/ASP3 was assumed as an RTOS. This paper extends this
method to deal with systems based on FreeRTOS. In FreeRTOS,
tasks can be generated either statically or dynamically, whose
control data are managed in linked lists. We place restrictions
that all the tasks are generated before scheduler starts so that we
can keep the task control data in an array. Software timers are
dealt with as tasks that have their own timers. We also present
methods to implement dispatch disabling for mutual exclusion
and a data queue for asynchronous data communication. We
have implemented a hardware module from a reduced version
of a demo program main full.c and TimerDemo.c bundled with
FreeRTOS, which took less than 300 ns and 700 ns for task
control and data queue operations, respectively.

Index Terms—real-time systems, RTOS, FreeRTOS, hardware
accelerator, system synthesis, high-level synthesis

I. INTRODUCTION

Recent advances in information and network technologies
have made it possible to deploy various new services for our
everyday life. Accordingly more and more functionalities are
implemented in embedded devices. Especially in the area of
unmanned aerial vehicle, autonomous cars, and service robots,
high response performance is required as well as rich and
sophisticated functionalities.

These real-time systems, where tasks associated with input
events must be processed within specified periods, are im-
plemented using a real-time operating system (RTOS). The
RTOS helps designers to implement real-time systems by
providing controllability and predictability on the execution
time of concurrent tasks. However, it is getting more and more
difficult to ensure real-time performance as the complexity of
the systems grows.

One approach to this problem is hardware implementation.
There have been many efforts to implement some or all
functions of RTOS in hardware [1]–[6]. On the contrary,
there have been some attempts to convert software tasks into
hardware [7], [8], using high-level synthesis [9]. While these
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methods replace some parts of the systems by hardware, full-
hardware implementation scheme have proposed [10], [11],
which is however applicable only to bare metal systems.

For full-hardware implementation of RTOS-based systems,
Oosako [12] proposed a method to synthesize both tasks
and RTOS functions into hardware by high-level synthesis.
Assuming that the tasks are created statically at compile
time, every task is synthesized into an independent hardware
component which can run in parallel with those of the other
tasks. The scheduler is reduced to a simple controller without
queues. Although this scheme drastically enhances response
performance of systems, it has only been applied to systems
using TOPPERS/ASP3 [13].

This paper extends this full-hardware scheme to support
FreeRTOS [14]. All the tasks and handlers are resticted to
be static so that the task control data can be managed in an
array instead of linear lists. Methods to implement service
calls, software timers, dispatch disabling, and data queues in
this framework are presented.

A preliminary experiment on reduced version of a demo
program bundled with FreeRTOS has demonstrated that the
service calls for task control and for data queue operations
took less than 300 ns and 700 ns, respectively.

II. FULL HARDWARE IMPLEMENTATION OF RTOS-BASED
SYSTEMS

A. Hardware Synthesis from TOPPERS-Based Systems

An RTOS (Real-Time Operating System) runs multiple
sequential programs, called tasks, concurrently. It controls, or
schedules, the execution of the tasks based on their priorities so
that required work associated with input events to the system
will be performed within specified periods. A handler is a
special class of task that runs on an event, such as an external
signal or timer expiration. We call tasks and handlers as kernel
objects.

In [12], a method is proposed that synthesizes a given ap-
plication program using system calls of TOPPERS/ASP3 into
a hardware module which is functionally equivalent to a CPU
that runs the program. In this method, each task or handler
is synthesized into an independent hardware component by
high-level synthesis [9].

Fig. 1 illustrates the resulting hardware configuration. TSKi,
CYCi, ALMi, INTi on the right-hand side are hardware
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Fig. 1. Configuration of synthesized hardware [12]

components corresponding to tasks, cyclic handlers (executed
periodically), alarm handlers (executed on timer expiration),
and interrupt handlers (executed on external signals), respec-
tively. The manager module provides the functions of the
RTOS and the arbiter arbitrates the memory accesses to the
same memory banks.

All the task modules are executed in parallel as soon as
they become ready. The manager controls the task modules
by the stall signals; a task module stops when the stall signal
to the task is 1 and runs otherwise. The stall signal to a task
module is generated from the state and priority of the task
kept in the task status register and the system state in the
global status register. The cyclic and alarm handler modules
run in an autonomous way; they have their own timers and
start execution when their timers expire. Atomic functions like
lock/unlock are implemented by hardware.

The status registers are mapped in the memory space of
the tasks/handlers, so the original code of the service calls in
TOPPERS can be used with a little modification. Each task
module is generated from source codes of the task and the
called sevices by high-level synthesis.

Response time of the system will be drastically reduced
by this scheme due to 1) no overhead regarding scheduling
nor context switching, 2) parallel execution, and 3) hardware
acceleration.

TABLE I
STATES OF TASK IN FREERTOS

State Description
Running The task is actually running
Ready The task is able to execute but is not currently

executing because a different task of equal or higher
priority is already running

Blocked The task is not able to execute for it is awaiting for
either a temporal or external event

Suspended The execution of the task was forcibly interrupted by
another task

B. Differences between TOPPERS and FreeRTOS

From the viewpoint of our full-hardware scheme, there are
two major differences between TOPPERS and FreeRTOS.

Creation of all the tasks and handlers are static in TOP-
PERS; the number of the tasks and handlers are fixed at
compiler time. On the other hand in FreeRTOS, the tasks and
handlers can be created dynamically. They are static (dynamic)
if they are created before (after) the scheduler starts. For this
reason, the TCBs (task control blocks) are maintained in linked
lists, while an array is used in TOPPERS.

While TOPPERS defines cyclic and alarm handlers, FreeR-
TOS provides the same function in the form of software timers,
which may be created dynamically. In the system call to create
a software timer, xTimerCreate, a callback function along with
a period is passed as an argument. The address of the callback
function is stored in the control block of the software timer
and the function is called when the timer expires.

III. FULL HARDWARE IMPLEMENTATION OF
FREERTOS-BASED SYSTEMS

A. Overview

In this paper, we attempt to adapt Oosako’s method to
FreeRTOS to synthesize a hardware module which is func-
tionally equivalent to a CPU that runs a given program written
with service calls of FreeRTOS.

We keep the policy that a single task/handler is synthesized
into an independent hardware module. Since hardware mod-
ules are inherently static objects, we place a restriction that
all the kernel objects must be static. Namely, we deal with
programs where all the tasks, handlers, and software timers
are created before the scheduler is activated.

Based on this assumption, we manage the TCBs in an array
instead of linked lists so that they are efficiently handled by
hardware. We rewrite all the codes for the service calls that
have depended on the linked lists, though there is no need to
modify user programs.

Every software timer is implemented as an independent
hardware module with its own timer whose body is synthesized
from its callback function.

In addition, dispatch disabling for mutual exclusion and
a data queue for asynchronous data communication are also
implemented.

B. Management of TCBs

In FreeRTOS, each task is in one of the four states shown
in TABLE I. The state of each task is kept in a TCB (task
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Fig. 2. Data structure for task management

TABLE II
STATE VARIABLES FOR TASK

Variable Description
xState * Current state
uxPriority * Current priority
uxBasePriority * Base priority
uxTimer * Timer
ulNotifiedValue * Value sent to notify
ucNotifyState * State of notify
pcTaskName task name
uxMutexesHeld Flags of held mutexes
uxCriticalNesting Nesting count of critical sections

* Kept in the status registers in the manager

control block) along with the other information regarding the
task.

FreeRTOS manages the TCBs in linked lists each of which
keeps the TCBs of the tasks in the same state. As illustrated
in Fig. 2 (a), when the state of task 2 changes from Ready to
Blocked, the TCB of task 2 is relinked from the Ready list to
the Blocked list.

We change the data structure so that all the TCBs are
managed in a single array, for we have assumed all the tasks
are static and the number of the tasks is fixed. The state of a
task is simply stored as a member of its TCB; when the state
of task 2 changes from Ready to Blocked, just the state in the
TCB is updated, as shown in Fig. 2 (b).

All the members in the TCBs are basically stored in the
task registers (labeled as “task status” in Fig. 1). However, to
reduce the hardware size, the members which do not affect the
stall signal may be stored in the local memories for the tasks.
For example, out of 9 state variables listed in TABLE II, 6
variables marked by “*” should be held in the registers. The
variables representing the system state are also held in registers
in the manager (labeled as “global status” in Fig. 1).

The task status registers and the global status registers are
mapped in the memory space of the tasks so that they can be
accessed from tasks by reads/writes of the variables tied to
them.

C. Task Control and Implementation of Service Calls

The basic scheme for task control and service calls is the
same as that in [12]. Tasks are executed as soon as they
become Ready. For this purpose, the manager forces the states
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Fig. 3. Synthesis of service hardware.

1: void vTaskResume( TaskHandle t xTaskToResume )
2: {
3: TCB t * const pxTCB = xTaskToResume;
4: configASSERT( xTaskToResume );
5: if ( pxTCB–>xState != eRunning && pxTCB != NULL )
6: {
7: loc service call();
8: {
9: if( pxTCB –>xState == eSuspended )

10: {
11: pxTCB –>xState = eReady;
12: }
13: }
14: unl service call();
15: }
16: }

Fig. 4. Implementation of vTaskResume

of the tasks into Running as soon as they become Ready.
Namely, when a task become Ready, it turns Running in the
next cycle and starts execution.

Fig. 3 illustrates how service calls are synthesized into
hardware. Basically, the body of the services that a task calls
are converted into hardware together with the task by high-
level synthesis. The body of the services are rewritten so that:

1) it conforms with the change of the data structure of
TCBs, and

2) it can offload part of the scheduling or mutual exclusion
related burden to dedicated hardware.

Note that there is no need to rewrite the user codes (of tasks
and handlers).

For example, a service call vTaskResume, which changes
the state of a specified task from Suspended to Ready, can be
rewritten as shown in Fig. 4. Line 3 is to get an access to the
specified task and line 4 is for an error check. Lines 7 and
14 are internal calls to acquire/release the hardware lock for
serializing system calls (to avoid interference among service
calls). Line 11 changes the task state, as was shown in Fig. 2.
xSate of pxTCB is mapped to a member of the status register,
so that the manager hardware takes care of the scheduling
related work.

D. Disabling Dispatch

In this paper, we add a new feature of disabling dispatch,
which is used as a measure for mutual exclusion among tasks.

In a common software RTOS implementation, dispatch is
disabled by halting the scheduler so that the control will
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1: xQueueReceive() {
2: if (Queue is not empty) {
3: get the head data d out of Queue;
4: if (there are tasks whose xQueueSend() is Blocked) {
5: make one of the Blocked tasks Ready;
6: }
7: pass d to the calling task;
9: }

10: else {
11: set the timer of the calling task;
12: make the calling task Blocked;
13: // wait (resumes as soon as the task becomes Ready)
14: if (Queue is not empty) {
15: get the head data d out of Queue;
16: pass d to the calling task;
17: }
18: else { // timer has been expired
19: return ERROR;
20: }
21: }
22: }

Fig. 6. Outline of xQueueReceive call

not be passed to the other tasks. In our design, however, all
the possible tasks are running in parallel, so disabling the
scheduler does not work. As an alternative way, we let the
manager stall all the other tasks than the one called the service
to disable dispatch. This guarantees mutual exclusion.

This scheme is implemented by extending a global flag
variable, which indicates if dispatch is disabled, also to record
the ID of the task which has requested to disable dispatch.
If the flag is set, all the tasks whose ID is not equal to
the recorded ID are stalled. Fig. 5 illustrates an example
of hardware design. The global variable to control disabling
dispatch is held in a register in the manager. The revised
stall signal “stall’i” is generated from the original stall signal
“stalli” by a simple hardware consisting of a decoder “DEC”
and multiplexers “MUX.”

E. Implementation of Data Queue

A data queue provides asynchronous data communica-
tion among tasks. It keeps data in a fixed length array of
bytes where xQueueSend call puts a byte at the tail and
xQueueReceive call gets a byte from the head. If a task
attempts xQueueSend on a full data queue, the task is blocked
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Fig. 7. Implementation of software timer

until another task dequeues data. Similarly, tasks attempting
xQueueReceive on an empty data queue is blocked. Blocked
tasks are kept in a linked list. Time to wait may be specified
at xQueueSend/xQueueReceive calls; if send/receive does not
complete in the specified time, an error code is returned.

We implement the data queue with a combination of hard-
ware and software. The linked list of blocked tasks is replaced
by an array of bits where the i-th element is set iff the task
i is blocked. Instead of the centralized timer, we provide a
timer to every task. The timer is kept in the status register of
the task and the manager decrements all the non-zero timer at
every tick and changes the state of the tasks to Ready whose
timer become zero.

The outline of the body of the service call xQueueReceive
is shown in Fig. 6. If the queue is not empty (line 2), then
get the head data out of the Queue and pass it back to the
calling task. If there are tasks whose xQueueSend() calls are
Blocked (namely the Queue was full), wake up one of the
tasks of the highest priority by making its state to Ready. If
the Queue is empty (line 10), let the task wait until another
task calls xQueueSend() by setting the timer of the task and
making the task Blocked. The execution resumes at line 14 as
soon as the task becomes Ready, when the timer expires or
some task has called xQueueSend(). In either case, if Queue
is not empty then dequeue the Queue. Otherwise, notify the
calling task that it has timed out.

F. Implementation of Software Timers

Since we assume the software timers are created before the
scheduler starts, the number of software timers is fixed. We
provide for each software timer a hardware module, whose
body is synthesized from the callback function of the software
timer.

An overview of our software timer implementation is illus-
trated in Fig. 7. In the original scheme in FreeRTOS (left-
hand side), the daemon task manages the execution of all the
software timers. When a task calls a service call to activate a
software timer, a command is sent to the daemon task which
sets the timer period in the control block of the software timer.
As soon as the daemon task notices the timer expilation, it calls
the callback function whose address is stored in the control
block. In our scheme, all the timers are autonomous. Tasks
activate a software timer by directly writing its control block
via the service call. Each software timer is provided with a
timer in its control block, whose decrements and expiration is
dealt with by the manager hardware. At timer expiration, the



TABLE III
IMPLEMENTED HARDWARE MODULES

module function
top top module to connect all modules
manager manager
arbiter memory arbiter
lock0 support hardware for lock
lock1 support hardware for lock
LIM INC task to increment shared variable
CNT INC task to increment shared variable
C CTRL task to control LIM INC and CNT INC
Tmr Tst task to test timers
AR TMR1 auto-reload timer
AR TMR2 auto-reload timer
OS TMR1 one-shot timer
ISR OS TMR1 one-shot timer activated from ISR
ISR OS ISR that activates timer
SUSP SEND task to test disable dispatch and xQueueSend
SUSP RECV task to test disable dispatch and xQueueReceive

manager suppresses the stall signal to run the task module.
The task module notifies completion by raising its end signal.

The detailed execution flow of software timers is as follows:
0) Initially all the software timers are in the Blocked state.
1) A task calls xTimerStart to activate a software timer T.

xTimerStart accesses the control block of T to change
the state of T from Blocked to Running and to set time
to T’s timer.

2) The manager decrements the timer of the T at every tick,
and when it becomes 0 then make the stall signal 0 to
allow execution of the hardware module for T.

3) The hardware module notifies the completion by setting
the end signal to 1.

4) As soon as the manager detects end==1:
• it changes the state of T to Blocked, if the T is a

one-shot timer,
• it re-sets the period to the timer and return to 2, if

the T is an auto-load timer.
A small difference between TOPPERS and FreeRTOS is

that the function associated with a timer is executed in the
context of the handler in TOPPERS but of the daemon task in
FreeRTOS. In the FreeRTOS-based design, we should change
to the policy that the priorities of all the software timers are
forced to be equal to that of the daemon task and that execution
of the software timer modules are deferred when dispatch is
disabled.

IV. PRELIMINARY EXPERIMENT

Based on the proposed method, we have implemented a
hardware module from main full.c and TimerDemo.c, demon-
stration programs bundled with FreeRTOS. The programs are
reduced so that they can test only switching of tasks, software
times, and queues.

The resulting hardware modules are listed in TABLE III.
The first 5 modules (“top” through “lock1”) are generated by a
script from a parameter file based on manual design in Verilog
HDL. The other 11 modules for tasks, software timers, and a

TABLE IV
RESULT OF SYNTHESIS

(a) Execution cycles and latency

service call #cycle latency
[ns]

xTaskResume 20 299.12
vTaskSuspend 11 164.52
vTaskDelay 9 134.60
vTaskSuspendAll 15 224.34
xTaskResumeAll 16 239.30
vTaskPrioritySet 20 299.12
xTimerStart 14 209.38
xTimerStop 15 224.34
xTimerReset 15 224.34
xQueueSend 43 643.11
xQueueReceive 46 687.98
interrupt 1 14.96

critical path delay = 14.956 [ns]

(b) Circuit size

module #LUT #FF
top 370 0
manager 10,106 3,736
arbiter 624 11
lock0 32 21
lock1 32 21
LIM INC 10,928 902
CNT INC 11,817 992
C CTRL 13,478 1,020
Tmr Tst 11,385 1,031
AR TMR1 12,635 939
AR TMR2 12,319 895
OS TMR1 12,080 934
ISR OS TMR1 12,829 905
ISR OS — —
SUSP SEND 10,347 986
SUSP RECV 12,693 951
total 131,675 13,344

High-level synthesizer: ACAP (2016.10)
Logic synthesizer: Xilinx Vivado (2018.3)
Target: Xilinx Artix-7 (xc7a100tcsg324-3)

TABLE V
IMPLEMENTED SERVICE CALLS

task control xTaskResume
vTaskSuspend
vTaskDelay
vTaskSuspendAll
xTaskResumeAll
vTaskPriorityGet
vTaskPrioritySet
eTaskGetSet
pcTaskGetName

mutual exclusion vTaskENTER CRITICAL
vTaskEXIT CRITICAL

timer control xTimerIsTimerActive
xTimerStart
xTimerStartFromISR
xTimerStop
xTimerStopFromISR
xTimerReset
xTimerResetFromISR
pcTimerGetName
xTimerChangePeriod
vTimerSetTimerID
vTimerGetTimerID

queue xQueueSend
XQueueReceive

miscellaneous configASSERT

handler are generated by high-level synthesis from the source
codes. Some manual code modifications have been made on
the source codes; to adapt their interfaces to the high-level
synthesizer or to identify functions for the tasks, the timers,
and the handler, but the body of the functions are unmodified.

As a high-level synthesizer, we used ACAP [15]. ACAP
can generate Verilog HDL of register transfer level circuits
from executable binary codes of MIPS (R3000), which are
generated by GCC. Since ACAP preserves memory accesses



of the original binary codes, there was no need to modify the
source codes regarding global (common) variable accesses.

All the Verilog HDL codes are synthesized by the logic
synthesizer of Xilinx Vivado (2018.3) targeting Xilinx FPGA
Artix-7 (xc7a100tcsg324-3).

TABLE IV (a) shows the response performance of the syn-
thesized hardware for the service calls. “#cycle” and “latency”
are the clock cycles and estimated time from the calls to
completion of the services. The latency is the product of
the cycle and the critical path delay, which is 14.96 ns. For
example, xTaskResume takes 20 cycles (299.12 ns) to change
the state of the target task from Suspended to Ready; it takes
just 1 cycle to update the state but consumes 19 cycles for
error checking and lock/unlock for service call serialization.
All the services for task control were completed within 300
ns, which is by far the faster than software implementation.
Even the time consuming services for data queue manipulation
were processed within 700 ns.

TABLE IV (b) shows the circuit size of the hardware
module in the numbers of flipflops (#FF) and LUTs (#LUT).
The total LUT count of the hardware exceeded 130,000, which
is unfortunately a little too large for practical use. This is just
because this implementation is the very first version; there are
many duplicated and redundant submodules, which should be
removed by optimization or improvement of the architecture.

At this point, we have implemented 25 services (listed in
TABLE V) of FreeRTOS out of 132.

V. CONCLUSION

This paper has proposed a method for full hardware imple-
mentation of FreeRTOS-based systems. By assuming all the
tasks, handerls, and software timers are created statically, a
given application program using system calls of FreeRTOS
is synthesized into a hardware module which is functionally
equivalent to a CPU that runs the program.

A preliminary experiment on reduced version of a demo
program bundled with FreeRTOS demonstrated that the service
calls for task control and for the data queue operations took
less than 300 ns and 700 ns, respectively.

However, the size of the synthesized circuit is a little too
large. We are now working on an improved architecture to
remove duplicated or redundant hardware components. We are
also looking for a way to adapt our scheme to more general
purpose high-level synthesizer such as Vitis HLS. On the other
side, we are also working on implementing efficient RTOS
service modules such as mutexes, event groups, and message
buffers, in a hardware/software hybrid manner.
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